Research Article
BibTex RIS Cite

Prodigiosin, Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae)’ya karşı umut verici bir biyolojik kontrol ajanı

Year 2024, , 343 - 352, 16.10.2024
https://doi.org/10.16970/entoted.1517520

Abstract

Serratia marcescens Bizio (Enterobacteriaceae: Serratia) hidrolitik enzimler ve toksinler üreten entomopatojenik bir bakteridir. Ayrıca, prodigiosin adı verilen çeşitli biyolojik özelliklere sahip bir pigment de üretir. Çalışma, 2023 yılında Bilecik Şeyh Edebali Üniversite’sinde gerçekleştirilmiştir. Bu çalışmada, besiyeri, inkübasyon sıcaklığı ve süresinin S. marcescens Se9’un prodigiosin üretim sürecine etkileri ve farklı çözücülerin ekstraksiyon verimliliği ilk kez ortogonal Taguchi dizi tasarımı kullanılarak optimize edilmiştir. Optimum pigment verimi, 30ºC'de 96 saat boyunca triptik soya sıvı besiyeri ortamında büyütülen bakterilerden metanol ekstraksiyonuyla elde edilmiştir. Belirlenen optimum koşullar altında yapılan validasyon deneyinde prodigiosin pigment verimi 83,4±1,7 mg/L olarak belirlenmiştir. Prodigiosin pigmentinin Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera, Notodontidae) larvaları üzerindeki insektisidal potansiyeli ilk kez gösterilmiştir. 1000 ppm pigmente maruz kalan larvalarda ölüm oranı sadece %40 iken, uygulanan konsantrasyonun iki katına çıkarılmasının larva ölümlerinde önemli bir artışa neden olarak %91'e ulaştığı gözlenmiştir. T. wilkinsoni’nin dördüncü larva dönemi için pigmentin LC50 değeri 1192 ppm olarak belirlenmiştir. Çalışma, prodigiosin pigmentinin T. wilkinsoni’nin kontrolü için umut verici bir biyokontrol ajanı olabileceğini göstermiştir.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Arifiyanto, A., E. Setyaningrum & N. Ni’matuzahroh, 2022. In vitro antimalarial activity of the biosurfactant produced by Serratia marcescens MBC1. Iranian Journal of Pharmaceutical Sciences, 18 (3): 214-222.
  • Asano, S., K. Ogiwara, Y. Nakagawa, K. Suzuki, H. Hori & T. Watanabe, 1999. Prodigiosin produced by Serratia marcescens enhances the insecticidal activityof Bacillus thuringiensis delta-endotoxin (Cry1C) against Common cutworm, Spodoptera litura. Journal of Pesticide Science, 24 (4): 381-385.
  • Bonamonte, D., C. Foti, M. Vestita & G. Angelini, 2013. Skin reactions to pine processionary caterpillar Thaumetopoea pityocampa Schiff. The Scientific World Journal, 2013 (1): 867431.
  • Castagneyrol, B., H. Jactel, E. G. Brockerhoff, N. Perrette, M. Larter, S. Delzon & D. Piou, 2016. Host range expansion is density dependent. Oecologia, 182 (3): 779-788.
  • Colacci, M., N. G. Kavallieratos, C. G. Athanassiou, M. C. Boukouvala, C. I. Rumbos, D. C. Kontodimas, D. Pardo, J. Sancho, E. Benavent-Fernández, S. Gálvez-Settier, A. Sciarretta & P. Trematerra, 2018. Management of the Pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae), in urban and suburban areas: Trials with trunk barrier and adhesive barrier trap devices. Journal of Economic Entomology, 111 (1): 227-238.
  • D’Alessio, R., A. Bargiotti, O. Carlini, F. Colotta, M. Ferrari, P. Gnocchi, A. Isetta, N. Mongelli, P. Motta, A. Rossi, M. Rossi, M. Tibolla & E. Vanotti, 2000. Synthesis and immunosuppressive activity of novel prodigiosin derivatives. Journal of Medicinal Chemistry, 43 (13): 2557-2565.
  • de Araújo, H. W. C., K. Fukushima & G. M. C. Takaki, 2010. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules, 15 (10): 6931-6940.
  • Demolin, G & J. C. Martin, 1986. Winter trials in forests with deltamethrin (Decis and K-Othrine EC 15) against Thaumetopoea pityocampa. Bulletin OEPP, 16 (2): 417-421.
  • Elkenawy, N. M., A. S. Yassin, H. N. Elhifnawy & M. A. Amin, 2017. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports, 14 (2): 47-53.
  • EPPO/CABI, 1997. European and Mediterranean Plant Protection Organization (EPPO)/CAB International (CABI) Quarantine Pests for Europe. 2nd Edition, CAB International, Wallingford, UK, 1425 pp.
  • Er, M. K., H. Tunaz & A. Gökçe, 2007. Pathogenicity of entomopathogenic fungi to Thaumetopoea pityocampa (Schiff.) (Lepidoptera: Thaumatopoeidae) larvae in laboratory conditions. Journal of Pest Science, 80 (4): 235-239.
  • Eski, A. & T. Özdemir, 2022. Insecticidal activity of prodigiosin pigment on Tenebrio molitor (Coleoptera: Tenebrionidae). BSEU Journal of Science, 9 (2): 1035-1040.
  • Faria, J. M. S., 2021. Bioactivity of essential oils and respective volatile monoterpenoids against Thaumetopoea pityocampa and T. wilkinsoni. Biology and Life Sciences Forum, 3 (1): 36.
  • Giri, A. V., N. Anandkumar, G. Muthukumaran & G. Pennathur, 2004. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiology, 4: 11.
  • Gomez Valdez, L., J. C. Rondan Dueñas, A. J. Andrade, E. E. Del Valle, M. E. Doucet & P. Lax, 2022. In vitro and in vivo nematicidal activity of prodigiosin against the plant-parasitic nematode Nacobbus celatus. Biocontrol Science and Technology, 32 (6): 741-751.
  • Halperin, J., 1980. Control of the pine processionary caterpillar (Thaumetopoea wilkinsoni Tams) with diflubenzuron. Phytoparasitica, 8 (2): 83-91.
  • IBM, 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Cor.
  • Ince, I. A., H. Katı, H. Yilmaz, I. Demir & Z. Demirbağ, 2008. Isolation and identification of bacteria from Thaumetopoea pityocampa Den. and Schiff. (Lep., Thaumetopoeidae) and determination of their biocontrol potential. World Journal of Microbiology and Biotechnology, 24 (12): 3005-3015.
  • İpekdal, K., 2005. Studies on the bio-ecology and control of the Pine processionary moth Thaumetopoea pityocampa (Dennis & Schiffermüller, 1775) (Lepidoptera: Thaumetopoeidae). Hacettepe University, Institute of Science, Master Thesis, Ankara, 115 s (in Turkish with abstract in English).
  • İpekdal, K., C. Burban, L. Sauné, A. Battisti & C. Kerdelhué, 2020. From refugia to contact: Pine processionary moth hybrid zone in a complex biogeographic setting. Ecology and Evolution, 10 (3): 1623-1638.
  • Islan, G. A., B. Rodenak-Kladniew, N. Noacco, N. Duran & G. R. Castro, 2022. Prodigiosin: A promising biomolecule with many potential biomedical applications. Bioengineered, 13 (6): 14227-14258.
  • John, C. J., A.V. Bibishna & G.E. Mallikarjunaswamy, 2021. Antimycotic effects of a prodigiosin producing Serratia marcescens rhizobacteria. Rhizosphere,18: 100336.
  • Kanat, M. & M. H. Alma, 2004. Insecticidal effects of essential oils from various plants against larvae of pine processionary moth, Thaumetopoea pityocampa (Schiff.) (Lepidoptera: Thaumetopoeidae). Pest Management Science, 60 (2): 173-177.
  • Kanat, M., M. H. Alma & F. Sivrikaya, 2005. Effect of defoliation by Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera: Thaumetopoeidae) on annual diameter increment of Pinus brutia Ten. in Turkey. Annals of Forest Science, 62 (1): 91-94.
  • Koyun, M. T., S. Sirin, B. Aslim, G. Taner & S. N. Dolanbay, 2022. Characterization of prodigiosin pigment by Serratia marcescens and the evaluation of its bioactivities. Toxicology in vitro, 82: 105368.
  • Lapenda, J. C., P. A. Silva, M. C. Vicalvi, K. X. Sena & S. C. Nascimento, 2015. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World Journal of Microbiology & Biotechnology, 31 (2): 399-406.
  • Li, D., J. Liu, X. Wang, D. Kong, W. Du, H. Li, C. Y. Hse, T. Shupe, D. Zhou & K. Zhao, 2018. Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. lawsoniana in human choriocarcinoma and prostate cancer cell lines. International Journal of Molecular Sciences, 19 (11): 3465.
  • Mohan, M., G. Selvakumar, S. N. Sushil, J. C. Bhatt & H. S. Gupta, 2011. Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World Journal of Microbiology and Biotechnology, 27 (11): 2545-2551.
  • Olivieri, M., E. Ludovico & A. Battisti, 2023. Occupational exposure of forest workers to the urticating setae of the pine processionary moth Thaumetopoea pityocampa. International Journal of Environmental Research and Public Health, 20 (6): 4735.
  • Park, H., S. G. Lee, T. K. Kim, S. J. Han & J. H. Yim, 2012. Selection of extraction solvent and temperature effect on stability of the algicidal agent prodigiosin. Biotechnology and Bioprocess Engineering, 17 (6): 1232-1237.
  • Patil, C. D., S. V. Patil, B. K. Salunke & R. B. Salunkhe, 2011. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitology Research, 109 (4): 1179-1187.
  • Patil, N. G., M. S. Kadam, V. R. Patil & S. B. Chincholkar, 2013. Insecticidal properties of water diffusible prodigiosin produced by Serratia nematodiphila 213C. Current Trends in Biotechnology and Pharmacy, 7 (3): 773-781.
  • Paul, T., A. Mondal, T. K. Bandyopadhyay & B. Bhunia, 2024. Prodigiosin production and recovery from Serratia marcescens: Process development and cost-benefit analysis. Biomass Conversion and Biorefinery, 14 (3): 4091-4110.
  • Salvato, P., M. Simonato, L. Zane, T. Patarnello, L. Masutti & A. Battisti, 2005. Do sexual pheromone traps provide biased information of the local gene pool in the pine processionary moth? Agricultural and Forest Entomology, 7 (2): 127-132.
  • Sevim, A., I. Demir & Z. Demirbağ, 2010. Molecular characterization and virulence of Beauveria spp. from the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). Mycopathologia, 170 (4): 269-277.
  • Su, W. T., T. Y. Tsou & H. L. Liu, 2011. Response surface optimization of microbial prodigiosin production from Serratia marcescens. Journal of the Taiwan Institute of Chemical Engineers, 42 (2): 217-222.
  • Suryawanshi, R. K., C. D. Patil, H. P. Borase, C. P. Narkhede, B. K. Salunke & S. V. Patil, 2015. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pesticide Biochemistry and Physiology, 123: 49-55.
  • Wang, S. L., C. Y. Wang, Y. H. Yen, T. W. Liang, S. Y. Chen & C. H. Chen, 2012. Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochemistry, 47 (11): 1684-1690.
  • Zhang, P., Q. Zhao, X. Ma & L. Ma, 2021. Pathogenicity of Serratia marcescens to hazelnut weevil (Curculio dieckmanni). Journal of Forestry Research, 32 (1): 409-417.
  • Zhou, W., J. Li, J. Chen, X. Liu, T. Xiang, L. Zhang & Y. Wan, 2016. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens. Journal of Invertebrate Pathology, 136: 92-94.

Prodigiosin, a promising biocontrol agent against Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae)

Year 2024, , 343 - 352, 16.10.2024
https://doi.org/10.16970/entoted.1517520

Abstract

Serratia marcescens Bizio (Enterobacteriaceae: Serratia) is an entomopathogenic bacterium that produces hydrolytic enzymes and toxins. It also produces a pigment with various biological properties called prodigiosin. The study was conducted at Bilecik Seyh Edebali University in 2023. In this study, the effects of medium, incubation temperature and time on the process of prodigiosin production by S. marcescens strain Se9 and the extraction efficiency of different solvents were optimized for the first time using the orthogonal Taguchi array design. The optimal yield of pigment was achieved by methanol extraction from bacteria grown in tyriptic soy broth medium at 30ºC for 96 hours. The yield of prodigiosin pigment was 83.4±1.7 mg/L in the validation experiment conducted under the optimum conditions determined. The insecticidal potential of pigment against the larvae of Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera, Notodontidae) was demonstrated for the first time. While the mortality rate in larvae exposed to 1000 ppm of the pigment was only 40%, it was observed that doubling the applied concentration led to a significant increase in larval mortality, reaching 91%. The LC50 value of the pigment for the fourth larval stage of T. wilkinsoni was determined to be 1192 ppm. The study showed that the pigment prodigiosin may be a promising biocontrol agent for the control of T. wilkinsoni.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Arifiyanto, A., E. Setyaningrum & N. Ni’matuzahroh, 2022. In vitro antimalarial activity of the biosurfactant produced by Serratia marcescens MBC1. Iranian Journal of Pharmaceutical Sciences, 18 (3): 214-222.
  • Asano, S., K. Ogiwara, Y. Nakagawa, K. Suzuki, H. Hori & T. Watanabe, 1999. Prodigiosin produced by Serratia marcescens enhances the insecticidal activityof Bacillus thuringiensis delta-endotoxin (Cry1C) against Common cutworm, Spodoptera litura. Journal of Pesticide Science, 24 (4): 381-385.
  • Bonamonte, D., C. Foti, M. Vestita & G. Angelini, 2013. Skin reactions to pine processionary caterpillar Thaumetopoea pityocampa Schiff. The Scientific World Journal, 2013 (1): 867431.
  • Castagneyrol, B., H. Jactel, E. G. Brockerhoff, N. Perrette, M. Larter, S. Delzon & D. Piou, 2016. Host range expansion is density dependent. Oecologia, 182 (3): 779-788.
  • Colacci, M., N. G. Kavallieratos, C. G. Athanassiou, M. C. Boukouvala, C. I. Rumbos, D. C. Kontodimas, D. Pardo, J. Sancho, E. Benavent-Fernández, S. Gálvez-Settier, A. Sciarretta & P. Trematerra, 2018. Management of the Pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae), in urban and suburban areas: Trials with trunk barrier and adhesive barrier trap devices. Journal of Economic Entomology, 111 (1): 227-238.
  • D’Alessio, R., A. Bargiotti, O. Carlini, F. Colotta, M. Ferrari, P. Gnocchi, A. Isetta, N. Mongelli, P. Motta, A. Rossi, M. Rossi, M. Tibolla & E. Vanotti, 2000. Synthesis and immunosuppressive activity of novel prodigiosin derivatives. Journal of Medicinal Chemistry, 43 (13): 2557-2565.
  • de Araújo, H. W. C., K. Fukushima & G. M. C. Takaki, 2010. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules, 15 (10): 6931-6940.
  • Demolin, G & J. C. Martin, 1986. Winter trials in forests with deltamethrin (Decis and K-Othrine EC 15) against Thaumetopoea pityocampa. Bulletin OEPP, 16 (2): 417-421.
  • Elkenawy, N. M., A. S. Yassin, H. N. Elhifnawy & M. A. Amin, 2017. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports, 14 (2): 47-53.
  • EPPO/CABI, 1997. European and Mediterranean Plant Protection Organization (EPPO)/CAB International (CABI) Quarantine Pests for Europe. 2nd Edition, CAB International, Wallingford, UK, 1425 pp.
  • Er, M. K., H. Tunaz & A. Gökçe, 2007. Pathogenicity of entomopathogenic fungi to Thaumetopoea pityocampa (Schiff.) (Lepidoptera: Thaumatopoeidae) larvae in laboratory conditions. Journal of Pest Science, 80 (4): 235-239.
  • Eski, A. & T. Özdemir, 2022. Insecticidal activity of prodigiosin pigment on Tenebrio molitor (Coleoptera: Tenebrionidae). BSEU Journal of Science, 9 (2): 1035-1040.
  • Faria, J. M. S., 2021. Bioactivity of essential oils and respective volatile monoterpenoids against Thaumetopoea pityocampa and T. wilkinsoni. Biology and Life Sciences Forum, 3 (1): 36.
  • Giri, A. V., N. Anandkumar, G. Muthukumaran & G. Pennathur, 2004. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiology, 4: 11.
  • Gomez Valdez, L., J. C. Rondan Dueñas, A. J. Andrade, E. E. Del Valle, M. E. Doucet & P. Lax, 2022. In vitro and in vivo nematicidal activity of prodigiosin against the plant-parasitic nematode Nacobbus celatus. Biocontrol Science and Technology, 32 (6): 741-751.
  • Halperin, J., 1980. Control of the pine processionary caterpillar (Thaumetopoea wilkinsoni Tams) with diflubenzuron. Phytoparasitica, 8 (2): 83-91.
  • IBM, 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Cor.
  • Ince, I. A., H. Katı, H. Yilmaz, I. Demir & Z. Demirbağ, 2008. Isolation and identification of bacteria from Thaumetopoea pityocampa Den. and Schiff. (Lep., Thaumetopoeidae) and determination of their biocontrol potential. World Journal of Microbiology and Biotechnology, 24 (12): 3005-3015.
  • İpekdal, K., 2005. Studies on the bio-ecology and control of the Pine processionary moth Thaumetopoea pityocampa (Dennis & Schiffermüller, 1775) (Lepidoptera: Thaumetopoeidae). Hacettepe University, Institute of Science, Master Thesis, Ankara, 115 s (in Turkish with abstract in English).
  • İpekdal, K., C. Burban, L. Sauné, A. Battisti & C. Kerdelhué, 2020. From refugia to contact: Pine processionary moth hybrid zone in a complex biogeographic setting. Ecology and Evolution, 10 (3): 1623-1638.
  • Islan, G. A., B. Rodenak-Kladniew, N. Noacco, N. Duran & G. R. Castro, 2022. Prodigiosin: A promising biomolecule with many potential biomedical applications. Bioengineered, 13 (6): 14227-14258.
  • John, C. J., A.V. Bibishna & G.E. Mallikarjunaswamy, 2021. Antimycotic effects of a prodigiosin producing Serratia marcescens rhizobacteria. Rhizosphere,18: 100336.
  • Kanat, M. & M. H. Alma, 2004. Insecticidal effects of essential oils from various plants against larvae of pine processionary moth, Thaumetopoea pityocampa (Schiff.) (Lepidoptera: Thaumetopoeidae). Pest Management Science, 60 (2): 173-177.
  • Kanat, M., M. H. Alma & F. Sivrikaya, 2005. Effect of defoliation by Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera: Thaumetopoeidae) on annual diameter increment of Pinus brutia Ten. in Turkey. Annals of Forest Science, 62 (1): 91-94.
  • Koyun, M. T., S. Sirin, B. Aslim, G. Taner & S. N. Dolanbay, 2022. Characterization of prodigiosin pigment by Serratia marcescens and the evaluation of its bioactivities. Toxicology in vitro, 82: 105368.
  • Lapenda, J. C., P. A. Silva, M. C. Vicalvi, K. X. Sena & S. C. Nascimento, 2015. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World Journal of Microbiology & Biotechnology, 31 (2): 399-406.
  • Li, D., J. Liu, X. Wang, D. Kong, W. Du, H. Li, C. Y. Hse, T. Shupe, D. Zhou & K. Zhao, 2018. Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. lawsoniana in human choriocarcinoma and prostate cancer cell lines. International Journal of Molecular Sciences, 19 (11): 3465.
  • Mohan, M., G. Selvakumar, S. N. Sushil, J. C. Bhatt & H. S. Gupta, 2011. Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World Journal of Microbiology and Biotechnology, 27 (11): 2545-2551.
  • Olivieri, M., E. Ludovico & A. Battisti, 2023. Occupational exposure of forest workers to the urticating setae of the pine processionary moth Thaumetopoea pityocampa. International Journal of Environmental Research and Public Health, 20 (6): 4735.
  • Park, H., S. G. Lee, T. K. Kim, S. J. Han & J. H. Yim, 2012. Selection of extraction solvent and temperature effect on stability of the algicidal agent prodigiosin. Biotechnology and Bioprocess Engineering, 17 (6): 1232-1237.
  • Patil, C. D., S. V. Patil, B. K. Salunke & R. B. Salunkhe, 2011. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitology Research, 109 (4): 1179-1187.
  • Patil, N. G., M. S. Kadam, V. R. Patil & S. B. Chincholkar, 2013. Insecticidal properties of water diffusible prodigiosin produced by Serratia nematodiphila 213C. Current Trends in Biotechnology and Pharmacy, 7 (3): 773-781.
  • Paul, T., A. Mondal, T. K. Bandyopadhyay & B. Bhunia, 2024. Prodigiosin production and recovery from Serratia marcescens: Process development and cost-benefit analysis. Biomass Conversion and Biorefinery, 14 (3): 4091-4110.
  • Salvato, P., M. Simonato, L. Zane, T. Patarnello, L. Masutti & A. Battisti, 2005. Do sexual pheromone traps provide biased information of the local gene pool in the pine processionary moth? Agricultural and Forest Entomology, 7 (2): 127-132.
  • Sevim, A., I. Demir & Z. Demirbağ, 2010. Molecular characterization and virulence of Beauveria spp. from the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). Mycopathologia, 170 (4): 269-277.
  • Su, W. T., T. Y. Tsou & H. L. Liu, 2011. Response surface optimization of microbial prodigiosin production from Serratia marcescens. Journal of the Taiwan Institute of Chemical Engineers, 42 (2): 217-222.
  • Suryawanshi, R. K., C. D. Patil, H. P. Borase, C. P. Narkhede, B. K. Salunke & S. V. Patil, 2015. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pesticide Biochemistry and Physiology, 123: 49-55.
  • Wang, S. L., C. Y. Wang, Y. H. Yen, T. W. Liang, S. Y. Chen & C. H. Chen, 2012. Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochemistry, 47 (11): 1684-1690.
  • Zhang, P., Q. Zhao, X. Ma & L. Ma, 2021. Pathogenicity of Serratia marcescens to hazelnut weevil (Curculio dieckmanni). Journal of Forestry Research, 32 (1): 409-417.
  • Zhou, W., J. Li, J. Chen, X. Liu, T. Xiang, L. Zhang & Y. Wan, 2016. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens. Journal of Invertebrate Pathology, 136: 92-94.
There are 41 citations in total.

Details

Primary Language English
Subjects Forest Entomology and Forest Protection
Journal Section Articles
Authors

Muhammed Koç 0009-0007-4417-8109

Duygu Bekircan Eski 0000-0002-3088-3567

İsmail Demir 0000-0001-6227-0039

Ardahan Eski 0000-0002-9621-2854

Early Pub Date October 16, 2024
Publication Date October 16, 2024
Submission Date July 19, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024

Cite

APA Koç, M., Bekircan Eski, D., Demir, İ., Eski, A. (2024). Prodigiosin, a promising biocontrol agent against Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae). Turkish Journal of Entomology, 48(3), 343-352. https://doi.org/10.16970/entoted.1517520
AMA Koç M, Bekircan Eski D, Demir İ, Eski A. Prodigiosin, a promising biocontrol agent against Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae). TED. October 2024;48(3):343-352. doi:10.16970/entoted.1517520
Chicago Koç, Muhammed, Duygu Bekircan Eski, İsmail Demir, and Ardahan Eski. “Prodigiosin, a Promising Biocontrol Agent Against Thaumetopoea Wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae)”. Turkish Journal of Entomology 48, no. 3 (October 2024): 343-52. https://doi.org/10.16970/entoted.1517520.
EndNote Koç M, Bekircan Eski D, Demir İ, Eski A (October 1, 2024) Prodigiosin, a promising biocontrol agent against Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae). Turkish Journal of Entomology 48 3 343–352.
IEEE M. Koç, D. Bekircan Eski, İ. Demir, and A. Eski, “Prodigiosin, a promising biocontrol agent against Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae)”, TED, vol. 48, no. 3, pp. 343–352, 2024, doi: 10.16970/entoted.1517520.
ISNAD Koç, Muhammed et al. “Prodigiosin, a Promising Biocontrol Agent Against Thaumetopoea Wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae)”. Turkish Journal of Entomology 48/3 (October 2024), 343-352. https://doi.org/10.16970/entoted.1517520.
JAMA Koç M, Bekircan Eski D, Demir İ, Eski A. Prodigiosin, a promising biocontrol agent against Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae). TED. 2024;48:343–352.
MLA Koç, Muhammed et al. “Prodigiosin, a Promising Biocontrol Agent Against Thaumetopoea Wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae)”. Turkish Journal of Entomology, vol. 48, no. 3, 2024, pp. 343-52, doi:10.16970/entoted.1517520.
Vancouver Koç M, Bekircan Eski D, Demir İ, Eski A. Prodigiosin, a promising biocontrol agent against Thaumetopoea wilkinsoni (Tams, 1926) (Lepidoptera: Notodontidae). TED. 2024;48(3):343-52.