Research Article
BibTex RIS Cite

A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)

Year 2020, , 399 - 412, 01.09.2020
https://doi.org/10.16970/entoted.657190

Abstract

In this study, total lipid and fatty acid composition of insects belonging to the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coelostoma orbiculare Fabricius, 1775; Coelostoma transcaspicum Reitter, 1906; Helochares obscurus Müller, 1776; Helochares lividus Forster, 1771) of Hydrophilidae (Coleoptera) family collected from Bingöl Province were determined. Specimens were collected in 2015. Fatty acid component of the insects was determined by mass-gas chromatography (GC-MS). Total saturated fatty acids (ΣSFA) were between 23.9-40.8%, total monounsaturated fatty acids (ΣMUFA) were 21.6-53.2% and total polyunsaturated fatty acids (ΣPUFA) were 14.3-27.4%. Myristic acid (14:0), pentadecanoic acid (15:0) palmitic acid (16:0), heptadecanoic acid (17:0) from SFA, palmitoleic acid (16:1n-7), oleic acid (18:1n-9) from MUFA; linoleic acid (18:2n-6), linolenic acid (18:3n-3), arachidonic acid (ARA, 20: 4n-6), eicosapentaenoic acid (EPA, 20: 5n-3) were the most important fatty acids. ANOSIM results showed that only the difference among the species was significant (R=0.63); the difference among subfamilies (R=0.17) and among the genera (R=0.17) were partially significant and that the difference among the families (R=0.08) was not significant.

Supporting Institution

BÜBAP

Project Number

This research was supported by the BAP-281-265-2015 project of Bingöl University.

Thanks

This research was supported by the BAP-281-265-2015 project of Bingöl University.

References

  • Angus, R. B., 1992. Süsswasser Fauna von Mitteleuropa (Insecta: Coleoptera: Hydrophilidae: Helophorinae). Gustav Fischer Verlag, Jena, New York, 144 pp.
  • Baldus, T. J. & J. A. Mutchmor, 1988. The effects of acclimation and post-treatment temperature on the toxicity of allethrin to the American cockroach, Periplaneta americana. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 89 (2): 403-407.
  • Başhan, M., 1996. Effect of various diets on the total lipit compositions the black cricket Melanogrillus desertus Pall. Turkish Journal of Zoology, 20 (4): 375-379.
  • Beenakkers, A. M. T., D. J. Van Der Horst & J. A. Van Marrewijk, 1985. Insect lipids and lipoproteins and their role in physiological processes. Progress in Lipid Research, 24 (1): 19-67.
  • Bozkuş, K., 2003. Phospholipid and triacylgliserol fatty acid compositions from various development stages of Melanogryllus desertus. Turkish Journal of Biology, 27 (2): 73-78.
  • Çakmak, Ö., M. Başhan & H. Bolu, 2005. Monosteira lobulifera Reut. (Heteroptera: Tingidae)’ nın fosfolipid ve triaçilgliserol fraksiyonundaki yağ asiti bileşimi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (4): 637-643.
  • Çakmak, Ö., M. Başhan & A. Satar, 2007. Total fatty acid composition of Lertha sheppardi (Neuroptera: Nemopteridae) during its main life stages. Biologia, 62 (6): 774-780.
  • Canavoso, L. E., Z. E. Jouni, K. J. Karnas, J. E. Pennington & M. A. Wells, 2001. Fat metabolism in insects. Annual Review of Nutrition, 21 (1): 23-46.
  • Christie, W. W., 1992. Preparation of fatty acid methyl esters. Inform, 3 (9): 1031-1034.
  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Edition. PRIMER-E, Plymouth, 151 pp.
  • Cohen, A. C., 1990. Fatty acid distributions as related to adult age, sex and diet in the phytophagous Heteropteran, Lygus hesperus (Heteroptera: Miridae). Journal of Entomological Science, 25 (1): 75-84.
  • Dadd, R. H., 1973. Insect nutrition: Current development and metabolic implications. Annual Review of Entomology, 18: 381-420.
  • Darılmaz, M. & S. Kıyak, 2006a. Helochares lividus: New Distributional Records from Turkey (Coleoptera: Hydrophilidae). Entomological Problems, 36 (1): 79.
  • Darılmaz, M. & S. Kıyak, 2006b. A contribution to the knowledge of the Turkish water beetles fauna (Coleoptera). Munis Entomology and Zoology, 1 (1): 129-144.
  • Demirsoy, A., 1997. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji Cilt II/Kısım II, Beşinci Baskı. Meteksan Matbaacılık, Ankara, 941 s.
  • Downer, R. G. H. & J. R. Matthews, 1976. Patterns of lipid distribution and utilization in insects. American Zoologist, 16 (6): 733-745.
  • Fikảček, M., 2006. Taxonomic status of Cercyon alpinus, C. exorabilis, C. strandi and C. tatricus and notes on their biology (Coleoptera: Hydrophilidae: Sphaeridiinae). Annalen des Naturhistorischen Museums in Wien, 107B: 145-164.
  • Gentili, E., 2000. Distibuzione del genere Laccobius (Coleoptera: Hydrophilidae) in Anatolia e Problemi Relativi. Biogeographia, 21 (1): 173-214.
  • Gentili, E. & P. E. Whitehead, 2000. A new species of Laccobius (Col., Hydrophilidae) from Lycia, Turkey. The Entomologist’s Montly Magazine, 136: 73-76.
  • Gilbert, L. I., 1967. Lipid metabolism and function in insect. Advances in Insect Physiology, 4: 69-211.
  • Gilby, A. R., 1965. Lipids and their metabolism in insects. Annual Review of Entomology, 10: 141-160.
  • Hansen, M., 1987. The Hydrophilidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, 18: 1-253.
  • Hara, A. & N. S. Radin, 1978. Lipid exctraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90 (1): 420-426.
  • Hoback, W. W., R. L. Rana & D. W. Stanley, 1999. Fatty acid compositions of phospholipids and triacylglycerols of selected tissues, and fatty acid biosynthesis in adult periodical cicadas, Magicicada septendecim. Comparative Biochemistry and Physiology Part A, 122 (3): 355-362.
  • İncekara, Ü., A. Mart & O. Erman, 2005. Some Notes on two newly recorded aquatic Coleoptera (Hydrophilidae, Helophoridae) species from Turkey. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (2): 449-454.
  • Kalyoncu, L. & S. Özge, 2014. Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae)'nın farklı gelişim evrelerinin yağ asiti bileşimi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 38: 10-18.
  • Keeley, L. L., J. H. Park, K. H. Lu & J. Y. Bradfield, 1996. Neurohormone signal transduction for dual regulation of metabolism and gene expression in insects: hypertrehalosemic hormone as a model. Archives Insect Biochemistry Physiology, 33: 283-301.
  • Khani, A., S. Moharramipour, M. Barzegar & H. Naderi-Manesh, 2007. Comparison of fatty acids composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae). Insect Science, 14 (2): 125-131.
  • Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as markers of food sources in a shallow water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series, 120: 231-241.
  • Khebbeb, M. E. H., J. Delachambre & N. Soltani, 1997. Lipid metabolism during the sexual maturation of the mealworm (Tenebrio molitor): effect of ingested diflubenzuron. Pesticide Biochemistry and Physiology, 58 (3): 209-217.
  • Kıyak, S., S. Canbulat, A. Salur & M. Darılmaz, 2006. Additional notes on aquatic Coleoptera fauna of Turkey with a new record (Helophoridae: Hydrophilidae). Munis Entomology and Zoology, 1 (2): 273-278.
  • Mart, A., 2005. Bingöl İli Helophoridae, Hydrophilidae ve Hydrochidae (Coleoptera) Türleri Üzerine Sistematik Araştırmalar, (Basılmamış) Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, 165 s.
  • Mart, A., 2009. Water scavenger beetles (Coleoptera: Hydrophilidae) provinces of Central Black Sea Region of Turkey. Journal of the Entomological Research Society, 11 (1): 47-70.
  • Nurullahoğlu, Z. Ü., 2003. Achroia grisella F. (Lepidoptera: Pyralidae) larva ve pupunun yağ asiti bileşimi. Selçuk Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi, 21: 75-78.
  • Nurullahoğlu, Z. Ü., F. Uçkan, O. Sak & E. Ergin, 2004. Total lipid and fatty acid composition of Apanteles galleria and its parasitized Host. Annals of the Entomological Society of America, 97 (5): 1000-1006.
  • Ouyang, L. L., S. H. Chen, Y. Li & Z. G. Zhou, 2013. Transcriptome analysis reveals unique C4- like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14 (1): 1-13.
  • Pethybridge, H., R. K. Daley & P. D. Nichols, 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. Journal of Experimental Marine Biology and Ecology, 409 (2): 290-299.
  • Sayanova, O. & J. A. Napier, 2011. Transgenic oilseed crops as an alternative to fish oils. Prostaglandins Leukot Essent Fatty Acids, 85 (5): 253-260.
  • Seven, E., 2004. Plodia interpunctella (Lepidoptera: Pyralidae) Larva ve Pupunun Total Lipid, Total Yağ Asiti Ve Yağ Asiti Bileşimi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Konya, 25 s.
  • Shanab, S. M. M., R. M. Hafez & A. S. Fouad, 2018. A review on algae and plants as potential source of arachidonic acid. Journal Advanced Research, 11: 3-13.
  • Shinmen, Y., K. Katoh, S. Shimizu, S. Jareonkitmongkol & H. Yamada, 1991. Production of arachidonic acid and eicosapentaenoic acids by Marchantia polymorpha in cell culture. Phytochemistry, 30 (10): 3255-3260.
  • Short, A. E. Z. & M. Fikácek, 2013. Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Systematic Entomology, 38: 723-752.
  • Spike, B. P., R. J. Wright, S. D. Danielson & D. W. Stanley-Samuelson, 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta; Hemiptera; Lygaeidae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology, 99 (4): 799-802.
  • Stanley-Samuelson, D. W. & R. H. Dadd, 1983. Long-chain polyunsaturated fatty acids: Patterns of occurrence in insects. Insect Biochemistry, 13 (5): 549-558.
  • Stanley, D. W. & R. W. Howard, 1998. The biology of prostaglandins and related eicosanoids in invertebrates: Cellular organismal and ecological actions. American Zoologist, 38 (2): 369-381.
  • Stanley-Samuelson, D. W., R. W. Howard & E. C. Toolson, 1990. Phospholipid fatty acid composition and arachidonic acid uptake and metabolism by the cicada Tibicen dealbatus (Homoptera: Cicadidae). Comparative Biochemistry and Physiology, 97 (2): 285-289.
  • Stanley-Samuelson, D. W., E. Jenson, K. W. Nickerson, K. Tiebel, C. L. Ogg & R. W. Howard, 1991. Insect immune response to bacterial infection is mediated by eicosanoids. Proceedings of the National Academy of Sciences of the United States of America, 88 (3): 1064-1068.
  • Stanley-Samuelson, D. W., R. A. Jurenka, C. Cripps, G. J. Blomquist & M. Derenobles, 1988. Fatty acids in insects: composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9 (1): 1-33.
  • Stanley, D. W., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, N.J., USA, 277 pp.
  • Stanley, D., 2006. Prostaglandins and other eicosanoids in insects: Biological significance. Annual Review of Entomology, 51 (1): 25-44.
  • Suloma, A., H. Y. Ogata, H. Furuita, E. S. Garibay & D. R. Chavez, 2007. “Arachidonic Acid Distribution in Seaweed, Seagrass, İnvertebrates and Dugong in Coral Reef Areas in The Philippines, 107-111”. In: Sustainable Production Systems of Aquatic Animals in Brackish Mangrove Areas (Ed. K Nakamura). Japan International Research Center for Agricultural Sciences Working Report Tsukuba, Ibaraki, Japan, 151 pp.
  • Thompson, S. N., 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology, 45 (2): 467-482.
  • Thompson, S. N., 1979. The effect of dietary carbohyrate on larval development and lipogenesis in the parasite, Exeristes robarator (Fabricius (Hymenoptera: Ichneumonidae. Journal of Parasitology, 65 (6): 849-854.
  • Uçkan, F. & A. Gülel, 2001. The effects of cold storage on the adult longevity, fecundity and sex ratio of Apanteles galleria Wilkinson (Hym: Braconidae). Turkish Journal of Zoology, 25 (3): 187-191.
  • Üstüner, P., L. Kalyoncu & A. Aktümsek, 2010. Besinin Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) larva ve pupunun toplam lipid, yağ asiti oranlarına ve yağ asiti bileşimine etkileri. Süleyman Demirel Üniversitesi Fen Dergisi, 5 (1): 29-37.
  • Wakayama, E. J., J. E. Dillwith & G. J. Blomquist, 1980. In vitro biosynthesis of prostaglandins in the reproductive tissues of the male house fly Musca domestica (L.). American Zoologist, 20: 904.
  • Ziegler, R. & R. V. Antwerpen, 2006. Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36 (4): 264-272.

Helochares Mulsant, 1844 ve Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae) cinslerinin yağ asiti kompozisyonuna taksonomik bir yaklaşım

Year 2020, , 399 - 412, 01.09.2020
https://doi.org/10.16970/entoted.657190

Abstract

Bu çalışmada, Bingöl İli’nden toplanan Hydrophilidae (Coleoptera) familyasının Helochares Mulsant, 1844 ve Coelostoma Brullé, 1835 cinsine (Coelostoma orbiculare Fabricius, 1775; Coelostoma transcaspicum Reitter, 1906; Helochares obscurus Müller, 1776; Helochares lividus Forster, 1771) ait böceklerin toplam lipit ve yağ asiti kompozisyonu belirlenmiştir. Örnekler 2015 yılında toplanmıştır. Böceklerin yağ asiti bileşeni gaz kromatografisi (GC-MS) ile belirlenmiştir. Toplam doymuş yağ asitleri (ΣSFA) %23.9-40.8, toplam tekli doymamış yağ asitleri (ΣMUFA) %21.6-53.2 ve toplam çoklu doymamış yağ asitleri (ΣPUFA) %14.3-27.4 arasında değişim göstermiştir. SFA’ dan miristik asit (14: 0), pentadekanoik asit (15: 0) palmitik asit (16: 0), heptadekanoik asit (17: 0); MUFA’dan palmitoleik asit (16: 1n-7), oleik asit (18: 1n-9); ve PUFA’ dan linoleik asit (18: 2n-6), linolenik asit (18: 3n-3), araşidonik asit (ARA, 20: 4n-6), eikosapentaenoik asit (EPA, 20: 5n-3) en önemli yağ asitleri olarak saptanmıştır. Hydrophilidae familyası bireylerinde sadece türler arasındaki farkın nispeten önemli olduğu (R=0.63), alt familyalar (R=0.17) ve cinsler (R=0.17) arasındaki farkın kısmen önemli olduğu ve familyalar (R=0.08) arasındaki farkın önemli olmadığı ANOSIM sonuçlarıyla ortaya konulmuştur.

Project Number

This research was supported by the BAP-281-265-2015 project of Bingöl University.

References

  • Angus, R. B., 1992. Süsswasser Fauna von Mitteleuropa (Insecta: Coleoptera: Hydrophilidae: Helophorinae). Gustav Fischer Verlag, Jena, New York, 144 pp.
  • Baldus, T. J. & J. A. Mutchmor, 1988. The effects of acclimation and post-treatment temperature on the toxicity of allethrin to the American cockroach, Periplaneta americana. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 89 (2): 403-407.
  • Başhan, M., 1996. Effect of various diets on the total lipit compositions the black cricket Melanogrillus desertus Pall. Turkish Journal of Zoology, 20 (4): 375-379.
  • Beenakkers, A. M. T., D. J. Van Der Horst & J. A. Van Marrewijk, 1985. Insect lipids and lipoproteins and their role in physiological processes. Progress in Lipid Research, 24 (1): 19-67.
  • Bozkuş, K., 2003. Phospholipid and triacylgliserol fatty acid compositions from various development stages of Melanogryllus desertus. Turkish Journal of Biology, 27 (2): 73-78.
  • Çakmak, Ö., M. Başhan & H. Bolu, 2005. Monosteira lobulifera Reut. (Heteroptera: Tingidae)’ nın fosfolipid ve triaçilgliserol fraksiyonundaki yağ asiti bileşimi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (4): 637-643.
  • Çakmak, Ö., M. Başhan & A. Satar, 2007. Total fatty acid composition of Lertha sheppardi (Neuroptera: Nemopteridae) during its main life stages. Biologia, 62 (6): 774-780.
  • Canavoso, L. E., Z. E. Jouni, K. J. Karnas, J. E. Pennington & M. A. Wells, 2001. Fat metabolism in insects. Annual Review of Nutrition, 21 (1): 23-46.
  • Christie, W. W., 1992. Preparation of fatty acid methyl esters. Inform, 3 (9): 1031-1034.
  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Edition. PRIMER-E, Plymouth, 151 pp.
  • Cohen, A. C., 1990. Fatty acid distributions as related to adult age, sex and diet in the phytophagous Heteropteran, Lygus hesperus (Heteroptera: Miridae). Journal of Entomological Science, 25 (1): 75-84.
  • Dadd, R. H., 1973. Insect nutrition: Current development and metabolic implications. Annual Review of Entomology, 18: 381-420.
  • Darılmaz, M. & S. Kıyak, 2006a. Helochares lividus: New Distributional Records from Turkey (Coleoptera: Hydrophilidae). Entomological Problems, 36 (1): 79.
  • Darılmaz, M. & S. Kıyak, 2006b. A contribution to the knowledge of the Turkish water beetles fauna (Coleoptera). Munis Entomology and Zoology, 1 (1): 129-144.
  • Demirsoy, A., 1997. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji Cilt II/Kısım II, Beşinci Baskı. Meteksan Matbaacılık, Ankara, 941 s.
  • Downer, R. G. H. & J. R. Matthews, 1976. Patterns of lipid distribution and utilization in insects. American Zoologist, 16 (6): 733-745.
  • Fikảček, M., 2006. Taxonomic status of Cercyon alpinus, C. exorabilis, C. strandi and C. tatricus and notes on their biology (Coleoptera: Hydrophilidae: Sphaeridiinae). Annalen des Naturhistorischen Museums in Wien, 107B: 145-164.
  • Gentili, E., 2000. Distibuzione del genere Laccobius (Coleoptera: Hydrophilidae) in Anatolia e Problemi Relativi. Biogeographia, 21 (1): 173-214.
  • Gentili, E. & P. E. Whitehead, 2000. A new species of Laccobius (Col., Hydrophilidae) from Lycia, Turkey. The Entomologist’s Montly Magazine, 136: 73-76.
  • Gilbert, L. I., 1967. Lipid metabolism and function in insect. Advances in Insect Physiology, 4: 69-211.
  • Gilby, A. R., 1965. Lipids and their metabolism in insects. Annual Review of Entomology, 10: 141-160.
  • Hansen, M., 1987. The Hydrophilidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, 18: 1-253.
  • Hara, A. & N. S. Radin, 1978. Lipid exctraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90 (1): 420-426.
  • Hoback, W. W., R. L. Rana & D. W. Stanley, 1999. Fatty acid compositions of phospholipids and triacylglycerols of selected tissues, and fatty acid biosynthesis in adult periodical cicadas, Magicicada septendecim. Comparative Biochemistry and Physiology Part A, 122 (3): 355-362.
  • İncekara, Ü., A. Mart & O. Erman, 2005. Some Notes on two newly recorded aquatic Coleoptera (Hydrophilidae, Helophoridae) species from Turkey. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (2): 449-454.
  • Kalyoncu, L. & S. Özge, 2014. Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae)'nın farklı gelişim evrelerinin yağ asiti bileşimi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 38: 10-18.
  • Keeley, L. L., J. H. Park, K. H. Lu & J. Y. Bradfield, 1996. Neurohormone signal transduction for dual regulation of metabolism and gene expression in insects: hypertrehalosemic hormone as a model. Archives Insect Biochemistry Physiology, 33: 283-301.
  • Khani, A., S. Moharramipour, M. Barzegar & H. Naderi-Manesh, 2007. Comparison of fatty acids composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae). Insect Science, 14 (2): 125-131.
  • Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as markers of food sources in a shallow water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series, 120: 231-241.
  • Khebbeb, M. E. H., J. Delachambre & N. Soltani, 1997. Lipid metabolism during the sexual maturation of the mealworm (Tenebrio molitor): effect of ingested diflubenzuron. Pesticide Biochemistry and Physiology, 58 (3): 209-217.
  • Kıyak, S., S. Canbulat, A. Salur & M. Darılmaz, 2006. Additional notes on aquatic Coleoptera fauna of Turkey with a new record (Helophoridae: Hydrophilidae). Munis Entomology and Zoology, 1 (2): 273-278.
  • Mart, A., 2005. Bingöl İli Helophoridae, Hydrophilidae ve Hydrochidae (Coleoptera) Türleri Üzerine Sistematik Araştırmalar, (Basılmamış) Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, 165 s.
  • Mart, A., 2009. Water scavenger beetles (Coleoptera: Hydrophilidae) provinces of Central Black Sea Region of Turkey. Journal of the Entomological Research Society, 11 (1): 47-70.
  • Nurullahoğlu, Z. Ü., 2003. Achroia grisella F. (Lepidoptera: Pyralidae) larva ve pupunun yağ asiti bileşimi. Selçuk Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi, 21: 75-78.
  • Nurullahoğlu, Z. Ü., F. Uçkan, O. Sak & E. Ergin, 2004. Total lipid and fatty acid composition of Apanteles galleria and its parasitized Host. Annals of the Entomological Society of America, 97 (5): 1000-1006.
  • Ouyang, L. L., S. H. Chen, Y. Li & Z. G. Zhou, 2013. Transcriptome analysis reveals unique C4- like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14 (1): 1-13.
  • Pethybridge, H., R. K. Daley & P. D. Nichols, 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. Journal of Experimental Marine Biology and Ecology, 409 (2): 290-299.
  • Sayanova, O. & J. A. Napier, 2011. Transgenic oilseed crops as an alternative to fish oils. Prostaglandins Leukot Essent Fatty Acids, 85 (5): 253-260.
  • Seven, E., 2004. Plodia interpunctella (Lepidoptera: Pyralidae) Larva ve Pupunun Total Lipid, Total Yağ Asiti Ve Yağ Asiti Bileşimi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Konya, 25 s.
  • Shanab, S. M. M., R. M. Hafez & A. S. Fouad, 2018. A review on algae and plants as potential source of arachidonic acid. Journal Advanced Research, 11: 3-13.
  • Shinmen, Y., K. Katoh, S. Shimizu, S. Jareonkitmongkol & H. Yamada, 1991. Production of arachidonic acid and eicosapentaenoic acids by Marchantia polymorpha in cell culture. Phytochemistry, 30 (10): 3255-3260.
  • Short, A. E. Z. & M. Fikácek, 2013. Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Systematic Entomology, 38: 723-752.
  • Spike, B. P., R. J. Wright, S. D. Danielson & D. W. Stanley-Samuelson, 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta; Hemiptera; Lygaeidae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology, 99 (4): 799-802.
  • Stanley-Samuelson, D. W. & R. H. Dadd, 1983. Long-chain polyunsaturated fatty acids: Patterns of occurrence in insects. Insect Biochemistry, 13 (5): 549-558.
  • Stanley, D. W. & R. W. Howard, 1998. The biology of prostaglandins and related eicosanoids in invertebrates: Cellular organismal and ecological actions. American Zoologist, 38 (2): 369-381.
  • Stanley-Samuelson, D. W., R. W. Howard & E. C. Toolson, 1990. Phospholipid fatty acid composition and arachidonic acid uptake and metabolism by the cicada Tibicen dealbatus (Homoptera: Cicadidae). Comparative Biochemistry and Physiology, 97 (2): 285-289.
  • Stanley-Samuelson, D. W., E. Jenson, K. W. Nickerson, K. Tiebel, C. L. Ogg & R. W. Howard, 1991. Insect immune response to bacterial infection is mediated by eicosanoids. Proceedings of the National Academy of Sciences of the United States of America, 88 (3): 1064-1068.
  • Stanley-Samuelson, D. W., R. A. Jurenka, C. Cripps, G. J. Blomquist & M. Derenobles, 1988. Fatty acids in insects: composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9 (1): 1-33.
  • Stanley, D. W., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, N.J., USA, 277 pp.
  • Stanley, D., 2006. Prostaglandins and other eicosanoids in insects: Biological significance. Annual Review of Entomology, 51 (1): 25-44.
  • Suloma, A., H. Y. Ogata, H. Furuita, E. S. Garibay & D. R. Chavez, 2007. “Arachidonic Acid Distribution in Seaweed, Seagrass, İnvertebrates and Dugong in Coral Reef Areas in The Philippines, 107-111”. In: Sustainable Production Systems of Aquatic Animals in Brackish Mangrove Areas (Ed. K Nakamura). Japan International Research Center for Agricultural Sciences Working Report Tsukuba, Ibaraki, Japan, 151 pp.
  • Thompson, S. N., 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology, 45 (2): 467-482.
  • Thompson, S. N., 1979. The effect of dietary carbohyrate on larval development and lipogenesis in the parasite, Exeristes robarator (Fabricius (Hymenoptera: Ichneumonidae. Journal of Parasitology, 65 (6): 849-854.
  • Uçkan, F. & A. Gülel, 2001. The effects of cold storage on the adult longevity, fecundity and sex ratio of Apanteles galleria Wilkinson (Hym: Braconidae). Turkish Journal of Zoology, 25 (3): 187-191.
  • Üstüner, P., L. Kalyoncu & A. Aktümsek, 2010. Besinin Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) larva ve pupunun toplam lipid, yağ asiti oranlarına ve yağ asiti bileşimine etkileri. Süleyman Demirel Üniversitesi Fen Dergisi, 5 (1): 29-37.
  • Wakayama, E. J., J. E. Dillwith & G. J. Blomquist, 1980. In vitro biosynthesis of prostaglandins in the reproductive tissues of the male house fly Musca domestica (L.). American Zoologist, 20: 904.
  • Ziegler, R. & R. V. Antwerpen, 2006. Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36 (4): 264-272.
There are 57 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Fatma Caf 0000-0002-0363-4848

Günay Yıldız 0000-0003-4988-2393

Nurgül Sen Özdemir 0000-0001-6656-822X

Abdullah Mart 0000-0001-6539-9188

Project Number This research was supported by the BAP-281-265-2015 project of Bingöl University.
Publication Date September 1, 2020
Submission Date December 10, 2019
Acceptance Date June 23, 2020
Published in Issue Year 2020

Cite

APA Caf, F., Yıldız, G., Sen Özdemir, N., Mart, A. (2020). A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). Turkish Journal of Entomology, 44(3), 399-412. https://doi.org/10.16970/entoted.657190
AMA Caf F, Yıldız G, Sen Özdemir N, Mart A. A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). TED. September 2020;44(3):399-412. doi:10.16970/entoted.657190
Chicago Caf, Fatma, Günay Yıldız, Nurgül Sen Özdemir, and Abdullah Mart. “A Chemotaxonomic Approach to Fatty Acid Composition of the Genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”. Turkish Journal of Entomology 44, no. 3 (September 2020): 399-412. https://doi.org/10.16970/entoted.657190.
EndNote Caf F, Yıldız G, Sen Özdemir N, Mart A (September 1, 2020) A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). Turkish Journal of Entomology 44 3 399–412.
IEEE F. Caf, G. Yıldız, N. Sen Özdemir, and A. Mart, “A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”, TED, vol. 44, no. 3, pp. 399–412, 2020, doi: 10.16970/entoted.657190.
ISNAD Caf, Fatma et al. “A Chemotaxonomic Approach to Fatty Acid Composition of the Genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”. Turkish Journal of Entomology 44/3 (September 2020), 399-412. https://doi.org/10.16970/entoted.657190.
JAMA Caf F, Yıldız G, Sen Özdemir N, Mart A. A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). TED. 2020;44:399–412.
MLA Caf, Fatma et al. “A Chemotaxonomic Approach to Fatty Acid Composition of the Genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”. Turkish Journal of Entomology, vol. 44, no. 3, 2020, pp. 399-12, doi:10.16970/entoted.657190.
Vancouver Caf F, Yıldız G, Sen Özdemir N, Mart A. A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). TED. 2020;44(3):399-412.