Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 3, 138 - 145, 20.09.2023
https://doi.org/10.26701/ems.1265161

Abstract

References

  • [1] H. Chen, R. Yada, Nanotechnologies in agriculture: New tools for sustainable development, Trends Food Sci. Technol. 22 (2011) 585–594. https://doi.org/10.1016/j.tifs.2011.09.004.
  • [2] G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects: All-vanadium redox flow battery for energy storage, Int. J. Energy Res. 36 (2012) 1105–1120. https://doi.org/10.1002/er.1863.
  • [3] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources. 91 (2000) 37–50.
  • [4] S. Zhang, N. Pan, Supercapacitors Performance Evaluation, Adv. Energy Mater. 5 (2015) 1401401. https://doi.org/10.1002/aenm.201401401.
  • [5] W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology, Nano Energy. 52 (2018) 441–473.
  • [6] S. Kour, S. Tanwar, A.L. Sharma, A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications, Mater. Today Commun. (2022) 104033.
  • [7] I.T. Bello, A.O. Oladipo, O. Adedokun, S.M. Dhlamini, Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review, Mater. Today Commun. 25 (2020) 101664.
  • [8] E.E. Miller, Y. Hua, F.H. Tezel, Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors, J. Energy Storage. 20 (2018) 30–40. https://doi.org/10.1016/j.est.2018.08.009.
  • [9] U. Samukaite-Bubniene, A. Valiūnienė, V. Bucinskas, P. Genys, V. Ratautaite, A. Ramanaviciene, E. Aksun, A. Tereshchenko, B. Zeybek, A. Ramanavicius, Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode, Colloids Surf. Physicochem. Eng. Asp. 610 (2021) 125750. https://doi.org/10.1016/j.colsurfa.2020.125750.
  • [10] R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, J. Alloys Compd. 734 (2018) 89–111.
  • [11] R. Naraprawatphong, C. Chokradjaroen, S. Thiangtham, L. Yang, N. Saito, Nanoscale advanced carbons as an anode for lithium-ion battery, Mater. Today Adv. 16 (2022) 100290.
  • [12] Z. Hai, M.K. Akbari, Z. Wei, C. Xue, H. Xu, J. Hu, L. Hyde, S. Zhuiykov, TiO2 nanoparticles-functionalized two-dimensional WO3 for high-performance supercapacitors developed by facile two-step ALD process, Mater. Today Commun. 12 (2017) 55–62.
  • [13] Y. Zhao, N. Hoivik, K. Wang, Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting, Nano Energy. 30 (2016) 728–744.
  • [14] S. Specchia, C. Galletti, V. Specchia, Solution combustion synthesis as intriguing technique to quickly produce performing catalysts for specific applications, in: Stud. Surf. Sci. Catal., Elsevier, 2010: pp. 59–67.
  • [15] S. Yadav, A. Nair, K. Urs MB, V.B. Kamble, Protonic titanate nanotube–reduced graphene oxide composites for hydrogen sensing, ACS Appl. Nano Mater. 3 (2020) 10082–10093.
  • [16] E. Budak, S. Aykut, M.E. Paşaoğlu, C. Ünlü, Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments, Mater. Today Commun. 24 (2020) 100975.
  • [17] P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.D. Sartale, C.D. Lokhande, SILAR deposited porous polyaniline-titanium oxide composite thin film for supercapacitor application, Mater. Today Commun. 8 (2016) 205–213.
  • [18] M. Paredes-Ramos, F. Bates, I. Rodríguez-González, J.M. López-Vilariño, Computational approximations of molecularly imprinted polymers with sulphur based monomers for biological purposes, Mater. Today Commun. 20 (2019) 100526.
  • [19] M.T. Acar, H. Kovacı, A. Çelik, Comparison of the structural properties, surface wettability and corrosion resistance of TiO2 nanotubes fabricated on Cp-Ti, Ti6Al4V and Ti45Nb, Mater. Today Commun. 33 (2022) 104396.
  • [20] X. Ning, X. Wang, X. Yu, J. Zhao, M. Wang, H. Li, Y. Yang, Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method, Sci. Rep. 6 (2016) 1–8.
  • [21] S. Shahabuddin, A. Numan, M.M. Shahid, R. Khanam, R. Saidur, A.K. Pandey, S. Ramesh, Polyaniline-SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry, Ceram. Int. 45 (2019) 11428–11437.
  • [22] Y. Zhang, Q. Yao, H. Gao, L. Zhang, L. Wang, A. Zhang, Y. Song, L. Wang, Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors, J. Anal. Appl. Pyrolysis. 111 (2015) 233–237.
  • [23] M.T. Acar, H. Kovacı, A. Çelik, Improving the wettability and corrosion behavior of Cp-Ti by applying anodization surface treatment with the addition of boric acid, graphene oxide and hydroxyapatite, Mater. Today Commun. (2022) 103683.
  • [24] Y. Xin, J. Jiang, K. Huo, T. Hu, P.K. Chu, Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants, ACS Nano. 3 (2009) 3228–3234.
  • [25] F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal. Gen. 359 (2009) 25–40.
  • [26] L. Sun, J. Cai, Q. Wu, P. Huang, Y. Su, C. Lin, N-doped TiO2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities, Electrochimica Acta. 108 (2013) 525–531.
  • [27] H. Sharifi, M. Aliofkhazraei, G.B. Darband, A.S. Rouhaghdam, Tribological properties of PEO nanocomposite coatings on titanium formed in electrolyte containing ketoconazole, Tribol. Int. 102 (2016) 463–471. https://doi.org/10.1016/j.triboint.2016.06.013.
  • [28] M. Palacio, B. Bhushan, A Review of Ionic Liquids for Green Molecular Lubrication in Nanotechnology, Tribol. Lett. 40 (2010) 247–268. https://doi.org/10.1007/s11249-010-9671-8.
  • [29] A. Bandyopadhyay, A. Shivaram, I. Mitra, S. Bose, Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration, Acta Biomater. 96 (2019) 686–693. https://doi.org/10.1016/j.actbio.2019.07.028.
  • [30] X. Ning, X. Wang, X. Yu, J. Zhao, M. Wang, H. Li, Y. Yang, Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method, Sci. Rep. 6 (2016) 22634. https://doi.org/10.1038/srep22634.

Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes

Year 2023, Volume: 7 Issue: 3, 138 - 145, 20.09.2023
https://doi.org/10.26701/ems.1265161

Abstract

In this study, manganese (Mn) and strontium (Sr) were doped into TiO2 nanotubes (TNT), which are frequently used in energy storage equipment. The aim of this study is to compare the corrosion tribocorrosion and cyclic voltammetry performances of doped TNTs after examining their structural characteristics. XRD and SEM were used to characterize the nanotubes. After the anodization processes, the inclusion of Mn and Sr in the TNT structure was confirmed by XRD analysis. In SEM analysis, it was observed that with the addition of Mn and Sr into the solution, longer nanotubes were formed with increased electrical conductivity. Increasing the nanotube length and shrinking the nanotube's inner diameter provided increased corrosion resistance. Increased surface hardness resulted in increased tribocorrosion resistance. In cyclic voltammetry experiments, the capacitance increased approximately 5 times in Sr-doped TNT compared to undoped TNT, while it increased 10 times in Mn-doped TNT.

References

  • [1] H. Chen, R. Yada, Nanotechnologies in agriculture: New tools for sustainable development, Trends Food Sci. Technol. 22 (2011) 585–594. https://doi.org/10.1016/j.tifs.2011.09.004.
  • [2] G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects: All-vanadium redox flow battery for energy storage, Int. J. Energy Res. 36 (2012) 1105–1120. https://doi.org/10.1002/er.1863.
  • [3] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources. 91 (2000) 37–50.
  • [4] S. Zhang, N. Pan, Supercapacitors Performance Evaluation, Adv. Energy Mater. 5 (2015) 1401401. https://doi.org/10.1002/aenm.201401401.
  • [5] W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology, Nano Energy. 52 (2018) 441–473.
  • [6] S. Kour, S. Tanwar, A.L. Sharma, A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications, Mater. Today Commun. (2022) 104033.
  • [7] I.T. Bello, A.O. Oladipo, O. Adedokun, S.M. Dhlamini, Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review, Mater. Today Commun. 25 (2020) 101664.
  • [8] E.E. Miller, Y. Hua, F.H. Tezel, Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors, J. Energy Storage. 20 (2018) 30–40. https://doi.org/10.1016/j.est.2018.08.009.
  • [9] U. Samukaite-Bubniene, A. Valiūnienė, V. Bucinskas, P. Genys, V. Ratautaite, A. Ramanaviciene, E. Aksun, A. Tereshchenko, B. Zeybek, A. Ramanavicius, Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode, Colloids Surf. Physicochem. Eng. Asp. 610 (2021) 125750. https://doi.org/10.1016/j.colsurfa.2020.125750.
  • [10] R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, J. Alloys Compd. 734 (2018) 89–111.
  • [11] R. Naraprawatphong, C. Chokradjaroen, S. Thiangtham, L. Yang, N. Saito, Nanoscale advanced carbons as an anode for lithium-ion battery, Mater. Today Adv. 16 (2022) 100290.
  • [12] Z. Hai, M.K. Akbari, Z. Wei, C. Xue, H. Xu, J. Hu, L. Hyde, S. Zhuiykov, TiO2 nanoparticles-functionalized two-dimensional WO3 for high-performance supercapacitors developed by facile two-step ALD process, Mater. Today Commun. 12 (2017) 55–62.
  • [13] Y. Zhao, N. Hoivik, K. Wang, Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting, Nano Energy. 30 (2016) 728–744.
  • [14] S. Specchia, C. Galletti, V. Specchia, Solution combustion synthesis as intriguing technique to quickly produce performing catalysts for specific applications, in: Stud. Surf. Sci. Catal., Elsevier, 2010: pp. 59–67.
  • [15] S. Yadav, A. Nair, K. Urs MB, V.B. Kamble, Protonic titanate nanotube–reduced graphene oxide composites for hydrogen sensing, ACS Appl. Nano Mater. 3 (2020) 10082–10093.
  • [16] E. Budak, S. Aykut, M.E. Paşaoğlu, C. Ünlü, Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments, Mater. Today Commun. 24 (2020) 100975.
  • [17] P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.D. Sartale, C.D. Lokhande, SILAR deposited porous polyaniline-titanium oxide composite thin film for supercapacitor application, Mater. Today Commun. 8 (2016) 205–213.
  • [18] M. Paredes-Ramos, F. Bates, I. Rodríguez-González, J.M. López-Vilariño, Computational approximations of molecularly imprinted polymers with sulphur based monomers for biological purposes, Mater. Today Commun. 20 (2019) 100526.
  • [19] M.T. Acar, H. Kovacı, A. Çelik, Comparison of the structural properties, surface wettability and corrosion resistance of TiO2 nanotubes fabricated on Cp-Ti, Ti6Al4V and Ti45Nb, Mater. Today Commun. 33 (2022) 104396.
  • [20] X. Ning, X. Wang, X. Yu, J. Zhao, M. Wang, H. Li, Y. Yang, Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method, Sci. Rep. 6 (2016) 1–8.
  • [21] S. Shahabuddin, A. Numan, M.M. Shahid, R. Khanam, R. Saidur, A.K. Pandey, S. Ramesh, Polyaniline-SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry, Ceram. Int. 45 (2019) 11428–11437.
  • [22] Y. Zhang, Q. Yao, H. Gao, L. Zhang, L. Wang, A. Zhang, Y. Song, L. Wang, Synthesis and electrochemical performance of MnO2/BC composite as active materials for supercapacitors, J. Anal. Appl. Pyrolysis. 111 (2015) 233–237.
  • [23] M.T. Acar, H. Kovacı, A. Çelik, Improving the wettability and corrosion behavior of Cp-Ti by applying anodization surface treatment with the addition of boric acid, graphene oxide and hydroxyapatite, Mater. Today Commun. (2022) 103683.
  • [24] Y. Xin, J. Jiang, K. Huo, T. Hu, P.K. Chu, Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants, ACS Nano. 3 (2009) 3228–3234.
  • [25] F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal. Gen. 359 (2009) 25–40.
  • [26] L. Sun, J. Cai, Q. Wu, P. Huang, Y. Su, C. Lin, N-doped TiO2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities, Electrochimica Acta. 108 (2013) 525–531.
  • [27] H. Sharifi, M. Aliofkhazraei, G.B. Darband, A.S. Rouhaghdam, Tribological properties of PEO nanocomposite coatings on titanium formed in electrolyte containing ketoconazole, Tribol. Int. 102 (2016) 463–471. https://doi.org/10.1016/j.triboint.2016.06.013.
  • [28] M. Palacio, B. Bhushan, A Review of Ionic Liquids for Green Molecular Lubrication in Nanotechnology, Tribol. Lett. 40 (2010) 247–268. https://doi.org/10.1007/s11249-010-9671-8.
  • [29] A. Bandyopadhyay, A. Shivaram, I. Mitra, S. Bose, Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration, Acta Biomater. 96 (2019) 686–693. https://doi.org/10.1016/j.actbio.2019.07.028.
  • [30] X. Ning, X. Wang, X. Yu, J. Zhao, M. Wang, H. Li, Y. Yang, Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method, Sci. Rep. 6 (2016) 22634. https://doi.org/10.1038/srep22634.
There are 30 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Muhammet Taha Acar 0000-0002-8367-9623

Publication Date September 20, 2023
Acceptance Date July 8, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Acar, M. T. (2023). Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes. European Mechanical Science, 7(3), 138-145. https://doi.org/10.26701/ems.1265161
AMA Acar MT. Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes. EMS. September 2023;7(3):138-145. doi:10.26701/ems.1265161
Chicago Acar, Muhammet Taha. “Investigation of the Effects of Sr and Mn Doping on Corrosion Tribocorrosion and Cyclic Voltammetry Performances of TiO2 Nanotubes”. European Mechanical Science 7, no. 3 (September 2023): 138-45. https://doi.org/10.26701/ems.1265161.
EndNote Acar MT (September 1, 2023) Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes. European Mechanical Science 7 3 138–145.
IEEE M. T. Acar, “Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes”, EMS, vol. 7, no. 3, pp. 138–145, 2023, doi: 10.26701/ems.1265161.
ISNAD Acar, Muhammet Taha. “Investigation of the Effects of Sr and Mn Doping on Corrosion Tribocorrosion and Cyclic Voltammetry Performances of TiO2 Nanotubes”. European Mechanical Science 7/3 (September 2023), 138-145. https://doi.org/10.26701/ems.1265161.
JAMA Acar MT. Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes. EMS. 2023;7:138–145.
MLA Acar, Muhammet Taha. “Investigation of the Effects of Sr and Mn Doping on Corrosion Tribocorrosion and Cyclic Voltammetry Performances of TiO2 Nanotubes”. European Mechanical Science, vol. 7, no. 3, 2023, pp. 138-45, doi:10.26701/ems.1265161.
Vancouver Acar MT. Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes. EMS. 2023;7(3):138-45.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter