Research Article
PDF EndNote BibTex RIS Cite

Assessing household damages using multi-model deep learning pipeline

Year 2022, Volume: 6 Issue: 2, 138 - 142, 26.06.2022
https://doi.org/10.26701/ems.1031595

Abstract

Since the beginning of the pandemic, the home insurance sector has suffered from various difficulties. One of the most important difficulties was assessing the damages in the insurance owners’ homes. Due to the current pandemic, letting the experts assess the damages in place is a life-threatening risk. Therefore, the idea of automatically assessing the damage is born. This study aims to create a full report for home damages using Convolutional Neural Network (CNN) and various large deep learning model architectures such as EfficientNet, ResNet, U-Net, or Feature Pyramid Network (FPN). Multiple models for tasks such as binary classification and instance segmentation were developed to create an end-to-end reporting pipeline. In more detail, the pipeline consists of two binary classification models and a segmentation model. Binary classification models are responsible for detecting if the picture is indoors and if there is a wall in the picture, whereas the instance segmentation model is responsible for segmenting the damaged parts of the wall class. The effectiveness of the pipeline was measured using different metrics for each task, including accuracy, F1, dice, and Intersection over Union (IoU) scores. The data for each task is labeled by hand and fed to models. The results show that the constructed pipeline can successfully classify and segment the given images according to the needs of our project. The project will affect the home insurance assessment procedure and time spent tremendously by automatizing these repetitive processes.

References

  • [1] Di Crosta, A., Ceccato, I., Marchetti, D., La Malva, P., Maiella, R., Cannito, L., Di Domenico, A. (2021) “Psychological factors and consumer behavior during the COVID-19 pandemic”. PloS one, vol. 16, no. 8, e0256095.
  • [2] Perez, H., Tah, J. H., Mosavi, A. (2019) “Deep learning for detecting building defects using convolutional neural networks”. Sensors, vol. 19, no. 16, 3556.
  • [3] Yu, Y., Wang, C., Gu, X., Li, J. (2019) “A novel deep learning-based method for damage identification of smart building structures”. Structural Health Monitoring, vol. 18, no. 1, pp 143-163.
  • [4] Li, Z., Tian, K., Wang, F., Zheng, X., Wang, F. (2016) „Home damage estimation after disasters using crowdsourcing ideas and Convolutional Neural Networks”. In: 2016 5th International Conference on Measurement, Instrumentation and Automation.
  • [5] Feng, C., Zhang, H., Wang, S., Li, Y., Wang, H., Yan, F. (2019) „Structural damage detection using deep convolutional neural network and transfer learning”. KSCE Journal of Civil Engineering, vol. 23, no. 10, pp. 4493-4502.
  • [6] Naito, S., Tomozawa, H., Mori, Y., Nagata, T., Monma, N., Nakamura, H., Shoji, G. (2020) “Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake”. Earthquake Spectra, vol. 36, no. 3, pp. 1166-1187.
  • [7] Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A. A. (2020) “Albumentations: fast and flexible image augmentations”. Information, vol. 11, no. 2, p. 125.
  • [8] Paszke, A. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. Advances in Neural Information Processing Systems, vol. 32, pp. 8024-8035.
  • [9] Wightman, R. (2019) PyTorch Image Models. GitHub. doi:10.5281/zenodo.4414861
  • [10] Kingma, D. P., & Ba, J. (2014) “Adam: A method for stochastic optimization”. arXiv preprint arXiv:1412.6980.
  • [11] Tan, M., Le, Q. (2019). “Efficientnet: Rethinking model scaling for convolutional neural networks”. In: International Conference on Machine Learning, pp. 6105-6114.
  • [12] He, K., Zhang, X., Ren, S., & Sun, J. (2016) “Deep residual learning for image recognition”. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp. 770-778.
  • [13] Ronneberger, O., Fischer, P., Brox, T. (2015) „U-net: Convolutional networks for biomedical image segmentation”. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234-241. [14] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S. (2017) “Feature pyramid networks for object detection”. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp. 2117-2125.

Year 2022, Volume: 6 Issue: 2, 138 - 142, 26.06.2022
https://doi.org/10.26701/ems.1031595

Abstract

References

  • [1] Di Crosta, A., Ceccato, I., Marchetti, D., La Malva, P., Maiella, R., Cannito, L., Di Domenico, A. (2021) “Psychological factors and consumer behavior during the COVID-19 pandemic”. PloS one, vol. 16, no. 8, e0256095.
  • [2] Perez, H., Tah, J. H., Mosavi, A. (2019) “Deep learning for detecting building defects using convolutional neural networks”. Sensors, vol. 19, no. 16, 3556.
  • [3] Yu, Y., Wang, C., Gu, X., Li, J. (2019) “A novel deep learning-based method for damage identification of smart building structures”. Structural Health Monitoring, vol. 18, no. 1, pp 143-163.
  • [4] Li, Z., Tian, K., Wang, F., Zheng, X., Wang, F. (2016) „Home damage estimation after disasters using crowdsourcing ideas and Convolutional Neural Networks”. In: 2016 5th International Conference on Measurement, Instrumentation and Automation.
  • [5] Feng, C., Zhang, H., Wang, S., Li, Y., Wang, H., Yan, F. (2019) „Structural damage detection using deep convolutional neural network and transfer learning”. KSCE Journal of Civil Engineering, vol. 23, no. 10, pp. 4493-4502.
  • [6] Naito, S., Tomozawa, H., Mori, Y., Nagata, T., Monma, N., Nakamura, H., Shoji, G. (2020) “Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake”. Earthquake Spectra, vol. 36, no. 3, pp. 1166-1187.
  • [7] Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A. A. (2020) “Albumentations: fast and flexible image augmentations”. Information, vol. 11, no. 2, p. 125.
  • [8] Paszke, A. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. Advances in Neural Information Processing Systems, vol. 32, pp. 8024-8035.
  • [9] Wightman, R. (2019) PyTorch Image Models. GitHub. doi:10.5281/zenodo.4414861
  • [10] Kingma, D. P., & Ba, J. (2014) “Adam: A method for stochastic optimization”. arXiv preprint arXiv:1412.6980.
  • [11] Tan, M., Le, Q. (2019). “Efficientnet: Rethinking model scaling for convolutional neural networks”. In: International Conference on Machine Learning, pp. 6105-6114.
  • [12] He, K., Zhang, X., Ren, S., & Sun, J. (2016) “Deep residual learning for image recognition”. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp. 770-778.
  • [13] Ronneberger, O., Fischer, P., Brox, T. (2015) „U-net: Convolutional networks for biomedical image segmentation”. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234-241. [14] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S. (2017) “Feature pyramid networks for object detection”. In: Proc. of the IEEE conference on computer vision and pattern recognition, pp. 2117-2125.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Fatih KIYIKÇI
Anadolu Sigorta
0000-0003-3949-5680
Türkiye


Hilal Onur CUNEDİOĞLU
Anadolu Sigorta
0000-0002-4782-1768
Türkiye


Enes KOŞAR
Anadolu Sigorta
0000-0001-9757-2483
Türkiye


Mehmet Eren BEKİN
Anadolu Sigorta
0000-0002-9024-250X
Türkiye


Fatih ABUT
ÇUKUROVA ÜNİVERSİTESİ
0000-0001-5876-4116
Türkiye


Fatih AKAY
ÇUKUROVA ÜNİVERSİTESİ
0000-0003-0780-0679
Türkiye

Publication Date June 26, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

Bibtex @research article { ems1031595, journal = {European Mechanical Science}, eissn = {2587-1110}, address = {}, publisher = {Ahmet ÇALIK}, year = {2022}, volume = {6}, number = {2}, pages = {138 - 142}, doi = {10.26701/ems.1031595}, title = {Assessing household damages using multi-model deep learning pipeline}, key = {cite}, author = {Kıyıkçı, Fatih and Cunedioğlu, Hilal Onur and Koşar, Enes and Bekin, Mehmet Eren and Abut, Fatih and Akay, Fatih} }
APA Kıyıkçı, F. , Cunedioğlu, H. O. , Koşar, E. , Bekin, M. E. , Abut, F. & Akay, F. (2022). Assessing household damages using multi-model deep learning pipeline . European Mechanical Science , 6 (2) , 138-142 . DOI: 10.26701/ems.1031595
MLA Kıyıkçı, F. , Cunedioğlu, H. O. , Koşar, E. , Bekin, M. E. , Abut, F. , Akay, F. "Assessing household damages using multi-model deep learning pipeline" . European Mechanical Science 6 (2022 ): 138-142 <https://dergipark.org.tr/en/pub/ems/issue/68650/1031595>
Chicago Kıyıkçı, F. , Cunedioğlu, H. O. , Koşar, E. , Bekin, M. E. , Abut, F. , Akay, F. "Assessing household damages using multi-model deep learning pipeline". European Mechanical Science 6 (2022 ): 138-142
RIS TY - JOUR T1 - Assessing household damages using multi-model deep learning pipeline AU - FatihKıyıkçı, Hilal OnurCunedioğlu, EnesKoşar, Mehmet ErenBekin, FatihAbut, FatihAkay Y1 - 2022 PY - 2022 N1 - doi: 10.26701/ems.1031595 DO - 10.26701/ems.1031595 T2 - European Mechanical Science JF - Journal JO - JOR SP - 138 EP - 142 VL - 6 IS - 2 SN - -2587-1110 M3 - doi: 10.26701/ems.1031595 UR - https://doi.org/10.26701/ems.1031595 Y2 - 2022 ER -
EndNote %0 European Mechanical Science Assessing household damages using multi-model deep learning pipeline %A Fatih Kıyıkçı , Hilal Onur Cunedioğlu , Enes Koşar , Mehmet Eren Bekin , Fatih Abut , Fatih Akay %T Assessing household damages using multi-model deep learning pipeline %D 2022 %J European Mechanical Science %P -2587-1110 %V 6 %N 2 %R doi: 10.26701/ems.1031595 %U 10.26701/ems.1031595
ISNAD Kıyıkçı, Fatih , Cunedioğlu, Hilal Onur , Koşar, Enes , Bekin, Mehmet Eren , Abut, Fatih , Akay, Fatih . "Assessing household damages using multi-model deep learning pipeline". European Mechanical Science 6 / 2 (June 2022): 138-142 . https://doi.org/10.26701/ems.1031595
AMA Kıyıkçı F. , Cunedioğlu H. O. , Koşar E. , Bekin M. E. , Abut F. , Akay F. Assessing household damages using multi-model deep learning pipeline. EMS. 2022; 6(2): 138-142.
Vancouver Kıyıkçı F. , Cunedioğlu H. O. , Koşar E. , Bekin M. E. , Abut F. , Akay F. Assessing household damages using multi-model deep learning pipeline. European Mechanical Science. 2022; 6(2): 138-142.
IEEE F. Kıyıkçı , H. O. Cunedioğlu , E. Koşar , M. E. Bekin , F. Abut and F. Akay , "Assessing household damages using multi-model deep learning pipeline", European Mechanical Science, vol. 6, no. 2, pp. 138-142, Jun. 2022, doi:10.26701/ems.1031595

Creative Commons Lisansı

Dergi TR Dizin'de Taranmaktadır.

Flag Counter