Research Article
BibTex RIS Cite

Resilience of breeding Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates

Year 2020, , 203 - 214, 01.06.2020
https://doi.org/10.16970/entoted.622103

Abstract

Volant and terrestrial predators consume a wide range of palm drupes, some of which may be infested by spermatophagus beetles. Field observations suggest that the larvae of some beetle species survive the passage through the gastrointestinal tract. To assess the resilience of the date stone beetle, Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates, specimens reared from infested Phoenix canariensis (Chabaud, 1882) (Arecales: Arecaceae) seeds were exposed in vitro to simulated gastric and intestinal fluids in a laboratory setting at Charles Sturt University (Albury, Australia) in 2018. The observed mortality among beetles protected in their galleries inside the seeds was low (11-24%). The continued breeding success was affected by numerous beetles abandoning the seeds after immersion. Total mortality occurred among unprotected beetles exposed for 12 h or longer. This study demonstrates that as mortality of adult beetles inside ingested seeds is very low, vertebrate vectors may aid in the medium- to long-distance dispersal of the species.

Supporting Institution

Institute for Land, Water and Society; Charles Sturt University

Thanks

This study was supported by the Institute for Land, Water and Society, Charles Sturt University.

References

  • Anonymous, 1846. Société Entomologique de France. Séance du 25 Novembre 1846. Reiew of Zoology, 427.
  • Bar-Shalom, O. & Z. Mendel, 2001. Seasonal changes in the seed bank in date palm (Phoenix dactylifera) orchards and the involvement of the date-stone beetle (Coccotrypes dactyliperda). Phytoparasitica, 29: 84-85.
  • Bass, D. A., 1995. Contribution of introduced fruits to the winter diet of Pied Currawongs in Armidale, New South Wales. Corella, 19: 127-131.
  • Benítez-Malvido, J., I. Zermeño-Hernández, A. M. González-DiPierro, R. Lombera & A. Estrada, 2016. Frugivore choice and escape from pre-dispersal seed predators: the case of Dialium guianense and two sympatric primate species in southern Mexico. Plant Ecology, 217: 923-933.
  • Boillat, C. S., F. P. Gaschen & G. L. Hosgood, 2010. Assessment of the relationship between body weight and gastrointestinal transit times measured by use of a wireless motility capsule system in dogs. American Journal of Veterinary Research, 71: 898-902.
  • Bravo, S. P., 2008. Seed dispersal and ingestion of insect-infested seeds by black howler monkeys in flooded forests of the Parana River, Argentina. Biotropica, 40: 471-476.
  • Bravo, S. P. & G. E. Zunino, 1998. Effects of black howler monkey (Alouatta caraya) seed ingestion on insect larvae. American Journal of Primatology, 45: 411-415.
  • Chen, F., Z. Zhang, Z. Deng, R. Zhang, G. Fan, D. Ma & D. J. McClements, 2018. Controlled-release of antacids from biopolymer microgels under simulated gastric conditions: Impact of bead dimensions, pore size, and alginate/pectin ratio. Food Research International, 106: 745-751.
  • Coe, M. & C. Coe, 1987. Large herbivores, Acacia trees and bruchid beetles. South Africa Journal of Sciences, 83: 624-635.
  • Ernst, W. H.O., J. E. Decelle, D. J. Tolsma & R. A. Verweij, 1990. Lifecycle of the bruchid beetle Bruchidius uberatus and its predation of Acacia nilotica seeds in a tree savanna in Botswana. Entomologia Experimentalis et Applicata, 57: 177-190.
  • Fragoso, J. M. V., 1997. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon rain forest. Journal of Ecology, 85: 519-529.
  • Fu, T. J., U. R. Abbott & C. Hatzos, 2002. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid a comparative study. Journal of Agricultural and Food Chemistry, 50: 7154-7160.
  • Giombini, M. I., S. P. Bravo & M. F. Martinez, 2009. Seed dispersal of the palm Syagrus romanzoffiana by tapirs in the semi-deciduous Atlantic forest of Argentina. Biotropica, 41: 408-413.
  • Guix, J. C. & X. Ruiz, 1995. Toucans and thrushes as potential dispersers of seed-predatory weevil larvae in southeastern Brazil. Canadian Journal of Zoology, 73: 745-748.
  • Guix, J. C. & X. Ruiz, 1997. Weevil larvae dispersal by guans in southeastern Brazil. Biotropica, 29: 522-525.
  • Herfs, A., 1950. Studien an dem Steinnußborkenkäfer Coccotrypes tanganus Eggers. 2. Die Soziologie von Coccotrypes tanganus. Höfchen-Briefe für Wissenschaft und Praxis (Bayer Leverkusen), 3: 3-31.
  • Hernández, Á., 2011. Internal dispersal of seed-inhabiting insects by vertebrate frugivores: a review and prospects. Integrative Zoology, 6: 213-221.
  • Hernández, Á. & J. V. Falcó, 2008. Frugivorous birds dispersing braconid parasitoids via endozoochory. Entomological Science, 11: 323-326.
  • Khadra, I., Z. Zhou, C. Dunn, C. G. Wilson & G. Halbert, 2015. Statistical investigation of simulated intestinal fluid composition on the equilibrium solubility of biopharmaceutics classification system class II drugs. European Journal of Pharmaceutical Sciences, 67: 65-75.
  • Koike, S., H. Morimoto, Y. Goto, C. Kozakai & K. Yamazaki, 2008. Frugivory of carnivores and seed dispersal of fleshy fruits in cool-temperate deciduous forests. Journal of Forest Research, 13: 215-222. Lamprey, H. F., G. Halevy & S. Makacha, 1974. Interactions between Acacia, bruchid seed beetles and large herbivores. African Journal of Ecology, 12: 81-85.
  • Levey, D. J., 1987. Seed size and fruit-handling techniques of avian frugivores. American Naturalist, 129: 471-485.
  • Lucas, H., 1849. Exploration scientifique de l'Algérie Pendant les Années 1840, 1841, 1842 par Ordre du Gourvernment et avec le Concours d'une Commission Academique. Sciences physiques. Zoologie. I-IV, Histoire naturelle des animaux articulés. Imprimerie Nationale, Paris, 590 pp.
  • Manzur, M. I. & S. P. Courtney, 1984. Influence of Insect Damage in Fruits of Hawthorn on Bird Foraging and Seed Dispersal. Oikos, 43: 265-270.
  • Martín, H. S., C. Prigioni, A. Sappa & A. S. Martín, 2009. “Informe Preliminar Sobre Algunos Zoológicos Vinculados as Ciclo Anual de La Palma Butiá (Butia capitata) (Mart.) Becc, 121-128”. In: Butiá - Ecossistema único em el Mundo (Eds. G. Geymonat & N. Rocha). Casa Ambiental, Julio de Castilhos, 405 pp.
  • Nalepa, C. & W. Piper, 1994. Bird dispersal of the larval stage of a seed predator. Oecologia, 100: 200-202.
  • Neseni, R., M. Lecht & B. Scheven, 1955. Über die Durchgangszeit des Futters beim Silberfuchs. Archiv für Tierernährung, 5: 26-32.
  • Olmos, F., R. Pardini, R. L. Boulhosa, R. Bürgl & C. Morsello, 1999. Do Tapirs steal food from palm seed predators or give them a lift? Biotropica, 31: 375-379.
  • Or, K. & D. Ward, 2003. Three-way interactions between Acacia, large mammalian herbivores and bruchid beetles - a review. African Journal of Ecology, 41: 257-265.
  • Rodriguez-Perez, J., N. Riera & A. Traveset, 2005. Effect of seed passage through birds and lizards on emergence rate of Mediterranean species: differences between natural and controlled conditions. Functional Ecology, 19: 699-706.
  • Rouco, C. & G. Norbury, 2013. An introduced species helping another: dispersal of a rose seed infesting wasp by a marsupial in New Zealand. Biological Invasions, 15: 1649-1652.
  • Silverstein, R. P., 2005. Germination of native and exotic plant seeds dispersed by Coyotes (Canis latrans) in Southern California. Southwestern Naturalist, 50: 472-478.
  • Spennemann, D. H. R., 2018a. An Experimental Evaluation of Food Preferences and Associated Hatching Times of the Date Stone Beetle, Coccotrypes dactyliperda (Scolytinae, Coleoptera). Institute for Land, Water and Society Report. Institute for Land, Water and Society 120, Charles Sturt University, Albury, NSW, 81 pp.
  • Spennemann, D. H. R., 2018b. Global distribution of the date stone beetle, Coccotrypes dactyliperda (Coleoptera: Curculionidae, Scolytinae). Journal of Insect Biodiversity, 4: 203-226.
  • Spennemann, D. H. R., 2018c. Observations on the consumption and dispersal of Phoenix canariensis drupes by the Grey-headed flying fox (Pteropus poliocephalus). European Journal of Ecology, 4: 41-49.
  • Spennemann, D. H. R., 2018d. Phoenix canariensis seed encountered in scats and ejecta collected at Alma Park. Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 35 pp.
  • Spennemann, D. H. R., 2018e. Review of the vertebrate-mediated dispersal of the Date Palm, Phoenix dactylifera. Zoology in the Middle East, 64: 283-296.
  • Spennemann, D. H. R., 2019a. Biology, ecology and distribution of the date stone beetle, Coccotrypes dactyliperda (Scolytinae, Coleoptera). Zoology in the Middle East, 65: 163-182.
  • Spennemann, D. H. R., 2019b. The connective potential of vertebrate vectors responsible for the dispersal of the Canary Island date palm (Phoenix canariensis). Flora, 259: 151468.
  • Spennemann, D. H. R., 2019c. Resilience of the date stone beetle Coccotrypes dactyliperda (Coleoptera, Curculionidae), following periods of exposure to subzero temperature. Turkish Journal of Entomology, 43: 379-385.
  • Spennemann, D. H. R., K. Kent & R. Cook, 2018. Uninvited guests: Mass Emergence of Scolytinid Beetles in a Seed Germination Experiment and its Management. Institute for Land, Water and Society Report 118. Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 33 pp.
  • Stappaerts, J., B. Wuyts, J. Tack, P. Annaert & P. Augustijns, 2014. Human and simulated intestinal fluids as solvent systems to explore food effects on intestinal solubility and permeability. European Journal of Pharmaceutical Sciences, 63: 178-186.
  • Szuman, J. & A. Skrzydlewski, 1962. Über die Durchgangszeit des Futters durch den Magen-Darm-Kanal beim Blaufuchs. Archiv für Tierernährung, 12: 1-4.
  • Traveset, A., 1998. Effect of seed passage through vertebrate frugivores' guts on germination: a review. Perspectives in Plant Ecology, Evolution and Systematics, 1: 151-190.
  • Tukey, J. W., 1980. We need both exploratory and confirmatory. The American Statistician, 34: 23-25.
  • Wang, J., Y. Yadav, A. L. Smart, S. Tajiri & A. W. Basit, 2015. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Molecular Pharmaceutics, 12: 966-973.
  • Weber, M. P., 2006. Influence of size on the Dog’s digestive function. Bulletin de l'Académie Vétérinaire de France, 159: 326-332.
  • Zchori-Fein, E., C. Borad & A. R. Harari, 2006. Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiological Entomology, 31: 164-169.
  • Zona, S. & A. Henderson, 1989. A review of animal-mediated seed dispersal of palms. Selbyana, 11: 6-21.

Omurgalılar tarafından yutulan Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae)’yı yetiştirmenin esnekliği

Year 2020, , 203 - 214, 01.06.2020
https://doi.org/10.16970/entoted.622103

Abstract

Kanatlı ve karada yaşayan predatörler, bazıları spermatofag böcekler ile bulaşık olabilen çok sayıda palmiye meyvesini tüketmektedirler. Arazi gözlemleri, bazı böcek türlerinin larvalarının mide-bağırsak kanalından geçişte hayatta kaldıklarını göstermektedir. Bu makale, Hurma böceği,Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae)’nın omurgalılar tarafından yutulmaya karşı direncini değerlendirmek amacıyla, enfekte olmuş Phoenix canariensis (Chabaud, 1882) (Arecales: Arecaceae) tohumlarından yetiştirilen böcek örnekleri 2018 yılında Charles Sturt Üniversitesi (Albury, Avustralya)’ndeki bir laboratuvar ortamında in vitro da simüle edilmiş mide ve bağırsak sıvılarına maruz bırakılmıştır. Galerilerinde tohumların içinde korunan böcekler arasında gözlenen ölüm oranı düşük (%11-24) saptanmıştır. Sürekli yetiştirme başarısı, daldırmadan sonra tohumları terk eden çok sayıda böcekten dolayı etkilenmiştir. Toplam ölüm oranı, 12 saat veya daha uzun süre maruz kalan korunmasız böcekler arasında meydana gelmiştir. Bu çalışma, yutulan tohumlar içindeki ergin böceklerin ölüm oranı çok düşük olduğundan, omurgalı vektörleri sayesinde bu türlerin orta ila uzun mesafe dağılımına yardımcı olabileceğini göstermektedir.

References

  • Anonymous, 1846. Société Entomologique de France. Séance du 25 Novembre 1846. Reiew of Zoology, 427.
  • Bar-Shalom, O. & Z. Mendel, 2001. Seasonal changes in the seed bank in date palm (Phoenix dactylifera) orchards and the involvement of the date-stone beetle (Coccotrypes dactyliperda). Phytoparasitica, 29: 84-85.
  • Bass, D. A., 1995. Contribution of introduced fruits to the winter diet of Pied Currawongs in Armidale, New South Wales. Corella, 19: 127-131.
  • Benítez-Malvido, J., I. Zermeño-Hernández, A. M. González-DiPierro, R. Lombera & A. Estrada, 2016. Frugivore choice and escape from pre-dispersal seed predators: the case of Dialium guianense and two sympatric primate species in southern Mexico. Plant Ecology, 217: 923-933.
  • Boillat, C. S., F. P. Gaschen & G. L. Hosgood, 2010. Assessment of the relationship between body weight and gastrointestinal transit times measured by use of a wireless motility capsule system in dogs. American Journal of Veterinary Research, 71: 898-902.
  • Bravo, S. P., 2008. Seed dispersal and ingestion of insect-infested seeds by black howler monkeys in flooded forests of the Parana River, Argentina. Biotropica, 40: 471-476.
  • Bravo, S. P. & G. E. Zunino, 1998. Effects of black howler monkey (Alouatta caraya) seed ingestion on insect larvae. American Journal of Primatology, 45: 411-415.
  • Chen, F., Z. Zhang, Z. Deng, R. Zhang, G. Fan, D. Ma & D. J. McClements, 2018. Controlled-release of antacids from biopolymer microgels under simulated gastric conditions: Impact of bead dimensions, pore size, and alginate/pectin ratio. Food Research International, 106: 745-751.
  • Coe, M. & C. Coe, 1987. Large herbivores, Acacia trees and bruchid beetles. South Africa Journal of Sciences, 83: 624-635.
  • Ernst, W. H.O., J. E. Decelle, D. J. Tolsma & R. A. Verweij, 1990. Lifecycle of the bruchid beetle Bruchidius uberatus and its predation of Acacia nilotica seeds in a tree savanna in Botswana. Entomologia Experimentalis et Applicata, 57: 177-190.
  • Fragoso, J. M. V., 1997. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon rain forest. Journal of Ecology, 85: 519-529.
  • Fu, T. J., U. R. Abbott & C. Hatzos, 2002. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid a comparative study. Journal of Agricultural and Food Chemistry, 50: 7154-7160.
  • Giombini, M. I., S. P. Bravo & M. F. Martinez, 2009. Seed dispersal of the palm Syagrus romanzoffiana by tapirs in the semi-deciduous Atlantic forest of Argentina. Biotropica, 41: 408-413.
  • Guix, J. C. & X. Ruiz, 1995. Toucans and thrushes as potential dispersers of seed-predatory weevil larvae in southeastern Brazil. Canadian Journal of Zoology, 73: 745-748.
  • Guix, J. C. & X. Ruiz, 1997. Weevil larvae dispersal by guans in southeastern Brazil. Biotropica, 29: 522-525.
  • Herfs, A., 1950. Studien an dem Steinnußborkenkäfer Coccotrypes tanganus Eggers. 2. Die Soziologie von Coccotrypes tanganus. Höfchen-Briefe für Wissenschaft und Praxis (Bayer Leverkusen), 3: 3-31.
  • Hernández, Á., 2011. Internal dispersal of seed-inhabiting insects by vertebrate frugivores: a review and prospects. Integrative Zoology, 6: 213-221.
  • Hernández, Á. & J. V. Falcó, 2008. Frugivorous birds dispersing braconid parasitoids via endozoochory. Entomological Science, 11: 323-326.
  • Khadra, I., Z. Zhou, C. Dunn, C. G. Wilson & G. Halbert, 2015. Statistical investigation of simulated intestinal fluid composition on the equilibrium solubility of biopharmaceutics classification system class II drugs. European Journal of Pharmaceutical Sciences, 67: 65-75.
  • Koike, S., H. Morimoto, Y. Goto, C. Kozakai & K. Yamazaki, 2008. Frugivory of carnivores and seed dispersal of fleshy fruits in cool-temperate deciduous forests. Journal of Forest Research, 13: 215-222. Lamprey, H. F., G. Halevy & S. Makacha, 1974. Interactions between Acacia, bruchid seed beetles and large herbivores. African Journal of Ecology, 12: 81-85.
  • Levey, D. J., 1987. Seed size and fruit-handling techniques of avian frugivores. American Naturalist, 129: 471-485.
  • Lucas, H., 1849. Exploration scientifique de l'Algérie Pendant les Années 1840, 1841, 1842 par Ordre du Gourvernment et avec le Concours d'une Commission Academique. Sciences physiques. Zoologie. I-IV, Histoire naturelle des animaux articulés. Imprimerie Nationale, Paris, 590 pp.
  • Manzur, M. I. & S. P. Courtney, 1984. Influence of Insect Damage in Fruits of Hawthorn on Bird Foraging and Seed Dispersal. Oikos, 43: 265-270.
  • Martín, H. S., C. Prigioni, A. Sappa & A. S. Martín, 2009. “Informe Preliminar Sobre Algunos Zoológicos Vinculados as Ciclo Anual de La Palma Butiá (Butia capitata) (Mart.) Becc, 121-128”. In: Butiá - Ecossistema único em el Mundo (Eds. G. Geymonat & N. Rocha). Casa Ambiental, Julio de Castilhos, 405 pp.
  • Nalepa, C. & W. Piper, 1994. Bird dispersal of the larval stage of a seed predator. Oecologia, 100: 200-202.
  • Neseni, R., M. Lecht & B. Scheven, 1955. Über die Durchgangszeit des Futters beim Silberfuchs. Archiv für Tierernährung, 5: 26-32.
  • Olmos, F., R. Pardini, R. L. Boulhosa, R. Bürgl & C. Morsello, 1999. Do Tapirs steal food from palm seed predators or give them a lift? Biotropica, 31: 375-379.
  • Or, K. & D. Ward, 2003. Three-way interactions between Acacia, large mammalian herbivores and bruchid beetles - a review. African Journal of Ecology, 41: 257-265.
  • Rodriguez-Perez, J., N. Riera & A. Traveset, 2005. Effect of seed passage through birds and lizards on emergence rate of Mediterranean species: differences between natural and controlled conditions. Functional Ecology, 19: 699-706.
  • Rouco, C. & G. Norbury, 2013. An introduced species helping another: dispersal of a rose seed infesting wasp by a marsupial in New Zealand. Biological Invasions, 15: 1649-1652.
  • Silverstein, R. P., 2005. Germination of native and exotic plant seeds dispersed by Coyotes (Canis latrans) in Southern California. Southwestern Naturalist, 50: 472-478.
  • Spennemann, D. H. R., 2018a. An Experimental Evaluation of Food Preferences and Associated Hatching Times of the Date Stone Beetle, Coccotrypes dactyliperda (Scolytinae, Coleoptera). Institute for Land, Water and Society Report. Institute for Land, Water and Society 120, Charles Sturt University, Albury, NSW, 81 pp.
  • Spennemann, D. H. R., 2018b. Global distribution of the date stone beetle, Coccotrypes dactyliperda (Coleoptera: Curculionidae, Scolytinae). Journal of Insect Biodiversity, 4: 203-226.
  • Spennemann, D. H. R., 2018c. Observations on the consumption and dispersal of Phoenix canariensis drupes by the Grey-headed flying fox (Pteropus poliocephalus). European Journal of Ecology, 4: 41-49.
  • Spennemann, D. H. R., 2018d. Phoenix canariensis seed encountered in scats and ejecta collected at Alma Park. Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 35 pp.
  • Spennemann, D. H. R., 2018e. Review of the vertebrate-mediated dispersal of the Date Palm, Phoenix dactylifera. Zoology in the Middle East, 64: 283-296.
  • Spennemann, D. H. R., 2019a. Biology, ecology and distribution of the date stone beetle, Coccotrypes dactyliperda (Scolytinae, Coleoptera). Zoology in the Middle East, 65: 163-182.
  • Spennemann, D. H. R., 2019b. The connective potential of vertebrate vectors responsible for the dispersal of the Canary Island date palm (Phoenix canariensis). Flora, 259: 151468.
  • Spennemann, D. H. R., 2019c. Resilience of the date stone beetle Coccotrypes dactyliperda (Coleoptera, Curculionidae), following periods of exposure to subzero temperature. Turkish Journal of Entomology, 43: 379-385.
  • Spennemann, D. H. R., K. Kent & R. Cook, 2018. Uninvited guests: Mass Emergence of Scolytinid Beetles in a Seed Germination Experiment and its Management. Institute for Land, Water and Society Report 118. Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 33 pp.
  • Stappaerts, J., B. Wuyts, J. Tack, P. Annaert & P. Augustijns, 2014. Human and simulated intestinal fluids as solvent systems to explore food effects on intestinal solubility and permeability. European Journal of Pharmaceutical Sciences, 63: 178-186.
  • Szuman, J. & A. Skrzydlewski, 1962. Über die Durchgangszeit des Futters durch den Magen-Darm-Kanal beim Blaufuchs. Archiv für Tierernährung, 12: 1-4.
  • Traveset, A., 1998. Effect of seed passage through vertebrate frugivores' guts on germination: a review. Perspectives in Plant Ecology, Evolution and Systematics, 1: 151-190.
  • Tukey, J. W., 1980. We need both exploratory and confirmatory. The American Statistician, 34: 23-25.
  • Wang, J., Y. Yadav, A. L. Smart, S. Tajiri & A. W. Basit, 2015. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Molecular Pharmaceutics, 12: 966-973.
  • Weber, M. P., 2006. Influence of size on the Dog’s digestive function. Bulletin de l'Académie Vétérinaire de France, 159: 326-332.
  • Zchori-Fein, E., C. Borad & A. R. Harari, 2006. Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiological Entomology, 31: 164-169.
  • Zona, S. & A. Henderson, 1989. A review of animal-mediated seed dispersal of palms. Selbyana, 11: 6-21.
There are 48 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Dirk Spennemann 0000-0003-2639-7950

Publication Date June 1, 2020
Submission Date September 19, 2019
Acceptance Date January 30, 2020
Published in Issue Year 2020

Cite

APA Spennemann, D. (2020). Resilience of breeding Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates. Turkish Journal of Entomology, 44(2), 203-214. https://doi.org/10.16970/entoted.622103
AMA Spennemann D. Resilience of breeding Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates. TED. June 2020;44(2):203-214. doi:10.16970/entoted.622103
Chicago Spennemann, Dirk. “Resilience of Breeding Coccotrypes Dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to Ingestion by Vertebrates”. Turkish Journal of Entomology 44, no. 2 (June 2020): 203-14. https://doi.org/10.16970/entoted.622103.
EndNote Spennemann D (June 1, 2020) Resilience of breeding Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates. Turkish Journal of Entomology 44 2 203–214.
IEEE D. Spennemann, “Resilience of breeding Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates”, TED, vol. 44, no. 2, pp. 203–214, 2020, doi: 10.16970/entoted.622103.
ISNAD Spennemann, Dirk. “Resilience of Breeding Coccotrypes Dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to Ingestion by Vertebrates”. Turkish Journal of Entomology 44/2 (June 2020), 203-214. https://doi.org/10.16970/entoted.622103.
JAMA Spennemann D. Resilience of breeding Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates. TED. 2020;44:203–214.
MLA Spennemann, Dirk. “Resilience of Breeding Coccotrypes Dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to Ingestion by Vertebrates”. Turkish Journal of Entomology, vol. 44, no. 2, 2020, pp. 203-14, doi:10.16970/entoted.622103.
Vancouver Spennemann D. Resilience of breeding Coccotrypes dactyliperda Fabricius, 1801 (Coleoptera: Curculionidae: Scolytinae) to ingestion by vertebrates. TED. 2020;44(2):203-14.