Research Article
BibTex RIS Cite

Reduction of some insecticide residues from grapes with washing treatments

Year 2021, , 125 - 137, 01.03.2021
https://doi.org/10.16970/entoted.843754

Abstract

Insecticide application is the most common method of insect control in agriculture. Efficiency of washing treatments in reduction of insecticide (chlorpyrifos-methyl and lambda-cyhalothrin) residues from grapes were investigated in this study. The trial was established in a Sultana seedless vineyard in Sarıgöl District, Manisa Province, Turkey in 2020. Method verification was performed with the recovery, limit of quantification and precision. Pesticide-free grapes were spiked with 0.5, 1 and 5 times of MRL for pesticides. The recovery of chlorpyrifos-methyl and lambda-cyhalothrin were 102 and 101% respectively. QuEChERS method yielded an overall-recovery of 101%. These figures were within the SANTE recovery limits (60-140%) and the detection limits of the insecticides were below the MRLs. Grapes in a vineyard were sprayed with insecticides four times and harvested 0, 2, 4 and 7 d after the last spray. Washing (tap water, citric and acetic acid) and ultrasonic cleaning treatments were applied to harvested grapes. Washing treatments decreased residue levels and reductions increased with prolonged washing durations. Reductions also decreased with prolonged harvest durations from the last spray. The citric and acetic acid washing, and ultrasonic-cleaning methods provided more efficient reduction than washing with tap water.

Thanks

The author would like thank technical staff of Çanakkale Food Control Directorate- Pesticide Residue Laboratory for LC-MS/MS analyses and Prof. Dr. Osman TİRYAKİ for his useful suggestions.

References

  • Acoglu, B., P. Yolcı Ömeroglu & Ö. Copur, 2018. The effect of food processing on pesticide residues and processing factors. Journal of Food and Feed Science Technology, 19 (1): 42-54.
  • Anonymous, 2011.Bitki veya bitkisel ürünlerde bitki koruma ürünlerinin kalıntı denemelerinin yapılması ile ilgili standart deneme metodu. (Web page: https://www.tarim.gov.tr/TAGEM/Belgeler/yayin/22.pdf) (Date accessed: September 2020) (in Turkish).
  • Anonymous, 2020. Pestisitlerin kalıntı limitlerinin değerlendirilmesinde kullanılacak işleme faktörleri veritabanı. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/DB_Gida_Isletmeleri/isleme_faktorleri_veritabani.xlsm) (Date accessed: January 2021) (in Turkish).
  • Buakham, R., S. Songsermpong & C. Eamchotchawalit, 2012. Kinetics of the reduction of pesticide residues in vegetables by ultrasonic cleaning. Asian Journal of Food and Agro-Industry, 5 (5): 364-373.
  • CAC, 2003. Representative commodities/samples for validation of analytical procedures for pesticide residues. In codex alimentarius commission guidelines on good laboratory practice in pesticide residue analysis. CAC/GL 40-1993. (Web page: http://www.fao.org/input/download/standards/378/cxg_040e.pdf) (Date accessed: September 2020).
  • Corrias, F., A. Atzei, C. Lai, F Dedola, E. Ibba, G. Zedda, F. Canu & A. Angioni, 2020. Effects of industrial processing on pesticide multiresidues transfer from raw tomatoes to processed products. Foods, 9 (10): 1-15.
  • Çatak, H., B. Polat & O. Tiryaki, 2020. Farklı yıkama uygulamaları ile kapya biberlerde pirimiphos-methyl kalıntısının giderilmesi. Anadolu Tarım Bilimleri Dergisi, 35 (1): 97-105 (in Turkish with abstract in English).
  • Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
  • Çelik, S., Ş. Kunç & T. Aşan, 1995. Degradation of some pesticides in the field and effect of processing. Analyst, 120 (6): 1739-1743.
  • EC, 2002. Commission Directive 2002/63/EC of 11 July 2002 Establishing Community Methods of Sampling for the Official Control of Pesticide Residues in and on Products of Plant and Animal Origin and Repealing. Directive 79/700/EEC. Official Journal of European Commission 2002, L 187/30, 1-14.
  • EU, 2020. EU - Pesticides database (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticidesatabase/public/ ?event=activesubstance.detail&language=EN&selectedID=911) (Date accessed: September 2020).
  • EURACHEM, 2014. The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition (Web page: http://www.eurachem.org) (Date accessed: September 2020).
  • Gölge, Ö. & B. Kabak, 2018. Pesticide residues in table grapes and exposure assessment. Journal of Agricultural and Food Chemistry, 66 (7): 1701-1713.
  • Hassan, H. Ü., E. Elsayed, AE-RA. El-Raouf & S. N. Salman, 2019. Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of Consumer Protection and Food Safety, 14 (1): 31-39.
  • Heshmati, A., A. Rahimi, A. Vahidinia, M. Taheri & A. Nili-Ahmadabadi, 2020. Dissipation behavior and risk assessment of fungicide and insecticide residues in grape under open-field, storage and washing conditions. Journal of Cleaner Production, 270 (122287): 1-11.
  • İçli, N. & D. Tahmas Kahyaoğlu, 2020. Investigation of pesticide residues in fresh Sultani grapes and antioxidant properties of fresh/sun-dried/oven-dried grapes. Turkish Journal of Agriculture & Forestry, 44: (4) 350-360.
  • IRAC, 2020. Mode of action classification scheme. Insecticide Resistance Action Committee (IRAC). Version 9.4 (Web page: https://irac-online.org/documents/moaclassification) (Date accessed: September 2020).
  • Khadre, M. A., A. E. Yousef & J. G. Kim, 2001. Microbial aspects of ozone applications in food: a review. Journal of Food Science, 66 (9): 1242-1252.
  • Kong, Z. Q., F. S. Dong, J. Xu, X. G. Liu, J. Li & Y. B. Li, 2012. Degradation of acephate and its metabolite methamidophos in rice during processing and storage. Food Control, 23 (1): 149-153.
  • Lehotay, S. J., 2007. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulphate: collaborative study. Journal of AOAC International, 90 (2): 485-520.
  • Lehotay, S. J., K. Mastovska & A. R. Lightfield, 2005. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88 (2): 615-629.
  • Lozowicka, B., M. Jankowska, I. Hrynko & P. Kaczynski, 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment, 188 (1): 51-69.
  • Lozowicka, B., P. Kaczyński, E. Rutkowska, M. Jankowska & I. Hrynko, 2013. Evaluation of pesticide residues in fruit from Poland and health risk assessment. Agricultural Science, 4 (5): 106-111.
  • Omeroglu, P. Y., D. Boyacioğlu, A. Ambrus, A. Karaali & S. Saner, 2012. An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5 (6): 1469-1480.
  • Önçağ, G., 1975. Ege Bölgesi’nde salkım güvesi (Lobesia botrana Den.-Schiff.)’ nin tanınması, yayılışı, biyolojisi, zararı, doğal düşmanları ve kimyasal savaş imkanları üzerine araştırmalar. T.C. Gıda Tarım ve Hayvancılık Bakanlığı, Zirai Mücadele ve Zirai Karantina Genel Müdürlüğü Araştırma Serisi, Teknik Bülten No: 26: İzmir, 68 s (in Turkish).
  • Osman, K. A., A. I. Al-Humaid, K. N. Al-Redhaiman & R. A. El-Mergawi, 2014. Safety methods for chlorpyrifos removal from date fruits and its relation with sugars, phenolics and antioxidant capacity of fruits. Journal of Food Science and Technology, 51 (9): 1762-1772.
  • Özel, E. & O. Tiryaki, 2019. Elma ve işlenmiş ürünlerinde imidacloprid ve indoxacarb kalıntılarının belirlenmesi. Bitki Koruma Bülteni, 59: 23-32 (in Turkish with abstract in English).
  • Polat, B. & O. Tiryaki, 2019. Determination of some pesticide residues in conventional-grown and IPM-grown tomato by using QuEChERS method. Journal of Environmental Science and Health B, 54 (2):112-117.
  • Polat, B. & O. Tiryaki, 2020. Assessing washing methods for reduction of pesticide residues in capia pepper with LC-MS/MS. Journal of Environmental Science and Health Part B, 55 (1): 1-10.
  • PPDB, 2020. Pesticides properties data base. (Web page: https://sitem.herts.ac.uk/aeru/ footprint/es/atoz.htm) (Date accessed: November 2020).
  • Randhawa, M. A., M. N. Anjum, M. S. Butt, M. Yasin & M. Imran, 2014a. Minimization of imidacloprid residues in cucumber and bell pepper through washing with citric acid and acetic acid solutions and their dietary intake assessment. International Journal of Food Properties, 17 (5): 978-986.
  • Randhawa, M. A., M. N. Anjum, M. Asi, A. Ahmed & H. Nawaz, 2014b. Field incurred endosulfan residues in fresh and processed vegetables and dietary intake assessment. International Journal of Food Properties, 17 (5): 1109-1115.
  • SANTE, 2019. Analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/ /12682/2019. (Web page: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_ guidelines_wrkdoc_2019-12682.pdf) (Date accessed: November 2020).
  • SAS, 1999. SAS Institute. SAS/STAT 9.1 User’s Guide. 1999, Cary, NC.
  • Turgut, C., H. Örnek & T. Cutright, 2011. Determination of pesticide residues in Turkey’s table grapes: the effect of integrated pest management, organic farming, and conventional farming. Environmental Monitoring and Assessment,173 (2): 315-323.
  • TÜİK, 2018. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: July 2019) (in Turkish).
  • TÜİK, 2019. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: September 2020) (in Turkish).
  • TURKAK, 2019. Metodun geçerli kılınması ve doğrulanması için bilgilendirme kılavuzu. (Web page: https://secure.turkak.org.tr/TURKAKSITE/docs/bilgilendirme_kilavuzlari/METODUN_GE%C3%87ERL%C4%B0_KILINMASI_VE_DOGRULANMASI_ICIN_BILGILENDIRME_KILAVUZU_20052019_1625.pdf) (Date accessed: November 2020) (in Turkish).
  • UGRL, 2020. Pestisit validasyon prosedürleri rehber dokumanı gıda ve yemde pestisit kalıntıları analizi için analitik kalite kontrol ve metot validasyonu prosedürleri. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/DB_ Gida_Kont/Pestisit_El_Kitabi.pdf) (Date accessed: January 2021) (in Turkish).
  • Zengin, E. & İ. Karaca, 2017. Uşak ilinde örtü altı üretimi yapılan domateslerdeki pestisit kalıntılarının belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (2): 554-559 (in Turkish with abstract in English).
  • Zhao, L., J. Ge, F. Liu & N. Jiang, 2014. Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry, 150: 182-186.
  • Zhou, Q., Y. Bian, Q. Peng, F. Liu, W. Wang & F. Chen, 2019. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chemistry, 298 (125007): 1-8.

Üzümdeki bazı insektisit kalıntılarının yıkama işlemleriyle azaltılması

Year 2021, , 125 - 137, 01.03.2021
https://doi.org/10.16970/entoted.843754

Abstract

İnsektisit kullanımı tarımda zararlı kontrolü için en yaygın metottur. Bu çalışmada yıkama işlemlerinin üzümler üzerindeki insektisit kalıntılarının (chlorpyrifos-methyl ve lambda-cyhalothrin) azaltılmasına etkisi araştırılmıştır. Deneme Türkiye’de Manisa İli-Sarıgöl ilçesinde 2020 yılında Sultana çekirdeksiz üzüm bağında kurulmuştur. Metot doğrulama, geri kazanım, ölçüm limiti, tekrarlanabilirlik ve kesinlik ile gerçekleştirilmiştir. İnsektisit içermeyen üzüm numuneleri her pestisit için 0.5, 1 ve 5 kat MRL seviyelerinde sabitlenmiştir. Chlorpyrifos-methyl ve lambda-cyhalothrin geri alımları, sırasıyla %102 ve %101 olarak bulunmuştur. Tüm QuEChERS yönteminin geri kazanımı %101 olarak bulunmuştur. Bu rakamlar SANTE geri kazanım limitleri (%60-140) arasındadır. İnsektisitlerin tespit limitleri, MRL'nin altında bulunmuştur. Bağda üzümlere dört defa insektisit uygulanmıştır. Son insektisit uygulamasının 0., 2., 4. ve 7. günlerinde üzümler hasat edilmiş ve çeşme suyu, sitrik ve asetik asit ve ultrasonik yıkama işlemlerine tabi tutulmuştur. Yıkama işlemi kalıntıları azaltmış ve artan yıkama süresiyle kalıntının azalma oranları artmıştır. İlerleyen hasat zamanları ile kalıntının giderilmesi azalmıştır. Sitrik ve asetik asit yıkama ve ultrasonik yıkama, musluk suyu ile yıkamadan daha etkili bulunmuştur.

References

  • Acoglu, B., P. Yolcı Ömeroglu & Ö. Copur, 2018. The effect of food processing on pesticide residues and processing factors. Journal of Food and Feed Science Technology, 19 (1): 42-54.
  • Anonymous, 2011.Bitki veya bitkisel ürünlerde bitki koruma ürünlerinin kalıntı denemelerinin yapılması ile ilgili standart deneme metodu. (Web page: https://www.tarim.gov.tr/TAGEM/Belgeler/yayin/22.pdf) (Date accessed: September 2020) (in Turkish).
  • Anonymous, 2020. Pestisitlerin kalıntı limitlerinin değerlendirilmesinde kullanılacak işleme faktörleri veritabanı. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/DB_Gida_Isletmeleri/isleme_faktorleri_veritabani.xlsm) (Date accessed: January 2021) (in Turkish).
  • Buakham, R., S. Songsermpong & C. Eamchotchawalit, 2012. Kinetics of the reduction of pesticide residues in vegetables by ultrasonic cleaning. Asian Journal of Food and Agro-Industry, 5 (5): 364-373.
  • CAC, 2003. Representative commodities/samples for validation of analytical procedures for pesticide residues. In codex alimentarius commission guidelines on good laboratory practice in pesticide residue analysis. CAC/GL 40-1993. (Web page: http://www.fao.org/input/download/standards/378/cxg_040e.pdf) (Date accessed: September 2020).
  • Corrias, F., A. Atzei, C. Lai, F Dedola, E. Ibba, G. Zedda, F. Canu & A. Angioni, 2020. Effects of industrial processing on pesticide multiresidues transfer from raw tomatoes to processed products. Foods, 9 (10): 1-15.
  • Çatak, H., B. Polat & O. Tiryaki, 2020. Farklı yıkama uygulamaları ile kapya biberlerde pirimiphos-methyl kalıntısının giderilmesi. Anadolu Tarım Bilimleri Dergisi, 35 (1): 97-105 (in Turkish with abstract in English).
  • Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
  • Çelik, S., Ş. Kunç & T. Aşan, 1995. Degradation of some pesticides in the field and effect of processing. Analyst, 120 (6): 1739-1743.
  • EC, 2002. Commission Directive 2002/63/EC of 11 July 2002 Establishing Community Methods of Sampling for the Official Control of Pesticide Residues in and on Products of Plant and Animal Origin and Repealing. Directive 79/700/EEC. Official Journal of European Commission 2002, L 187/30, 1-14.
  • EU, 2020. EU - Pesticides database (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticidesatabase/public/ ?event=activesubstance.detail&language=EN&selectedID=911) (Date accessed: September 2020).
  • EURACHEM, 2014. The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition (Web page: http://www.eurachem.org) (Date accessed: September 2020).
  • Gölge, Ö. & B. Kabak, 2018. Pesticide residues in table grapes and exposure assessment. Journal of Agricultural and Food Chemistry, 66 (7): 1701-1713.
  • Hassan, H. Ü., E. Elsayed, AE-RA. El-Raouf & S. N. Salman, 2019. Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of Consumer Protection and Food Safety, 14 (1): 31-39.
  • Heshmati, A., A. Rahimi, A. Vahidinia, M. Taheri & A. Nili-Ahmadabadi, 2020. Dissipation behavior and risk assessment of fungicide and insecticide residues in grape under open-field, storage and washing conditions. Journal of Cleaner Production, 270 (122287): 1-11.
  • İçli, N. & D. Tahmas Kahyaoğlu, 2020. Investigation of pesticide residues in fresh Sultani grapes and antioxidant properties of fresh/sun-dried/oven-dried grapes. Turkish Journal of Agriculture & Forestry, 44: (4) 350-360.
  • IRAC, 2020. Mode of action classification scheme. Insecticide Resistance Action Committee (IRAC). Version 9.4 (Web page: https://irac-online.org/documents/moaclassification) (Date accessed: September 2020).
  • Khadre, M. A., A. E. Yousef & J. G. Kim, 2001. Microbial aspects of ozone applications in food: a review. Journal of Food Science, 66 (9): 1242-1252.
  • Kong, Z. Q., F. S. Dong, J. Xu, X. G. Liu, J. Li & Y. B. Li, 2012. Degradation of acephate and its metabolite methamidophos in rice during processing and storage. Food Control, 23 (1): 149-153.
  • Lehotay, S. J., 2007. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulphate: collaborative study. Journal of AOAC International, 90 (2): 485-520.
  • Lehotay, S. J., K. Mastovska & A. R. Lightfield, 2005. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International, 88 (2): 615-629.
  • Lozowicka, B., M. Jankowska, I. Hrynko & P. Kaczynski, 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment, 188 (1): 51-69.
  • Lozowicka, B., P. Kaczyński, E. Rutkowska, M. Jankowska & I. Hrynko, 2013. Evaluation of pesticide residues in fruit from Poland and health risk assessment. Agricultural Science, 4 (5): 106-111.
  • Omeroglu, P. Y., D. Boyacioğlu, A. Ambrus, A. Karaali & S. Saner, 2012. An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5 (6): 1469-1480.
  • Önçağ, G., 1975. Ege Bölgesi’nde salkım güvesi (Lobesia botrana Den.-Schiff.)’ nin tanınması, yayılışı, biyolojisi, zararı, doğal düşmanları ve kimyasal savaş imkanları üzerine araştırmalar. T.C. Gıda Tarım ve Hayvancılık Bakanlığı, Zirai Mücadele ve Zirai Karantina Genel Müdürlüğü Araştırma Serisi, Teknik Bülten No: 26: İzmir, 68 s (in Turkish).
  • Osman, K. A., A. I. Al-Humaid, K. N. Al-Redhaiman & R. A. El-Mergawi, 2014. Safety methods for chlorpyrifos removal from date fruits and its relation with sugars, phenolics and antioxidant capacity of fruits. Journal of Food Science and Technology, 51 (9): 1762-1772.
  • Özel, E. & O. Tiryaki, 2019. Elma ve işlenmiş ürünlerinde imidacloprid ve indoxacarb kalıntılarının belirlenmesi. Bitki Koruma Bülteni, 59: 23-32 (in Turkish with abstract in English).
  • Polat, B. & O. Tiryaki, 2019. Determination of some pesticide residues in conventional-grown and IPM-grown tomato by using QuEChERS method. Journal of Environmental Science and Health B, 54 (2):112-117.
  • Polat, B. & O. Tiryaki, 2020. Assessing washing methods for reduction of pesticide residues in capia pepper with LC-MS/MS. Journal of Environmental Science and Health Part B, 55 (1): 1-10.
  • PPDB, 2020. Pesticides properties data base. (Web page: https://sitem.herts.ac.uk/aeru/ footprint/es/atoz.htm) (Date accessed: November 2020).
  • Randhawa, M. A., M. N. Anjum, M. S. Butt, M. Yasin & M. Imran, 2014a. Minimization of imidacloprid residues in cucumber and bell pepper through washing with citric acid and acetic acid solutions and their dietary intake assessment. International Journal of Food Properties, 17 (5): 978-986.
  • Randhawa, M. A., M. N. Anjum, M. Asi, A. Ahmed & H. Nawaz, 2014b. Field incurred endosulfan residues in fresh and processed vegetables and dietary intake assessment. International Journal of Food Properties, 17 (5): 1109-1115.
  • SANTE, 2019. Analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/ /12682/2019. (Web page: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_ guidelines_wrkdoc_2019-12682.pdf) (Date accessed: November 2020).
  • SAS, 1999. SAS Institute. SAS/STAT 9.1 User’s Guide. 1999, Cary, NC.
  • Turgut, C., H. Örnek & T. Cutright, 2011. Determination of pesticide residues in Turkey’s table grapes: the effect of integrated pest management, organic farming, and conventional farming. Environmental Monitoring and Assessment,173 (2): 315-323.
  • TÜİK, 2018. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: July 2019) (in Turkish).
  • TÜİK, 2019. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: September 2020) (in Turkish).
  • TURKAK, 2019. Metodun geçerli kılınması ve doğrulanması için bilgilendirme kılavuzu. (Web page: https://secure.turkak.org.tr/TURKAKSITE/docs/bilgilendirme_kilavuzlari/METODUN_GE%C3%87ERL%C4%B0_KILINMASI_VE_DOGRULANMASI_ICIN_BILGILENDIRME_KILAVUZU_20052019_1625.pdf) (Date accessed: November 2020) (in Turkish).
  • UGRL, 2020. Pestisit validasyon prosedürleri rehber dokumanı gıda ve yemde pestisit kalıntıları analizi için analitik kalite kontrol ve metot validasyonu prosedürleri. (Web page: https://www.tarimorman.gov.tr/GKGM/Belgeler/DB_ Gida_Kont/Pestisit_El_Kitabi.pdf) (Date accessed: January 2021) (in Turkish).
  • Zengin, E. & İ. Karaca, 2017. Uşak ilinde örtü altı üretimi yapılan domateslerdeki pestisit kalıntılarının belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (2): 554-559 (in Turkish with abstract in English).
  • Zhao, L., J. Ge, F. Liu & N. Jiang, 2014. Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry, 150: 182-186.
  • Zhou, Q., Y. Bian, Q. Peng, F. Liu, W. Wang & F. Chen, 2019. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chemistry, 298 (125007): 1-8.
There are 42 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Burak Polat 0000-0001-9171-1024

Publication Date March 1, 2021
Submission Date December 20, 2020
Acceptance Date February 18, 2021
Published in Issue Year 2021

Cite

APA Polat, B. (2021). Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45(1), 125-137. https://doi.org/10.16970/entoted.843754
AMA Polat B. Reduction of some insecticide residues from grapes with washing treatments. TED. March 2021;45(1):125-137. doi:10.16970/entoted.843754
Chicago Polat, Burak. “Reduction of Some Insecticide Residues from Grapes With Washing Treatments”. Turkish Journal of Entomology 45, no. 1 (March 2021): 125-37. https://doi.org/10.16970/entoted.843754.
EndNote Polat B (March 1, 2021) Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology 45 1 125–137.
IEEE B. Polat, “Reduction of some insecticide residues from grapes with washing treatments”, TED, vol. 45, no. 1, pp. 125–137, 2021, doi: 10.16970/entoted.843754.
ISNAD Polat, Burak. “Reduction of Some Insecticide Residues from Grapes With Washing Treatments”. Turkish Journal of Entomology 45/1 (March 2021), 125-137. https://doi.org/10.16970/entoted.843754.
JAMA Polat B. Reduction of some insecticide residues from grapes with washing treatments. TED. 2021;45:125–137.
MLA Polat, Burak. “Reduction of Some Insecticide Residues from Grapes With Washing Treatments”. Turkish Journal of Entomology, vol. 45, no. 1, 2021, pp. 125-37, doi:10.16970/entoted.843754.
Vancouver Polat B. Reduction of some insecticide residues from grapes with washing treatments. TED. 2021;45(1):125-37.

Cited By