Research Article
BibTex RIS Cite

Yaban tip ve rekombinant omurgasız iridesan virüslerinin beş yaygın zararlı üzerindeki böcek öldürücü aktiviteleri

Year 2020, , 365 - 373, 01.09.2020
https://doi.org/10.16970/entoted.700189

Abstract

Omurgasız iridesan virüs 6 (IIV6), çeşitli zararlı böcek türlerini düşük oranda enfekte edebilir. Rekombinant DNA teknolojisi ile oluşturulan yeni özelliklere sahip virüsler biyolojik kontrol ajanları olarak etkin bir şekilde kullanılabilir. Daha önce IIV6 157L ORF’si yerine birisi yeşil floresan protein geni (rCIV-Δ157L-gfp) ve diğeri de gfp ile birleştirilmiş bir akrep Androctonus australis (Linnaeus, 1758) böcek toksin geni (rCIV-Δ157L/gfp-AaIT) ihtiva eden iki rekombinant IIV6 inşa edilmişti. Bu çalışmada, yaban tip IIV6 ve iki rekombinant virüs, Helicoverpa armigera (Hübner, 1805) (Lepidoptera: Noctuidae), Spodoptera littoralis (Boisduval, 1883) (Lepidoptera: Noctuidae), Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae), Euproctis chrysorrhoea (Linnaeus, 1758) (Lepidoptera: Erebidae) ve Tenebrio molitor (Linnaeus, 1758) (Coleoptera: ‎Tenebrionidae) larvalarında enfeksiyon oluşturma yeteneği açısından değerlendirildi. Çalışma 2018 ve 2019 yılları arasında Karadeniz Teknik Üniversitesi Biyoloji Bölümü'nde gerçekleştirildi. Her bir böcek larvasını enjekte etmek için virüslerin beş farklı konsantrasyonu (103, 104, 105, 106 ve107 TCID50/ml) kullanıldı. rCIV-Δ157L/gfp-AaIT ile enfekte olmuş S. littoralis dışında tüm larvalar felç oldu. rCIV-Δ157L/gfp-AaIT ile enfekte olmuş böcek larvalarının LC50'si sırasıyla, S. littoralis, T. molitor, L. dispar, H. armigera ve E. chrysorrhoea üzerinde 0.3 x 107, 0.7 x 105, 0.2 x 105, 0.15 x 105, 0.7 x 104 TCID50/ml olarak belirlenmiştir. En yüksek virüs konsantrasyonlarına göre hesaplanan LT50 değerleri, rCIV-Δ157L/gfp-AaIT için S. littoralis, T. molitor, L. dispar, H. armigera ve E. chrysorrhoea'da sırasıyla 10.5, 6.2, 4.7, 7.5 ve 5 gün olarak bulundu. Bu çalışma, rekombinant IIV6'nın Lepidoptera ve Coleoptera takımlarına ait bazı böceklerde patojeniteyi artırdığını göstermiştir.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
  • Bergomaz, R. & M. Boppré, 1986. A simple instant diet for rearing Arctiidae and other moths. Journal of the Lepidopterists' Society, 40 (3): 131-137.
  • Chinchar, V. G., P. Hick, I. A. Ince, J. K. Jancovich, R. Marschang, Q. Qin, K. Subramaniam, T. B. Waltzek, R. Whittington, T. Williams & Q. Y. Zhang, 2017. ICTV virus taxonomy profile: Iridoviridae. Journal of General Virology, 98 (5): 890-891.
  • Deng, S. Q., J. T. Chen, W. W. Li, M. Chen & H. J. Peng, 2019. Application of the scorpion neurotoxin AaIT against insect pests. International Journal of Molecular Sciences, 20 (14): 3467.
  • Elazar, M., R. Levi & E. Zlotkin, 2001. Targeting of an expressed neurotoxin by its recombinant baculovirus. Journal of Experimental Biology, 204 (15): 2637-2645.
  • Finney, D. J., 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, Cambridge, England, 256 pp.
  • Fukuda, T., 1971. Per os transmission of Chilo iridescent virus to mosquitoes. Journal of Invertebrate Pathology, 18 (1): 152-153.
  • Gencer, D., Z. Bayramoglu, R. Nalcacioglu, R. G. Kleespies, Z. Demirbag & I. Demir, 2018. Characterisation of three Alphabaculovirus isolates from the gypsy moth, Lymantria dispar dispar (Lepidoptera: Erebidae), in Turkey. Biocontrol Science and Technology, 28 (2): 107-121.
  • Henderson, C. W., C. L. Johnson, S. A. Lodhi & S. L. Bilimoria, 2001. Replication of Chilo iridescent virus in the cotton boll weevil, Anthonomus grandis, and development of an infectivity assay. Archives of Virology, 146 (4): 767-775.
  • Hierholzer, J. C. & R. A. Killington, 1996. “Virus Isolation and Quantitation, 25-46” In: Virology Methods Manual (Eds. B. W. Mahy & H. I. Kangro), Virology Methods Manual Academic Press, London, 374 pp.
  • Hunter, W. B., S. L. Lapointe, X. H. Sinisterra, D. S. Achor & C. J. Funk, 2003. Iridovirus in the root weevil Diaprepes abbreviatus. Journal of Insect Science, 3 (9): 1-6.
  • İnce, İ. A., M. Westenberg, J. M. Vlak, Z. Demirbağ, R. Nalçacioğlu & M. M. van Oers, 2008. Open reading frame 193R of Chilo iridescent virus encodes a functional inhibitor of apoptosis (IAP). Virology, 376 (1): 124-131.
  • Jakob, N. J., R. G. Kleespies, C. A. Tidona, K. Müller, H. R. Gelderblom & G. Darai, 2002. Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. Journal of General Virology, 83 (2): 463-470.
  • Jenkins, D., W. Hunter & R. Goenaga, 2011. Effects of Invertebrate Iridescent Virus 6 in Phyllophaga vandinei and its potential as a biocontrol delivery system. Journal of Insect Science, 11 (44): 1-10.
  • Jensen, D. D., T. Hukuhara & Y. Tanada, 1972. Lethality of Chilo iridescent virus to Colladonus montanus leafhoppers. Journal of Invertebrate Pathology, 19 (2): 276-278.
  • Kalha, C. S., P. P. Singh, S. S. Kang, M. S. Hunjan, V. Gupta & R. Sharma, 2014. ‘’Entomopathogenic Viruses and Bacteria for Insect-Pest Control, 225-244’’. In: Integrated Pest Management: Current Concepts and Ecological Perspective (Ed. D. P. Abrol). Academic Press, San Diego, 576 pp.
  • Kelly, D. C., M. D. Ayres & T. Lescott, 1979. A small iridescent virus (type 29) isolated from Tenebrio molitor: a comparison of its proteins and antigens with six other iridescent viruses. Journal of General Virology, 42 (1): 95-105.
  • Kim, S. Y., H. G. Kim, H. J. Yoon, K. Y. Lee & N. J. Kim, 2017. Nutritional analysis of alternative feed ingredients and their effects on the larval growth of Tenebrio molitor (Coleoptera: Tenebrionidae). Entomological Research, 47 (3): 194-202.
  • Maeda, S., S. L. Volrath, T. N. Hanzlik, S. A. Harper, K. Majima, D. W. Maddox, B. D. Hammock & E. Fowler, 1991. Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology, 184 (2): 777-780.
  • Marina, C. F., J. I. J. E. Arredondo-Jimenez, J. E. Ibarra, I. Fernandez-Salas & T. Williams, 2003. Effects of an optical brightener and an abrasive on iridescent virus infection and development of Aedes aegypti. Entomologia Experimentalis et Applicata, 109 (2): 155-161.
  • McCutchen, B. F., P. V. Choudary, R. Crenshaw, D. Maddox, S. G. Kamita, N. Palekar, S. Volrath, E. Fowler, B. D. Hammock & S. Maeda, 1991. Development of a recombinant baculovirus expressing an insect-selective neurotoxin: Potential for pest control. Bio/Technology, 9 (9): 848-852.
  • Mitsuhashi, J., 1967. Infection of leafhopper and its tissues cultivated in vitro with Chilo iridescent virus. Journal of Invertebrate Pathology, 9 (3): 432-434.
  • Nalcacioglu, R., H. Muratoglu, A. Yesilyurt, M. M. van Oers, J. M. Vlak & Z. Demirbag, 2016. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. Journal of Invertebrate Pathology, 138: 104-111.
  • Ohba, M., 1975. Studies on the parthogenesis of Chilo iridescent virus 3. Multiplication of CIV in the silkworm Bombyx mori L. and field insects. Scientific Bulletin of the Faculty of Agriculture Kyushu University, 30: 71-81.
  • Ozgen, A., H. Muratoglu, Z. Demirbag, J. M. Vlak, M. M. van Oers & R. Nalcacioglu, 2014. Construction and characterization of a recombinant invertebrate iridovirus. Virus Research, 189: 286-292.
  • Razvi, E. S. & R. M. Welsh, 1995. Apoptosis in viral infections. Advanced Virus Research, 45: 1-60.
  • Treacy, M. F. & J. N. All, 1996. Impact of insect-specific AaHIT gene insertion on inherent bioactivity of baculoviruses against tobacco budworm, Heliothis virescens, and cabbage looper, Trichoplusia ni. Beltwide Cotton Conferences, 2: 911-917.
  • Williams, T., 2008. Natural invertebrate hosts of iridovirases (iridoviridae). Neotropical Entomology, 37 (6): 615-632.
  • Williams, T., V. Barbosa-Solomieu & V. G. Chinchar, 2005. A decade of advances in iridovirus research. Advances in Virus Research, 65: 173-248.
  • Yao, B., Y. Pang, Y. Fan, R. Zhao, Y. Yang & T. Wang, 1996. Construction of an insecticidal baculovirus expressing insect-specific neurotoxin AaIT. Science China Life Sciences, 39 (2): 199-206.

Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests

Year 2020, , 365 - 373, 01.09.2020
https://doi.org/10.16970/entoted.700189

Abstract

Invertebrate iridescent virus 6 (IIV6) can infect a broad range of pest insect species. Viruses with new features created by recombinant DNA technology can be used effectively as biological control agents. Previously, recombinants have been constructed: IIVs harboring green fluorescent protein gene (gfp) in place of IIV6 157L ORF (rCIV-Δ157L-gfp) and a scorpion Androctonus australis (Linnaeus, 1758) insect toxin gene (AaIT) fused with gfp (rCIV-Δ157L/gfp-AaIT). In this study, wild type IIV6 and the two recombinants, were evaluated for their ability to cause infections on Helicoverpa armigera (Hübner, 1805) (Lepidoptera: Noctuidae), Spodoptera littoralis (Boisduval, 1883) (Lepidoptera: Noctuidae), Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae), Euproctis chrysorrhoea (Linnaeus, 1758) (Lepidoptera: Erebidae) and Tenebrio molitor (Linnaeus, 1758) (Coleoptera: ‎Tenebrionidae) larvae. This study was performed at Karadeniz Technical University, Department of Biology during 2018 and 2019. Five different concentrations (103, 104, 105, 106 and 107 TCID50/ml) of viruses were used to inject each insect larvae. All larvae, infected with rCIV-Δ157L/gfp-AaIT, became paralyzed, except S. littoralis. The LC50 of insect larvae infected by rCIV-Δ157L/gfp-AaIT were determined as 0.3 x 107, 0.7 x 105, 0.2 x 105, 0.15 x 105, 0.7 x 104 TCID50/ml on S. littoralis, T. molitor, L. dispar, H. armigera and E. chrysorrhoea, respectively. LT50 values, calculated according to the highest virus concentrations, were found as 10.5, 6.2, 4.7, 7.5 and 5 d on S. littoralis, T. molitor, L. dispar, H. armigera and E. chrysorrhoea, respectively, for rCIV-Δ157L/gfp-AaIT. This study showed that recombinant IIV6 has increased pathogenicity on some insects from Lepidoptera and Coleoptera.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
  • Bergomaz, R. & M. Boppré, 1986. A simple instant diet for rearing Arctiidae and other moths. Journal of the Lepidopterists' Society, 40 (3): 131-137.
  • Chinchar, V. G., P. Hick, I. A. Ince, J. K. Jancovich, R. Marschang, Q. Qin, K. Subramaniam, T. B. Waltzek, R. Whittington, T. Williams & Q. Y. Zhang, 2017. ICTV virus taxonomy profile: Iridoviridae. Journal of General Virology, 98 (5): 890-891.
  • Deng, S. Q., J. T. Chen, W. W. Li, M. Chen & H. J. Peng, 2019. Application of the scorpion neurotoxin AaIT against insect pests. International Journal of Molecular Sciences, 20 (14): 3467.
  • Elazar, M., R. Levi & E. Zlotkin, 2001. Targeting of an expressed neurotoxin by its recombinant baculovirus. Journal of Experimental Biology, 204 (15): 2637-2645.
  • Finney, D. J., 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, Cambridge, England, 256 pp.
  • Fukuda, T., 1971. Per os transmission of Chilo iridescent virus to mosquitoes. Journal of Invertebrate Pathology, 18 (1): 152-153.
  • Gencer, D., Z. Bayramoglu, R. Nalcacioglu, R. G. Kleespies, Z. Demirbag & I. Demir, 2018. Characterisation of three Alphabaculovirus isolates from the gypsy moth, Lymantria dispar dispar (Lepidoptera: Erebidae), in Turkey. Biocontrol Science and Technology, 28 (2): 107-121.
  • Henderson, C. W., C. L. Johnson, S. A. Lodhi & S. L. Bilimoria, 2001. Replication of Chilo iridescent virus in the cotton boll weevil, Anthonomus grandis, and development of an infectivity assay. Archives of Virology, 146 (4): 767-775.
  • Hierholzer, J. C. & R. A. Killington, 1996. “Virus Isolation and Quantitation, 25-46” In: Virology Methods Manual (Eds. B. W. Mahy & H. I. Kangro), Virology Methods Manual Academic Press, London, 374 pp.
  • Hunter, W. B., S. L. Lapointe, X. H. Sinisterra, D. S. Achor & C. J. Funk, 2003. Iridovirus in the root weevil Diaprepes abbreviatus. Journal of Insect Science, 3 (9): 1-6.
  • İnce, İ. A., M. Westenberg, J. M. Vlak, Z. Demirbağ, R. Nalçacioğlu & M. M. van Oers, 2008. Open reading frame 193R of Chilo iridescent virus encodes a functional inhibitor of apoptosis (IAP). Virology, 376 (1): 124-131.
  • Jakob, N. J., R. G. Kleespies, C. A. Tidona, K. Müller, H. R. Gelderblom & G. Darai, 2002. Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. Journal of General Virology, 83 (2): 463-470.
  • Jenkins, D., W. Hunter & R. Goenaga, 2011. Effects of Invertebrate Iridescent Virus 6 in Phyllophaga vandinei and its potential as a biocontrol delivery system. Journal of Insect Science, 11 (44): 1-10.
  • Jensen, D. D., T. Hukuhara & Y. Tanada, 1972. Lethality of Chilo iridescent virus to Colladonus montanus leafhoppers. Journal of Invertebrate Pathology, 19 (2): 276-278.
  • Kalha, C. S., P. P. Singh, S. S. Kang, M. S. Hunjan, V. Gupta & R. Sharma, 2014. ‘’Entomopathogenic Viruses and Bacteria for Insect-Pest Control, 225-244’’. In: Integrated Pest Management: Current Concepts and Ecological Perspective (Ed. D. P. Abrol). Academic Press, San Diego, 576 pp.
  • Kelly, D. C., M. D. Ayres & T. Lescott, 1979. A small iridescent virus (type 29) isolated from Tenebrio molitor: a comparison of its proteins and antigens with six other iridescent viruses. Journal of General Virology, 42 (1): 95-105.
  • Kim, S. Y., H. G. Kim, H. J. Yoon, K. Y. Lee & N. J. Kim, 2017. Nutritional analysis of alternative feed ingredients and their effects on the larval growth of Tenebrio molitor (Coleoptera: Tenebrionidae). Entomological Research, 47 (3): 194-202.
  • Maeda, S., S. L. Volrath, T. N. Hanzlik, S. A. Harper, K. Majima, D. W. Maddox, B. D. Hammock & E. Fowler, 1991. Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology, 184 (2): 777-780.
  • Marina, C. F., J. I. J. E. Arredondo-Jimenez, J. E. Ibarra, I. Fernandez-Salas & T. Williams, 2003. Effects of an optical brightener and an abrasive on iridescent virus infection and development of Aedes aegypti. Entomologia Experimentalis et Applicata, 109 (2): 155-161.
  • McCutchen, B. F., P. V. Choudary, R. Crenshaw, D. Maddox, S. G. Kamita, N. Palekar, S. Volrath, E. Fowler, B. D. Hammock & S. Maeda, 1991. Development of a recombinant baculovirus expressing an insect-selective neurotoxin: Potential for pest control. Bio/Technology, 9 (9): 848-852.
  • Mitsuhashi, J., 1967. Infection of leafhopper and its tissues cultivated in vitro with Chilo iridescent virus. Journal of Invertebrate Pathology, 9 (3): 432-434.
  • Nalcacioglu, R., H. Muratoglu, A. Yesilyurt, M. M. van Oers, J. M. Vlak & Z. Demirbag, 2016. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. Journal of Invertebrate Pathology, 138: 104-111.
  • Ohba, M., 1975. Studies on the parthogenesis of Chilo iridescent virus 3. Multiplication of CIV in the silkworm Bombyx mori L. and field insects. Scientific Bulletin of the Faculty of Agriculture Kyushu University, 30: 71-81.
  • Ozgen, A., H. Muratoglu, Z. Demirbag, J. M. Vlak, M. M. van Oers & R. Nalcacioglu, 2014. Construction and characterization of a recombinant invertebrate iridovirus. Virus Research, 189: 286-292.
  • Razvi, E. S. & R. M. Welsh, 1995. Apoptosis in viral infections. Advanced Virus Research, 45: 1-60.
  • Treacy, M. F. & J. N. All, 1996. Impact of insect-specific AaHIT gene insertion on inherent bioactivity of baculoviruses against tobacco budworm, Heliothis virescens, and cabbage looper, Trichoplusia ni. Beltwide Cotton Conferences, 2: 911-917.
  • Williams, T., 2008. Natural invertebrate hosts of iridovirases (iridoviridae). Neotropical Entomology, 37 (6): 615-632.
  • Williams, T., V. Barbosa-Solomieu & V. G. Chinchar, 2005. A decade of advances in iridovirus research. Advances in Virus Research, 65: 173-248.
  • Yao, B., Y. Pang, Y. Fan, R. Zhao, Y. Yang & T. Wang, 1996. Construction of an insecticidal baculovirus expressing insect-specific neurotoxin AaIT. Science China Life Sciences, 39 (2): 199-206.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Donus Gencer This is me 0000-0002-5179-3763

Aydin Yesilyurt 0000-0003-4034-4206

Mustafa Güllü 0000-0002-4133-6534

İsmail Demir 0000-0001-6227-0039

Remziye Nalcacıoglu 0000-0003-0527-9541

Publication Date September 1, 2020
Submission Date March 9, 2020
Acceptance Date June 9, 2020
Published in Issue Year 2020

Cite

APA Gencer, D., Yesilyurt, A., Güllü, M., Demir, İ., et al. (2020). Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests. Turkish Journal of Entomology, 44(3), 365-373. https://doi.org/10.16970/entoted.700189
AMA Gencer D, Yesilyurt A, Güllü M, Demir İ, Nalcacıoglu R. Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests. TED. September 2020;44(3):365-373. doi:10.16970/entoted.700189
Chicago Gencer, Donus, Aydin Yesilyurt, Mustafa Güllü, İsmail Demir, and Remziye Nalcacıoglu. “Insecticidal Activities of Wild Type and Recombinant Invertebrate Iridescent Viruses on Five Common Pests”. Turkish Journal of Entomology 44, no. 3 (September 2020): 365-73. https://doi.org/10.16970/entoted.700189.
EndNote Gencer D, Yesilyurt A, Güllü M, Demir İ, Nalcacıoglu R (September 1, 2020) Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests. Turkish Journal of Entomology 44 3 365–373.
IEEE D. Gencer, A. Yesilyurt, M. Güllü, İ. Demir, and R. Nalcacıoglu, “Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests”, TED, vol. 44, no. 3, pp. 365–373, 2020, doi: 10.16970/entoted.700189.
ISNAD Gencer, Donus et al. “Insecticidal Activities of Wild Type and Recombinant Invertebrate Iridescent Viruses on Five Common Pests”. Turkish Journal of Entomology 44/3 (September 2020), 365-373. https://doi.org/10.16970/entoted.700189.
JAMA Gencer D, Yesilyurt A, Güllü M, Demir İ, Nalcacıoglu R. Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests. TED. 2020;44:365–373.
MLA Gencer, Donus et al. “Insecticidal Activities of Wild Type and Recombinant Invertebrate Iridescent Viruses on Five Common Pests”. Turkish Journal of Entomology, vol. 44, no. 3, 2020, pp. 365-73, doi:10.16970/entoted.700189.
Vancouver Gencer D, Yesilyurt A, Güllü M, Demir İ, Nalcacıoglu R. Insecticidal activities of wild type and recombinant invertebrate iridescent viruses on five common pests. TED. 2020;44(3):365-73.