Research Article
BibTex RIS Cite

ÇOKLU DEPOLARDA RAF ATAMA PROBLEMİ İÇİN MATEMATİKSEL VE SEZGİSEL ÇÖZÜM YAKLAŞIMLARI

Year 2019, Volume: 30 Issue: 1, 63 - 74, 16.09.2019

Abstract





Tedarik zincirinin en önemli unsurlarından biri depolardır. Etkili depo
düzeni, müşteriye teslimat süresini ve depolama maliyetini azaltır. Bu
çalışmada, birden fazla depo ve heterojen hammadde içeren seramik fabrikasında
depo yerleşim problemi tartışılmıştır. Sorunun çözümü için çok amaçlı bir karma
tamsayılı matematiksel model önerilmiştir. Modelin ilk amacı, hammadde öncelik
katsayılarını göz önünde bulundurarak hammaddeleri raflara atayarak, iki depo
ve dört fabrika arasındaki taşıma mesafesini en aza indirmek; ikincisi ise bu
depolarda kullanılan raf miktarını en aza indirmektir. Problem NP-Zor olarak
sınıflandırıldığı için, matematiksel modele ek olarak, büyük ölçekli
problemleri çözmek için de bir sezgisel algoritma geliştirilmiştir. Bu sezgisel
çözüm algoritmasını temel alan, kullanıcı dostu arayüze sahip bir karar destek
sistemi (KDS) önerilmiştir. Önerilen KDS' nin yardımıyla, depoların daha
verimli kullanılması ve hammaddelerin sistematik olarak depolanması
sağlanmıştır. Bu şekilde, toplam nakliye maliyeti fabrikada yaklaşık % 61
oranında azaltılmıştır.



References

  • Baray, S. & Çakmak, E. (2014). Design Methodology for a Multiple-Level Warehouse Layout Based On Particle Swarm Optimization Algorithm. Institute of Business Administration-Management Journal, 25(77), 13-38. https://www.semanticscholar.org/paper/DESIGN-METHODOLOGY-FOR-A-MULTIPLE-LEVEL-WAREHOUSE-Baray-%C3%87akmak/84a03c3b9014820ae3db168fd8bae27d63833343
  • Bartoszewicz, A., & Latosinski, P. (2019). Sliding mode control of inventory management systems with bounded batch size. Applied Mathematical Modelling 66, 296-304. https://doi.org/10.1016/j.apm.2018.09.010
  • Çakır, O. & Canbolat, M.S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367–1378. doi: https://doi.org/10.1016/j.eswa.2007.08.041
  • Fan J. & Wang, G. (2018). Joint optimization of dynamic lot and warehouse sizing problems. European Journal of Operational Research, 267, 849-854. doi: https://doi.org/10.1016/j.ejor.2017.12.019
  • Guerriero, F., Musmanno, R., Pisacane, O., & Rende, F. (2013). A mathematical model for the multi-levels product allocation problem in a warehouse with compatibility constraints. Applied Mathematical Modelling, 37(6), 4385-4398. doi: https://doi.org/10.1016/j.apm.2012.09.015
  • Gül, G., Erol, B., Öngelen, B., Eser, S., Çetinkaya, Ç., Özmutlu, H., Özmutlu, S., Gökçedağlıoğlu, M., & Erhuy, C. (2016). Ambar Depolama Maksimizasyonu [Maximization of warehouse storage]. Endüstri Mühendisliği Dergisi, 27(4), 26-38. Retrieved from: https://www.mmo.org.tr/sites/default/files/5_2.pdf
  • Kırış, Ş. (2013). Multi-Criteria Inventory Classification by Using a Fuzzy Analytic Network Process (ANP) Approach. Informatica, 24(2), 199-217.
  • Kılıç, A., Aygün, A., Aydın Keskin G., & Baynal, K. (2014) Çok Kriterli ABC Analizi Problemine Farklı Bir Bakış Açısı: Bulanık Analitik Hiyerarşi Prosesi - İdeal Çözüme Yakınlığa Göre Tercih Sıralama Tekniği [A Variant Perspective To Multi-Criteria ABC Analysis Problem: Fuzzy Analytic Hierarchy Process Technique For Order Preference By Similarity To Ideal Solution]. Pamukkale University Journal of Engineering Sciences, 20(5), 179-188. doi: 10.5505/pajes.2014.18894 Özdemir, A. & Özdemir, A. (2006). Talep Tahminlemesinde Kullanılan Yöntemlerin Karşılaştırılması: Seramik Ürün Grubu Firma Uygulaması [Comparison of the Methods Used in Demand Forecasting: Ceramic Product Group Company Application], Ege Academic Review, 6 (2), 105-114.
  • Rakesh, V. & Adil, G. K. (2015). Layout optimization of a three-dimensional order picking warehouse. IFAC-Papers online, 48(3),1155-1160. doi: https://doi.org/10.1016/j.ifacol.2015.06.240
  • Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. doi: https://doi.org/10.1016/j.cor.2004.07.014
  • Rimiene, K. (2008). The design and operation of warehouse. Economics and Management, 136-137.
  • Roodbergen, K., Vis, I., & Taylor, G. (2015). Simultaneous determination of warehouse layout and control policies. International Journal of Production Research, 53(11), 3306-3326. doi: https://doi.org/10.1080/00207543.2014.978029
  • Wutthisirisart, P., Sir, M., & Noble, J. (2015). The two-warehouse material location selection problem. International Journal of Production Economics, 170, 780-789. doi: https://doi.org/10.1016/j.ijpe.2015.07.008
  • Yang, L., & Feng, Y. (2006). Fuzzy multi-level warehouse layout problem: new model and algorithm. Journal of Systems Science and Systems Engineering, 15(4), 493-503. doi: 10.1007/s11518-006-5017-3.
  • Zhang, G., & Nishi, T. (2017). An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches. Omega, 68, 85-94. doi: https://doi.org/10.1016/j.omega.2016.06.005
  • Zhang, G., Xue J. & Lai, K. (2002). A class of genetic algorithms for multiple-level warehouse layout problems. International Journal of Production Research, 40(3), 731-744. doi: https://doi.org/10.1080/00207540110093909
  • Zhou, W., Piramuthu S., & Chu, F. (2017). RFID-enabled flexible warehousing. Decision Support Systems 98, 99-112. doi: https://doi.org/10.1016/j.dss.2017.05.002

MATHEMATICAL AND HEURISTIC SOLUTION APPROACHES FOR SHELF ASSIGNMENT PROBLEM IN MULTIPLE WAREHOUSES

Year 2019, Volume: 30 Issue: 1, 63 - 74, 16.09.2019

Abstract










One of the most important elements
of the supply chain is the warehouses. Effective warehouse layout reduces delivery
time to the customer and the cost of storage. In this study, warehouse layout problem
in a ceramic factory with multiple warehouses and heterogeneous raw materials
is discussed. For the solution of the problem, a multi-objective mixed integer
mathematical model is proposed. The first aim of the model is to assign the raw
materials to the shelves considering the raw material priority coefficients by
minimizing the transportation distance between two warehouses and four
factories and the second one is minimizing amount of shelf used in these warehouses.
As the problem is classified as NP-Hard, in addition to the mathematical model,
a heuristic algorithm has been
also developed
to solve large-scale problems. Based on this heuristic, a
decision support system (DSS) with a user-friendly interface has been proposed
for the engineers in the factory. By the help of proposed DSS, more efficient
use of warehouses and systematic storage of items have been provided. In this manner, total transportation cost is decreased
approximately 61% in the factory.

References

  • Baray, S. & Çakmak, E. (2014). Design Methodology for a Multiple-Level Warehouse Layout Based On Particle Swarm Optimization Algorithm. Institute of Business Administration-Management Journal, 25(77), 13-38. https://www.semanticscholar.org/paper/DESIGN-METHODOLOGY-FOR-A-MULTIPLE-LEVEL-WAREHOUSE-Baray-%C3%87akmak/84a03c3b9014820ae3db168fd8bae27d63833343
  • Bartoszewicz, A., & Latosinski, P. (2019). Sliding mode control of inventory management systems with bounded batch size. Applied Mathematical Modelling 66, 296-304. https://doi.org/10.1016/j.apm.2018.09.010
  • Çakır, O. & Canbolat, M.S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367–1378. doi: https://doi.org/10.1016/j.eswa.2007.08.041
  • Fan J. & Wang, G. (2018). Joint optimization of dynamic lot and warehouse sizing problems. European Journal of Operational Research, 267, 849-854. doi: https://doi.org/10.1016/j.ejor.2017.12.019
  • Guerriero, F., Musmanno, R., Pisacane, O., & Rende, F. (2013). A mathematical model for the multi-levels product allocation problem in a warehouse with compatibility constraints. Applied Mathematical Modelling, 37(6), 4385-4398. doi: https://doi.org/10.1016/j.apm.2012.09.015
  • Gül, G., Erol, B., Öngelen, B., Eser, S., Çetinkaya, Ç., Özmutlu, H., Özmutlu, S., Gökçedağlıoğlu, M., & Erhuy, C. (2016). Ambar Depolama Maksimizasyonu [Maximization of warehouse storage]. Endüstri Mühendisliği Dergisi, 27(4), 26-38. Retrieved from: https://www.mmo.org.tr/sites/default/files/5_2.pdf
  • Kırış, Ş. (2013). Multi-Criteria Inventory Classification by Using a Fuzzy Analytic Network Process (ANP) Approach. Informatica, 24(2), 199-217.
  • Kılıç, A., Aygün, A., Aydın Keskin G., & Baynal, K. (2014) Çok Kriterli ABC Analizi Problemine Farklı Bir Bakış Açısı: Bulanık Analitik Hiyerarşi Prosesi - İdeal Çözüme Yakınlığa Göre Tercih Sıralama Tekniği [A Variant Perspective To Multi-Criteria ABC Analysis Problem: Fuzzy Analytic Hierarchy Process Technique For Order Preference By Similarity To Ideal Solution]. Pamukkale University Journal of Engineering Sciences, 20(5), 179-188. doi: 10.5505/pajes.2014.18894 Özdemir, A. & Özdemir, A. (2006). Talep Tahminlemesinde Kullanılan Yöntemlerin Karşılaştırılması: Seramik Ürün Grubu Firma Uygulaması [Comparison of the Methods Used in Demand Forecasting: Ceramic Product Group Company Application], Ege Academic Review, 6 (2), 105-114.
  • Rakesh, V. & Adil, G. K. (2015). Layout optimization of a three-dimensional order picking warehouse. IFAC-Papers online, 48(3),1155-1160. doi: https://doi.org/10.1016/j.ifacol.2015.06.240
  • Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. doi: https://doi.org/10.1016/j.cor.2004.07.014
  • Rimiene, K. (2008). The design and operation of warehouse. Economics and Management, 136-137.
  • Roodbergen, K., Vis, I., & Taylor, G. (2015). Simultaneous determination of warehouse layout and control policies. International Journal of Production Research, 53(11), 3306-3326. doi: https://doi.org/10.1080/00207543.2014.978029
  • Wutthisirisart, P., Sir, M., & Noble, J. (2015). The two-warehouse material location selection problem. International Journal of Production Economics, 170, 780-789. doi: https://doi.org/10.1016/j.ijpe.2015.07.008
  • Yang, L., & Feng, Y. (2006). Fuzzy multi-level warehouse layout problem: new model and algorithm. Journal of Systems Science and Systems Engineering, 15(4), 493-503. doi: 10.1007/s11518-006-5017-3.
  • Zhang, G., & Nishi, T. (2017). An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches. Omega, 68, 85-94. doi: https://doi.org/10.1016/j.omega.2016.06.005
  • Zhang, G., Xue J. & Lai, K. (2002). A class of genetic algorithms for multiple-level warehouse layout problems. International Journal of Production Research, 40(3), 731-744. doi: https://doi.org/10.1080/00207540110093909
  • Zhou, W., Piramuthu S., & Chu, F. (2017). RFID-enabled flexible warehousing. Decision Support Systems 98, 99-112. doi: https://doi.org/10.1016/j.dss.2017.05.002
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Zehra Kamışlı Öztürk 0000-0003-3156-6464

Emine Akyol Özer 0000-0002-9570-2886

Çisem Gülen This is me 0000-0002-1659-7687

Ayşenur Çiçek This is me 0000-0002-1605-2636

Mehmet Deniz Serttaş This is me 0000-0002-3646-6625

Publication Date September 16, 2019
Acceptance Date August 22, 2019
Published in Issue Year 2019 Volume: 30 Issue: 1

Cite

APA Kamışlı Öztürk, Z., Akyol Özer, E., Gülen, Ç., Çiçek, A., et al. (2019). MATHEMATICAL AND HEURISTIC SOLUTION APPROACHES FOR SHELF ASSIGNMENT PROBLEM IN MULTIPLE WAREHOUSES. Endüstri Mühendisliği, 30(1), 63-74.

19736     14617            15235        15236           15240      15242