Year 2022,
Volume: 6 Issue: 4, 213 - 220, 20.12.2022
Feride Cansu İskenderoğlu
Kaan Baltacıoğlu
,
Çağlar Conker
,
Hasan Hüseyin Bilgiç
References
- [1] Hansu, T.A., Caglar, A., Sahin, O., Kivrak, H., (2020). Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Materials Chemistry and Physics. doi: 10.1016/j.matchemphys.2019.122031.
- [2] Barbir, F., Gorgun, H., & Wang, X. (2005). Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. Journal of Power Sources, 141(1), 96-101.
- [3] Sahiner, N., Demirci, S., (2017). Very fast H2 production from the methanolysis of NaBH4 by metal-free poly(ethylene imine) microgel catalysts. International Journal of Energy Research. doi: 10.1002/er.3679.
- [4] Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M., Azad, A.K., (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management. doi: 10.1016/j.enconman.2018.03.088.
- [5] Rivarolo, M., Improta, O., Magistri, L., Panizza, M., Barbucci, A., (2018). Thermo-economic analysis of a hydrogen production system by sodium borohydride (NaBH4). International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2017.11.079.
- [6] Balbay, A., Saka, C., (2018). Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi: 10.1080/15567036.2018.1463311.
- [7] Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., (1953). Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society. doi: 10.1021/ja01097a057.
- [8] Zhang, J., Zheng, Y., Gore, J.P., Fisher, T.S., (2007). 1 kWe sodium borohydride hydrogen generation system. Part I: Experimental study. Journal of Power Sources. doi: 10.1016/j.jpowsour.2006.12.055.
- [9] Amendola, S.C., Sharp-Goldman, S.L., Saleem Janjua, M., Kelly, M.T., Petillo, P.J., Binder, M., (2000). An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources. doi: 10.1016/S0378-7753(99)00301-8.
- [10] Kojima, Y., Suzuki, K.I., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., et al., (2002). Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(02)00014-9.
- [11] Arzac, G.M., Hufschmidt, D., Jiménez De Haro, M.C., Fernández, A., Sarmiento, B., Jiménez, M.A., et al., (2012). Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.06.117.
- [12] Wang, F.C., Chiang, Y.S., (2012). Design and control of a PEMFC powered electric wheelchair. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.04.156.
- [13] Guo, Y.F., Chen, H.C., Wang, F.C., (2015). The development of a hybrid PEMFC power system. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.01.169.
- [14] Murooka, S., Tomoda, K., Hoshi, N., Haruna, J., Cao, M., Yoshizaki, A., et al., (2012). Consideration on fundamental characteristic of hydrogen generator system fueled by NaBH 4 for fuel cell hybrid electric vehicle. 2012 IEEE International Electric Vehicle Conference, IEVC 2012,.
- [15] Kojima, Y., Suzuki, K.I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., et al., (2004). Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources. doi: 10.1016/S0378-7753(03)00827-9.
- [16] Kim, J.H., Lee, H., Han, S.C., Kim, H.S., Song, M.S., Lee, J.Y., (2004). Production of hydrogen from sodium borohydride in alkaline solution: Development of catalyst with high performance. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(03)00128-9.
- [17] Kim, T., Lee, J., (2011). A complete power source of micro PEM fuel cell with NABH4 microreactor. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS),.
- [18] Kim, T., (2011). Hydrogen generation from sodium borohydride using microreactor for micro fuel cells. International Journal of Hydrogen Energy. 36(2): 1404–10. doi: 10.1016/j.ijhydene.2010.10.079.
- [19] Li, S.C., Wang, F.C., (2016). The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.12.019.
- [20] Sim, J.H., Lee, C.J., Kim, T., (2014). Hydrogen generation from solid-state NaBH4 particles using NaHCO3 agents for PEM fuel cell systems. Energy Procedia,.
- [21] Avrahami, I., Shvalb, N., Sasson, M., Nagar, Y., Dahan, O., Dayee, I., et al., (2020). Hydrogen production on-demand by hydride salt and water two-phase generator. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.03.203.
- [22] Zakhvatkin, L., Zolotih, M., Maurice, Y., Schechter, A., Avrahami, I., (2021). Hydrogen Production on Demand by a Pump Controlled Hydrolysis of Granulated Sodium Borohydride. Energy and Fuels. doi: 10.1021/acs.energyfuels.1c00367.
- [23] İskenderoğlu, F.C., Baltacıoğlu, M.K., (2021). Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.12.219.
- [24] Liu, B.H., Li, Q., (2008). A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2008.09.055.
- [25] Kılınç, D., Şahin, Ö., (2019). Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.12.225.
An autonomous hydrogen production system design based on the solid chemical hydride
Year 2022,
Volume: 6 Issue: 4, 213 - 220, 20.12.2022
Feride Cansu İskenderoğlu
Kaan Baltacıoğlu
,
Çağlar Conker
,
Hasan Hüseyin Bilgiç
Abstract
This paper develops a hydrogen generator prototype that is for fuel cell systems used in portable applications. This generator is designed based on the use of solid-state hydrides with high hydrogen storage capacity in the catalytic hydrolysis reaction. Some using problems such as unstable hydrogen production, one-off service life, heavy or large-volume storage system, and short duty time can be avoided in moveable applications when the use of the produced prototype. In addition, A simulation model and an autonomous control algorithm, which evaluates the hydrogen generation and temperature responses of the prototype, are developed. The results confirm that the performance of a portable and autonomous prototype with 4 parts and 1-hour hydrogen production capacity is enough for small fuel cell applications.
References
- [1] Hansu, T.A., Caglar, A., Sahin, O., Kivrak, H., (2020). Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Materials Chemistry and Physics. doi: 10.1016/j.matchemphys.2019.122031.
- [2] Barbir, F., Gorgun, H., & Wang, X. (2005). Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. Journal of Power Sources, 141(1), 96-101.
- [3] Sahiner, N., Demirci, S., (2017). Very fast H2 production from the methanolysis of NaBH4 by metal-free poly(ethylene imine) microgel catalysts. International Journal of Energy Research. doi: 10.1002/er.3679.
- [4] Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M., Azad, A.K., (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management. doi: 10.1016/j.enconman.2018.03.088.
- [5] Rivarolo, M., Improta, O., Magistri, L., Panizza, M., Barbucci, A., (2018). Thermo-economic analysis of a hydrogen production system by sodium borohydride (NaBH4). International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2017.11.079.
- [6] Balbay, A., Saka, C., (2018). Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi: 10.1080/15567036.2018.1463311.
- [7] Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., (1953). Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society. doi: 10.1021/ja01097a057.
- [8] Zhang, J., Zheng, Y., Gore, J.P., Fisher, T.S., (2007). 1 kWe sodium borohydride hydrogen generation system. Part I: Experimental study. Journal of Power Sources. doi: 10.1016/j.jpowsour.2006.12.055.
- [9] Amendola, S.C., Sharp-Goldman, S.L., Saleem Janjua, M., Kelly, M.T., Petillo, P.J., Binder, M., (2000). An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources. doi: 10.1016/S0378-7753(99)00301-8.
- [10] Kojima, Y., Suzuki, K.I., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., et al., (2002). Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(02)00014-9.
- [11] Arzac, G.M., Hufschmidt, D., Jiménez De Haro, M.C., Fernández, A., Sarmiento, B., Jiménez, M.A., et al., (2012). Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.06.117.
- [12] Wang, F.C., Chiang, Y.S., (2012). Design and control of a PEMFC powered electric wheelchair. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.04.156.
- [13] Guo, Y.F., Chen, H.C., Wang, F.C., (2015). The development of a hybrid PEMFC power system. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.01.169.
- [14] Murooka, S., Tomoda, K., Hoshi, N., Haruna, J., Cao, M., Yoshizaki, A., et al., (2012). Consideration on fundamental characteristic of hydrogen generator system fueled by NaBH 4 for fuel cell hybrid electric vehicle. 2012 IEEE International Electric Vehicle Conference, IEVC 2012,.
- [15] Kojima, Y., Suzuki, K.I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., et al., (2004). Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources. doi: 10.1016/S0378-7753(03)00827-9.
- [16] Kim, J.H., Lee, H., Han, S.C., Kim, H.S., Song, M.S., Lee, J.Y., (2004). Production of hydrogen from sodium borohydride in alkaline solution: Development of catalyst with high performance. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(03)00128-9.
- [17] Kim, T., Lee, J., (2011). A complete power source of micro PEM fuel cell with NABH4 microreactor. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS),.
- [18] Kim, T., (2011). Hydrogen generation from sodium borohydride using microreactor for micro fuel cells. International Journal of Hydrogen Energy. 36(2): 1404–10. doi: 10.1016/j.ijhydene.2010.10.079.
- [19] Li, S.C., Wang, F.C., (2016). The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.12.019.
- [20] Sim, J.H., Lee, C.J., Kim, T., (2014). Hydrogen generation from solid-state NaBH4 particles using NaHCO3 agents for PEM fuel cell systems. Energy Procedia,.
- [21] Avrahami, I., Shvalb, N., Sasson, M., Nagar, Y., Dahan, O., Dayee, I., et al., (2020). Hydrogen production on-demand by hydride salt and water two-phase generator. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.03.203.
- [22] Zakhvatkin, L., Zolotih, M., Maurice, Y., Schechter, A., Avrahami, I., (2021). Hydrogen Production on Demand by a Pump Controlled Hydrolysis of Granulated Sodium Borohydride. Energy and Fuels. doi: 10.1021/acs.energyfuels.1c00367.
- [23] İskenderoğlu, F.C., Baltacıoğlu, M.K., (2021). Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.12.219.
- [24] Liu, B.H., Li, Q., (2008). A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2008.09.055.
- [25] Kılınç, D., Şahin, Ö., (2019). Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.12.225.