Research Article
BibTex RIS Cite

Investigations on soil nematode diversity in three contrasting habitat types in Bolu, Turkey

Year 2021, , 451 - 461, 15.12.2021
https://doi.org/10.16970/entoted.992662

Abstract

The study investigated nematode diversity in three contrasting habitat types around the Yeniçağa Lake, Bolu Province, Turkey, in 2019 and 2020. The Shannon-Wiener index was used to evaluate nematode diversity in different taxonomic categories (order, family and genus level), trophic group and colonizer-persister (c-p) group in grassland, cropland and peatland in two locations, Hamzabey and Adaköy, in the Yeniçağa Lake Reserve. The results revealed that there was statistically significant variation in the composition of nematode fauna between the study sites by the assessments of the higher taxa whereas genus level and family level lower taxa did not differentiate such variation in Hamzabey and Adaköy. In addition, the variation in nematode diversity in relation to soil types were better reflected by assessing the trophic group structures rather than the c-p groups. The findings indicated that the diversity at higher taxa might serve as a better indicator than the diversity of lower taxa (family and genera) variation among the habitat types of the study areas.

Thanks

This study was a part of a thesis entitled “Research on the terrestrial nematode biodiversity in the powder areas of Bolu Yeniçağa Lake” (no. 663052) in the Council of Higher Education Thesis Center. Authors thank to Nagihan Duman for her valuable contributions throughout the study.

References

  • Bhusal, D. R., A. S. Kallimanis, M. A. Tsiafouli & S. P. Sgardelis, 2014. Higher taxa vs. functional guilds vs. trophic groups as indicators of soil nematode diversity and community structure. Ecological Indicators, 41 (1): 25-29.
  • Boag, B. & G. W. Yeates, 1998. Soil nematode biodiversity in terrestrial ecosystems. Biodiversity & Conservation, 7 (5): 617-630.
  • Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83 (1): 14-19.
  • Bongers, T., 1994. De Nematoden van Nederland. KNNV-bibliotheekuitgave 46. Pirola, Schoorl. The Netherlands, 408 pp.
  • Bongers, T. & M. Bongers, 1998. Functional diversity of nematodes. Applied Soil Ecology, 10 (3): 239-251.
  • Bongers, T., H. van der Meulen & G. Korthals, 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6 (2): 195-199.
  • Bulluck III, L. R., M. Brosius, G. K. Evanylo & J. B. Ristaino, 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19 (2): 147-160.
  • Ferris, H., T. Bongers & R. G. de Goede, 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18 (1): 13-29.
  • Ferris, H., B. S. Griffiths, D. L. Porazinska, T. O. Powers, K. H. Wang & M. Tenuta, 2012. Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 44 (2): 115-126.
  • Ferris, H. & H. Tuomisto, 2015. Unearthing the role of biological diversity in soil health. Soil Biology and Biochemistry, 85 (2): 101-109.
  • Ferris, H., R. C. Venette & K. M. Scow, 2004. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Applied Soil Ecology, 25 (1): 19-35.
  • Fiscus, D. A. & D. A. Neher, 2002. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecological Applications, 12 (2): 565-575.
  • Freckman, D. W. 1988. Bacterivorous nematodes and organic-matter decomposition. Agriculture, Ecosystems & Environment, 24 (1-3): 195-217.
  • Li, X., H. Zhu, S. Geisen, C. Bellard, F. Hu, H. Li, X. Chen & M. Liu, 2020. Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 26 (2): 919-930.
  • McSorley, R. & J. J. Frederick, 1996. Nematode community structure in rows and between rows of a soybean field. Fundamental and Applied Nematology, 19 (3): 251-262.
  • Melakeberhan, H., Z. Maung, I. Lartey, S. Yildiz, J. Gronseth, J. Qi, G. N. Karuku, J. W. Kimenju, C. Kwoseh & T. Adjei-Gyapong, 2021. Nematode community-based soil food web analysis of Ferralsol, Lithosol and Nitosol soil groups in Ghana, Kenya and Malawi reveals distinct soil health degradations. Diversity, 13 (3): 1-19.
  • Mikola, J. & H. Setälä, 1998. No evidence of trophic cascades in an experimental microbial-based soil food web. Ecology, 79 (1): 153-164.
  • Mikola, J. & P. Sulkava, 2001. Responses of microbial-feeding nematodes to organic matter distribution and predation in experimental soil habitat. Soil Biology and Biochemistry, 33 (6): 811-817.
  • Mulder, C., A. J. Schouten, K. Hund-Rinke & A. M. Breure, 2005. The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62 (2): 278-289.
  • Neher, D. A. & M. E. Barbercheck, 1998. “Diversity and Function of Soil Mesofauna, 27-47”. In: Biodiversity in Agroecosystems (Eds. W. W. Collins & C. O. Qualset). CRC Press, Boca Raton, 338 pp.
  • Neher, D. A. & B. J. Darby, 2009. “General Community Indices That Can Be Used for Analysis of Nematode Assemblages, 107-123”. Nematodes as environmental indicators (Eds. M. Wilson & T. Kakouli-Duarte). CABI, Wallingford, UK, 338 pp.
  • Nielsen, U. N., E. Ayres, D. H. Wall, G. Li, R. D. Bardgett, T. Wu & J. R. Garey, 2014. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23 (9): 968-978.
  • Okada, H., H. Harada & I. Kadota, 2005. Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biology and Biochemistry, 37 (6): 1113-1120.
  • Ou, W., W. Liang, Y. Jiang, Q. Li & D. Wen, 2005. Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia, 49 (2): 139-148.
  • Overstreet, L. F., G. D. Hoyt & J. Imbriani, 2010. Comparing nematode and earthworm communities under combinations of conventional and conservation vegetable production practices. Soil and Tillage Research, 110 (1): 42-50.
  • Pen-Mouratov, S., M. Rakhimbaev & Y. Steinberger, 2003. Seasonal and spatial variation in nematode communities in a Negev desert ecosystem. Journal of Nematology, 35 (2): 157-166.
  • Pen-Mouratov, S. & Y. Steinberger, 2005. Spatio-temporal dynamic heterogeneity of nematode abundance in a desert ecosystem. Journal of Nematology, 37 (1): 26-36.
  • Sánchez-Moreno, S., H. Minoshima, H. Ferris & L. E. Jackson, 2006. Linking soil properties and nematode community composition: effects of soil management on soil food webs. Nematology, 8 (5): 703-715.
  • Song, D., K. Pan, A. Tariq, F. Sun, Z. Li, X. Sun, L. Zhanga, O. A. Olusanya & X. Wu, 2017. Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology, 114 (2): 161-169.
  • van Bezooijen, J., 2006. Methods and Techniques for Nematology. Wageningen: Wageningen University, Netherland, 112 pp.
  • van der Putten, W. H. & C. D. van der Stoel, 1998. Plant parasitic nematodes and spatio-temporal variation in natural vegetation. Applied Soil Ecology, 10 (3): 253-262.
  • Wall, J. W., K. R. Skene & R. Neilson, 2002. Nematode community and trophic structure along a sand dune succession. Biology and Fertility of Soils, 35 (4): 293-301.
  • Wardle, D. A., G. W. Yeates, R. N. Watson & K. S. Nicholson, 1995. The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. Plant and Soil, 170 (1): 35-43.
  • Yardirn, E. N. & C. A. Edwards, 1998. The effects of chemical pest, disease and weed management practices on the trophic structure of nematode populations in tomato agroecosystems. Applied Soil Ecology, 7 (2): 137-147.
  • Yeates, G. W., 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37 (4): 199-210.
  • Yeates, G. W. & T. Bongers, 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment, 74 (2): 113-135.
  • Yeates, G. W., T. D. Bongers, R. G. M. De Goede, D. W. Freckman & S. S. Georgieva, 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology, 25 (3): 315-331.
  • Zhao, J. & D. A. Neher, 2013. Soil nematode genera that predict specific types of disturbance. Applied Soil Ecology, 64 (1): 135-141.
  • Zhao, J., F. Wang, J. Li, B. Zou, X. Wang, Z. Li & S. Fu, 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry, 75 (1): 1-10.
  • Zhao, J., C. Zhao, S. Wan, X. Wang, L. Zhou & S. Fu, 2015. Soil nematode assemblages in an acid soil as affected by lime application. Nematology, 17 (2): 179-191.

Bolu İli’nde üç farklı habitat tipinde karasal nematod topluluklarındaki çeşitliliğinin incelenmesi

Year 2021, , 451 - 461, 15.12.2021
https://doi.org/10.16970/entoted.992662

Abstract

Çalışma, 2019 ve 2020 yıllarında Bolu İli’ndeki Yeniçağa Gölü çevresinde üç farklı habitat tipi altında nematod çeşitliliğini incelemiştir. Shannon-Wiener indeksi, Yeniçağa Gölü rezerv alanındaki Hamzabey ve Adaköy lokasyonlarında otlak, tarım arazisi ve turbalık alanlardan üç arazi tipinde farklı taksonomik kategorileri (takım, familya ve cins seviyesi), trofik grup ve kolonizör-persister (c-p) grupları ve nematod çeşitliliğini değerlendirmek için kullanılmıştır. Sonuçlara göre, çalışma sahaları arasında nematod fauna kompozisyonunda, takım seviyesindeki taksonlarda istatistiksel olarak önemli farklılıklar olduğunu, cins seviyesi ve familya seviyesindeki düşük taksonlarda ise Hamzabey ve Adaköy'deki varyasyonları ayırt etmede daha zayıf kaldığı görülmüştür. Ayrıca, toprak tiplerine göre nematod çeşitliliğindeki varyasyonlar, c-p grupları yerine trofik grup yapıları değerlendirildiğinde daha iyi sonuçlar alınmıştır. Bulgular, yüksek taksonlardaki çeşitliliğin daha düşük taksonlara (familya ve cins) göre, çalışma alanındaki habitatlar arası farkın ayırımında daha iyi bir gösterge olabileceğini ortaya koymuştur.

References

  • Bhusal, D. R., A. S. Kallimanis, M. A. Tsiafouli & S. P. Sgardelis, 2014. Higher taxa vs. functional guilds vs. trophic groups as indicators of soil nematode diversity and community structure. Ecological Indicators, 41 (1): 25-29.
  • Boag, B. & G. W. Yeates, 1998. Soil nematode biodiversity in terrestrial ecosystems. Biodiversity & Conservation, 7 (5): 617-630.
  • Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83 (1): 14-19.
  • Bongers, T., 1994. De Nematoden van Nederland. KNNV-bibliotheekuitgave 46. Pirola, Schoorl. The Netherlands, 408 pp.
  • Bongers, T. & M. Bongers, 1998. Functional diversity of nematodes. Applied Soil Ecology, 10 (3): 239-251.
  • Bongers, T., H. van der Meulen & G. Korthals, 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6 (2): 195-199.
  • Bulluck III, L. R., M. Brosius, G. K. Evanylo & J. B. Ristaino, 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19 (2): 147-160.
  • Ferris, H., T. Bongers & R. G. de Goede, 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18 (1): 13-29.
  • Ferris, H., B. S. Griffiths, D. L. Porazinska, T. O. Powers, K. H. Wang & M. Tenuta, 2012. Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 44 (2): 115-126.
  • Ferris, H. & H. Tuomisto, 2015. Unearthing the role of biological diversity in soil health. Soil Biology and Biochemistry, 85 (2): 101-109.
  • Ferris, H., R. C. Venette & K. M. Scow, 2004. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Applied Soil Ecology, 25 (1): 19-35.
  • Fiscus, D. A. & D. A. Neher, 2002. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecological Applications, 12 (2): 565-575.
  • Freckman, D. W. 1988. Bacterivorous nematodes and organic-matter decomposition. Agriculture, Ecosystems & Environment, 24 (1-3): 195-217.
  • Li, X., H. Zhu, S. Geisen, C. Bellard, F. Hu, H. Li, X. Chen & M. Liu, 2020. Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 26 (2): 919-930.
  • McSorley, R. & J. J. Frederick, 1996. Nematode community structure in rows and between rows of a soybean field. Fundamental and Applied Nematology, 19 (3): 251-262.
  • Melakeberhan, H., Z. Maung, I. Lartey, S. Yildiz, J. Gronseth, J. Qi, G. N. Karuku, J. W. Kimenju, C. Kwoseh & T. Adjei-Gyapong, 2021. Nematode community-based soil food web analysis of Ferralsol, Lithosol and Nitosol soil groups in Ghana, Kenya and Malawi reveals distinct soil health degradations. Diversity, 13 (3): 1-19.
  • Mikola, J. & H. Setälä, 1998. No evidence of trophic cascades in an experimental microbial-based soil food web. Ecology, 79 (1): 153-164.
  • Mikola, J. & P. Sulkava, 2001. Responses of microbial-feeding nematodes to organic matter distribution and predation in experimental soil habitat. Soil Biology and Biochemistry, 33 (6): 811-817.
  • Mulder, C., A. J. Schouten, K. Hund-Rinke & A. M. Breure, 2005. The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62 (2): 278-289.
  • Neher, D. A. & M. E. Barbercheck, 1998. “Diversity and Function of Soil Mesofauna, 27-47”. In: Biodiversity in Agroecosystems (Eds. W. W. Collins & C. O. Qualset). CRC Press, Boca Raton, 338 pp.
  • Neher, D. A. & B. J. Darby, 2009. “General Community Indices That Can Be Used for Analysis of Nematode Assemblages, 107-123”. Nematodes as environmental indicators (Eds. M. Wilson & T. Kakouli-Duarte). CABI, Wallingford, UK, 338 pp.
  • Nielsen, U. N., E. Ayres, D. H. Wall, G. Li, R. D. Bardgett, T. Wu & J. R. Garey, 2014. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23 (9): 968-978.
  • Okada, H., H. Harada & I. Kadota, 2005. Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biology and Biochemistry, 37 (6): 1113-1120.
  • Ou, W., W. Liang, Y. Jiang, Q. Li & D. Wen, 2005. Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia, 49 (2): 139-148.
  • Overstreet, L. F., G. D. Hoyt & J. Imbriani, 2010. Comparing nematode and earthworm communities under combinations of conventional and conservation vegetable production practices. Soil and Tillage Research, 110 (1): 42-50.
  • Pen-Mouratov, S., M. Rakhimbaev & Y. Steinberger, 2003. Seasonal and spatial variation in nematode communities in a Negev desert ecosystem. Journal of Nematology, 35 (2): 157-166.
  • Pen-Mouratov, S. & Y. Steinberger, 2005. Spatio-temporal dynamic heterogeneity of nematode abundance in a desert ecosystem. Journal of Nematology, 37 (1): 26-36.
  • Sánchez-Moreno, S., H. Minoshima, H. Ferris & L. E. Jackson, 2006. Linking soil properties and nematode community composition: effects of soil management on soil food webs. Nematology, 8 (5): 703-715.
  • Song, D., K. Pan, A. Tariq, F. Sun, Z. Li, X. Sun, L. Zhanga, O. A. Olusanya & X. Wu, 2017. Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology, 114 (2): 161-169.
  • van Bezooijen, J., 2006. Methods and Techniques for Nematology. Wageningen: Wageningen University, Netherland, 112 pp.
  • van der Putten, W. H. & C. D. van der Stoel, 1998. Plant parasitic nematodes and spatio-temporal variation in natural vegetation. Applied Soil Ecology, 10 (3): 253-262.
  • Wall, J. W., K. R. Skene & R. Neilson, 2002. Nematode community and trophic structure along a sand dune succession. Biology and Fertility of Soils, 35 (4): 293-301.
  • Wardle, D. A., G. W. Yeates, R. N. Watson & K. S. Nicholson, 1995. The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. Plant and Soil, 170 (1): 35-43.
  • Yardirn, E. N. & C. A. Edwards, 1998. The effects of chemical pest, disease and weed management practices on the trophic structure of nematode populations in tomato agroecosystems. Applied Soil Ecology, 7 (2): 137-147.
  • Yeates, G. W., 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37 (4): 199-210.
  • Yeates, G. W. & T. Bongers, 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment, 74 (2): 113-135.
  • Yeates, G. W., T. D. Bongers, R. G. M. De Goede, D. W. Freckman & S. S. Georgieva, 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology, 25 (3): 315-331.
  • Zhao, J. & D. A. Neher, 2013. Soil nematode genera that predict specific types of disturbance. Applied Soil Ecology, 64 (1): 135-141.
  • Zhao, J., F. Wang, J. Li, B. Zou, X. Wang, Z. Li & S. Fu, 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry, 75 (1): 1-10.
  • Zhao, J., C. Zhao, S. Wan, X. Wang, L. Zhou & S. Fu, 2015. Soil nematode assemblages in an acid soil as affected by lime application. Nematology, 17 (2): 179-191.
There are 40 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Şenol Yıldız 0000-0001-7072-0087

Emine Gök This is me 0000-0002-2445-626X

Göksel Özer 0000-0002-3385-2520

Mustafa İmren 0000-0002-7217-9092

Publication Date December 15, 2021
Submission Date September 9, 2021
Acceptance Date December 4, 2021
Published in Issue Year 2021

Cite

APA Yıldız, Ş., Gök, E., Özer, G., İmren, M. (2021). Investigations on soil nematode diversity in three contrasting habitat types in Bolu, Turkey. Turkish Journal of Entomology, 45(4), 451-461. https://doi.org/10.16970/entoted.992662
AMA Yıldız Ş, Gök E, Özer G, İmren M. Investigations on soil nematode diversity in three contrasting habitat types in Bolu, Turkey. TED. December 2021;45(4):451-461. doi:10.16970/entoted.992662
Chicago Yıldız, Şenol, Emine Gök, Göksel Özer, and Mustafa İmren. “Investigations on Soil Nematode Diversity in Three Contrasting Habitat Types in Bolu, Turkey”. Turkish Journal of Entomology 45, no. 4 (December 2021): 451-61. https://doi.org/10.16970/entoted.992662.
EndNote Yıldız Ş, Gök E, Özer G, İmren M (December 1, 2021) Investigations on soil nematode diversity in three contrasting habitat types in Bolu, Turkey. Turkish Journal of Entomology 45 4 451–461.
IEEE Ş. Yıldız, E. Gök, G. Özer, and M. İmren, “Investigations on soil nematode diversity in three contrasting habitat types in Bolu, Turkey”, TED, vol. 45, no. 4, pp. 451–461, 2021, doi: 10.16970/entoted.992662.
ISNAD Yıldız, Şenol et al. “Investigations on Soil Nematode Diversity in Three Contrasting Habitat Types in Bolu, Turkey”. Turkish Journal of Entomology 45/4 (December 2021), 451-461. https://doi.org/10.16970/entoted.992662.
JAMA Yıldız Ş, Gök E, Özer G, İmren M. Investigations on soil nematode diversity in three contrasting habitat types in Bolu, Turkey. TED. 2021;45:451–461.
MLA Yıldız, Şenol et al. “Investigations on Soil Nematode Diversity in Three Contrasting Habitat Types in Bolu, Turkey”. Turkish Journal of Entomology, vol. 45, no. 4, 2021, pp. 451-6, doi:10.16970/entoted.992662.
Vancouver Yıldız Ş, Gök E, Özer G, İmren M. Investigations on soil nematode diversity in three contrasting habitat types in Bolu, Turkey. TED. 2021;45(4):451-6.