In
this study; 95 octane unleaded gasoline and bioethanol were tested as fuel in a
spark-ignition engine by blending bioethanol with gasoline in certain proportions
(2%, 4%, 6%, 8%, 10%). Tests were carried out at five different engine loads
for a constant engine speed of 2500 rpm. The variations in engine performance
parameters (brake thermal efficiency, brake specific fuel consumption, brake
specific energy consumption) and exhaust emissions (HC, CO, CO2 and
O2) were investigated on the basis of test fuel and engine load.
According to the test results, with the increase of bioethanol ratio in the blend,
brake specific fuel consumption values increased by 9.71% and brake thermal
efficiency values decreased by approximately 4.97% compared to gasoline. There
was decrease in HC and CO emissions and an increase in CO2 emissions
with bioethanol addition.
TPAOGM (2018). Crude oil and natural gas sector report for 2017. General Directorate of Turkey Petroleum Corporation.
Sezgin, B., Bilen, K., Çelik, V. (2013). Modification of a Diesel Engine to Natural Gas and Experimental Analysis of Modified Engine Performance and Exhaust Emission. Engineer & the Machinery Magazine, 54(642): 41-51.
İlker, Ö., Ciniviz, M. (2012). Investigation On Vehicle Using Gasoline-Bioethanol Blended Fuels. International Journal of Automotive Engineering and Technologies, 1(2): 32-39.
Niphadkar, S., Bagade, P., Ahmed, S. (2018). Bioethanol production: insight into past, present and future perspectives. Biofuels, 9(2): 229-238.
Lavanya, A. K., Sharma, A., Choudhary, S. B., Sharma, H. K., Nain, P. K. S., Singh, S., Nain, L. (2019). Mesta (Hibiscus spp.)–a potential feedstock for bioethanol production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-14.
Melikoglu, M., Albostan, A. (2011). Bioethanol production and potential of Turkey. Journal of the Faculty of Engineering and Architecture of Gazi University, 26(1): 151-160.
Örs, İ. (2020). Experimental investigation of the cetane improver and bioethanol addition for the use of waste cooking oil biodiesel as an alternative fuel in diesel engines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4): 1-14. doi: 10.1007/s40430-020-2270-1
Costa, R. C., Sodré, J. R. (2010). Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel, 89(2): 287-293.
Renzi, M., Bietresato, M., & Mazzetto, F. (2016). An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends. Energy, 115: 1069-1080.
Balki, M.K., Sayin, C. (2014). The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline. Energy, 71: 194-201.
Celik, M.B. (2008). Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Applied Thermal Engineering, 28(5-6): 396-404.
Qi, D., Lee, C.-F. (2016). Combustion and emissions behaviour for ethanol–gasoline-blended fuels in a multipoint electronic fuel injection engine. International Journal of Sustainable Energy, 35(4): 323-338.
Schifter, I., Diaz, L., Rodriguez, R., Gómez, J. P., Gonzalez, U. (2011). Combustion and emissions behavior for ethanol–gasoline blends in a single cylinder engine. Fuel, 90(12): 3586-3592.
Altun, Ş., Öztop, H., Öner, C., Varol, Y. (2013). Exhaust emissions of methanol and ethanol-unleaded gasoline blends in a spark-ignition engine. Thermal Science, 17(1): 291–297. doi:10.2298/tsci111207034a
Balki, M. K., Sayin, C., Canakci, M. (2014). The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel, 115: 901–906. doi:10.1016/j.fuel.2012.09.020
Najafi, G., Ghobadian, B., Yusaf, T., Safieddin Ardebili, S. M., Mamat, R. (2015). Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology. Energy, 90: 1815–1829. doi:10.1016/j.energy.2015.07.004
Özsezen, A.N. (2016). Evaluating Environmental Effects of Bioethanol-Gasoline Blends in Use a SI Engine. Uluslararası Yakıtlar, Yanma ve Yangın Dergisi, (4): 36-41.
Deng, X., Chen, Z., Wang, X., Zhen, H., Xie, R. (2018). Exhaust noise, performance and emission characteristics of spark ignition engine fuelled with pure gasoline and hydrous ethanol gasoline blends. Case Studies in Thermal Engineering, 12: 55–63. doi:10.1016/j.csite.2018.02.004
Doğan, B., Erol, D., Yaman, H., Kodanli, E. (2017). The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Applied Thermal Engineering, 120: 433–443. doi:10.1016/j.applthermaleng.2017.04.012
Koç, M., Sekmen, Y., Topgül, T., & Yücesu, H. S. (2009). The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renewable Energy, 34(10): 2101–2106. doi:10.1016/j.renene.2009.01.018
Zhuang, Y., Hong, G. (2013). Primary investigation to leveraging effect of using ethanol fuel on reducing gasoline fuel consumption. Fuel, 105: 425–431. doi:10.1016/j.fuel.2012.09.013
Kamil, M., Nazzal, I.T. (2016). Performance Evaluation of Spark Ignited Engine Fueled with Gasoline-Ethanol-Methanol Blends. Journal of Energy and Power Engineering, 10(6). doi:10.17265/1934-8975/2016.06.002
Phuangwongtrakul, S., Wechsatol, W., Sethaput, T., Suktang, K., Wongwises, S. (2016). Experimental study on sparking ignition engine performance for optimal mixing ratio of ethanol–gasoline blended fuels. Applied Thermal Engineering, 100: 869–879. doi:10.1016/j.applthermaleng.2016.02.084
Topgül, T., (2006). The investigation of optimum working parameters of spark ignition engines using ethyl alcohol-gasoline blend. Gazi University Graduate School of Natural and Applied Sciences.
Elfasakhany, A., (2015). Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: performance and emissions analysis. Engineering Science and Technology, an International Journal, 18(4): 713-719.
Hasan, A. O., Al-Rawashdeh, H., Al-Muhtaseb, A. H., Abu-jrai Ahmad, Ahmad, R., Zeaiter, J. (2018). Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel, 231: 197–203. doi:10.1016/j.fuel.2018.05.045
Kasmuri, N. H., Kamarudin, S. K., Abdullah, S. R. S., Hasan, H. A., Som, A. M. (2017). Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview. Renewable and Sustainable Energy Reviews, 79: 914–923. doi:10.1016/j.rser.2017.05.182
Wang, X., Chen, Z., Ni, J., Liu, S., Zhou, H. (2015). The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine. Case Studies in Thermal Engineering, 6: 147–154. doi:10.1016/j.csite.2015.09.007
Canakci, M., Ozsezen, A. N., Alptekin, E., Eyidogan, M. (2013). Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine. Renewable Energy, 52: 111–117. doi:10.1016/j.renene.2012.09.062
Costagliola, M. A., Prati, M. V., Florio, S., Scorletti, P., Terna, D., Iodice, P., … Senatore, A. (2016). Performances and emissions of a 4-stroke motorcycle fuelled with ethanol/gasoline blends. Fuel, 183: 470–477. doi:10.1016/j.fuel.2016.06.105
Iodice, P., Langella, G., Amoresano, A. (2018). Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Applied Thermal Engineering, 130: 1081–1089. doi:10.1016/j.applthermaleng.2017.11.090
Year 2020,
Volume: 4 Issue: 2, 65 - 71, 20.06.2020
TPAOGM (2018). Crude oil and natural gas sector report for 2017. General Directorate of Turkey Petroleum Corporation.
Sezgin, B., Bilen, K., Çelik, V. (2013). Modification of a Diesel Engine to Natural Gas and Experimental Analysis of Modified Engine Performance and Exhaust Emission. Engineer & the Machinery Magazine, 54(642): 41-51.
İlker, Ö., Ciniviz, M. (2012). Investigation On Vehicle Using Gasoline-Bioethanol Blended Fuels. International Journal of Automotive Engineering and Technologies, 1(2): 32-39.
Niphadkar, S., Bagade, P., Ahmed, S. (2018). Bioethanol production: insight into past, present and future perspectives. Biofuels, 9(2): 229-238.
Lavanya, A. K., Sharma, A., Choudhary, S. B., Sharma, H. K., Nain, P. K. S., Singh, S., Nain, L. (2019). Mesta (Hibiscus spp.)–a potential feedstock for bioethanol production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-14.
Melikoglu, M., Albostan, A. (2011). Bioethanol production and potential of Turkey. Journal of the Faculty of Engineering and Architecture of Gazi University, 26(1): 151-160.
Örs, İ. (2020). Experimental investigation of the cetane improver and bioethanol addition for the use of waste cooking oil biodiesel as an alternative fuel in diesel engines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4): 1-14. doi: 10.1007/s40430-020-2270-1
Costa, R. C., Sodré, J. R. (2010). Hydrous ethanol vs. gasoline-ethanol blend: Engine performance and emissions. Fuel, 89(2): 287-293.
Renzi, M., Bietresato, M., & Mazzetto, F. (2016). An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends. Energy, 115: 1069-1080.
Balki, M.K., Sayin, C. (2014). The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline. Energy, 71: 194-201.
Celik, M.B. (2008). Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Applied Thermal Engineering, 28(5-6): 396-404.
Qi, D., Lee, C.-F. (2016). Combustion and emissions behaviour for ethanol–gasoline-blended fuels in a multipoint electronic fuel injection engine. International Journal of Sustainable Energy, 35(4): 323-338.
Schifter, I., Diaz, L., Rodriguez, R., Gómez, J. P., Gonzalez, U. (2011). Combustion and emissions behavior for ethanol–gasoline blends in a single cylinder engine. Fuel, 90(12): 3586-3592.
Altun, Ş., Öztop, H., Öner, C., Varol, Y. (2013). Exhaust emissions of methanol and ethanol-unleaded gasoline blends in a spark-ignition engine. Thermal Science, 17(1): 291–297. doi:10.2298/tsci111207034a
Balki, M. K., Sayin, C., Canakci, M. (2014). The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel, 115: 901–906. doi:10.1016/j.fuel.2012.09.020
Najafi, G., Ghobadian, B., Yusaf, T., Safieddin Ardebili, S. M., Mamat, R. (2015). Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology. Energy, 90: 1815–1829. doi:10.1016/j.energy.2015.07.004
Özsezen, A.N. (2016). Evaluating Environmental Effects of Bioethanol-Gasoline Blends in Use a SI Engine. Uluslararası Yakıtlar, Yanma ve Yangın Dergisi, (4): 36-41.
Deng, X., Chen, Z., Wang, X., Zhen, H., Xie, R. (2018). Exhaust noise, performance and emission characteristics of spark ignition engine fuelled with pure gasoline and hydrous ethanol gasoline blends. Case Studies in Thermal Engineering, 12: 55–63. doi:10.1016/j.csite.2018.02.004
Doğan, B., Erol, D., Yaman, H., Kodanli, E. (2017). The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Applied Thermal Engineering, 120: 433–443. doi:10.1016/j.applthermaleng.2017.04.012
Koç, M., Sekmen, Y., Topgül, T., & Yücesu, H. S. (2009). The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renewable Energy, 34(10): 2101–2106. doi:10.1016/j.renene.2009.01.018
Zhuang, Y., Hong, G. (2013). Primary investigation to leveraging effect of using ethanol fuel on reducing gasoline fuel consumption. Fuel, 105: 425–431. doi:10.1016/j.fuel.2012.09.013
Kamil, M., Nazzal, I.T. (2016). Performance Evaluation of Spark Ignited Engine Fueled with Gasoline-Ethanol-Methanol Blends. Journal of Energy and Power Engineering, 10(6). doi:10.17265/1934-8975/2016.06.002
Phuangwongtrakul, S., Wechsatol, W., Sethaput, T., Suktang, K., Wongwises, S. (2016). Experimental study on sparking ignition engine performance for optimal mixing ratio of ethanol–gasoline blended fuels. Applied Thermal Engineering, 100: 869–879. doi:10.1016/j.applthermaleng.2016.02.084
Topgül, T., (2006). The investigation of optimum working parameters of spark ignition engines using ethyl alcohol-gasoline blend. Gazi University Graduate School of Natural and Applied Sciences.
Elfasakhany, A., (2015). Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: performance and emissions analysis. Engineering Science and Technology, an International Journal, 18(4): 713-719.
Hasan, A. O., Al-Rawashdeh, H., Al-Muhtaseb, A. H., Abu-jrai Ahmad, Ahmad, R., Zeaiter, J. (2018). Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel, 231: 197–203. doi:10.1016/j.fuel.2018.05.045
Kasmuri, N. H., Kamarudin, S. K., Abdullah, S. R. S., Hasan, H. A., Som, A. M. (2017). Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview. Renewable and Sustainable Energy Reviews, 79: 914–923. doi:10.1016/j.rser.2017.05.182
Wang, X., Chen, Z., Ni, J., Liu, S., Zhou, H. (2015). The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine. Case Studies in Thermal Engineering, 6: 147–154. doi:10.1016/j.csite.2015.09.007
Canakci, M., Ozsezen, A. N., Alptekin, E., Eyidogan, M. (2013). Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine. Renewable Energy, 52: 111–117. doi:10.1016/j.renene.2012.09.062
Costagliola, M. A., Prati, M. V., Florio, S., Scorletti, P., Terna, D., Iodice, P., … Senatore, A. (2016). Performances and emissions of a 4-stroke motorcycle fuelled with ethanol/gasoline blends. Fuel, 183: 470–477. doi:10.1016/j.fuel.2016.06.105
Iodice, P., Langella, G., Amoresano, A. (2018). Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Applied Thermal Engineering, 130: 1081–1089. doi:10.1016/j.applthermaleng.2017.11.090
Yelbey, S., & Ciniviz, M. (2020). Investigation of the Effects of Gasoline-Bioethanol Blends on Engine Performance and Exhaust Emissions in a Spark Ignition Engine. European Mechanical Science, 4(2), 65-71. https://doi.org/10.26701/ems.635790