Research Article
BibTex RIS Cite

"Mor rengin farklı tonlarında": ticari konsantrasyondaki farklı siyah chokeberry meyve özütü konsantrasyonlarının [Aronia melanocarpa (Michx) Elliott] meyve sineği Drosophila melanogaster Meigen 1830’in hareket özelliği bileşenleri ve kanat morfolojisi üzerindeki etkileri

Year 2019, Volume: 43 Issue: 1, 3 - 16, 01.03.2019
https://doi.org/10.16970/entoted.480766

Abstract

Son yıllarda, meyve ve sebzelerin içindeki biyoaktif bileşiklerin oksidatif stresi düşürdüğü, böylece birçok insan hastalığının riskini azaltan faydalı bir etkiye sahip olduğu yaygın olarak kabul edilmektedir. Mevcut in vivoçalışmanın amacıDrosophila melanogaster Meigen, 1830 larvası kullanılarak Aronia melanocarpa (Michx) Elliott’nın meyve özütünün muhtemel koruyucu etkilerini değerlendirmektir. Çalışma 2016 yılında, Belgrad Üniversitesi, Biyolojik Araştırma Enstitüsü'ndeki, Popülasyon Genetiği ve Ekogenotoksikoloji Bölümü’nde gerçekleştirilmiştir. Uygulamalar ile aynı anda, metil metansülfonat (MMS) ile karıştırılmış aynı konsantrasyondaki siyah chokeberry meyve özütüyle yan uygulamalar yapılmıştır. Hareket özelliği ve morfolojik karakterler izlenmiştir. Konsantre meyve özütünde, MMS + Konsantre meyve özütünde ve yalnızca MMS’de gelişen sinekler, uzun gelişme süresi, daha düşük yaşama gücü sergilemiş ve kanat gelişimi de olumsuz etkilenmiştir. Olumlu biyolojik etkiler %2 ile 25 arası A. melanocarpaözütlü substratlarda gelişen sineklerde gözlenmiştir. Sadece MMS + %25 meyve özütü karışımı, diğer MMS yan uygulamaları ile karşılaştırıldığında hareket bileşenleri ve kanat gelişiminin her ikisinde de tercih edilebilir etkiler göstermiş, bu karışımın MMS tarafından verilen hasara karşı hücreyi koruduğuna işaret etmiştir.

References

  • Anonymous, 1987. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Overall Evaluations of Carcinogenicity. An updating of IARC Monographs Volumes 1 to 42 (Vol. 7): 442 pp.
  • Atanasova-Goranova, V. K., P. I. Dimova & G. T. Pevicharova, 1997. Effect of food products on endogenous generation of N-nitrosamines in rats. British Journal of Nutrition, 78: 335-345.
  • Baena-López, L. A., A. Baonza & A. García-Bellido, 2005. The orientation of cell divisions determines the shape of Drosophila organs. Current Biology, 15: 1640-1644.
  • Bermudez-Soto, M. J., F. A. Tomas-Barberan & M. T. Garcıa-Conesa, 2007. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 102: 865-874.
  • Bjelakovic, G., D. Nikolova, L. L. Gluud, R. G. Simonetti & C. Gluud, 2008. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database of Systematic Reviews, 16: CD007176.
  • Borowska, S. & M. M. Brzóska, 2016. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Comprehensive Reviews in Food Science and Food Safety, 15: 982-1017.
  • Bräunlich, M., R. Slimestad, H. Wangensteen, C. Brede, K. E. Malterud & H. Barsett, 2013. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients, 5: 663-678.
  • Briddle, P. & C. F. Timberlake, 1997. Anthocyanins as natural food colour-selected aspects. Food Chemistry, 58: 103-109.
  • Carreira, V.P., I. M. Soto, J. Mensch & J. J. Fanara, 2011. Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation. BMC Developmental Biology, 11 (32): 1-16.
  • Case, J., D. Agraz, I. M. Ahmad & M. C. Zimmerman, 2016. Low-dose Aronia melanocarpa concentrate attenuates paraquat-induced neurotoxicity. Oxidative Medicine and Cellular Longevity, Volume 2016, ID 5296271: 1-11.
  • Chrubasik, C., G. Li & S. Chrubasik, 2010. The clinical effectiveness of chokeberry: A systematic review. Phytotherapy Research, 24: 1107-1114.
  • de Celis, J. F., 2003. Pattern formation in the Drosophila wing: The development of the veins. Bioassays, 25: 443-451.
  • Dworkin, I. & G. Gibson, 2006. Epidermal growth factor receptor and transforming growth factor- signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics, 173: 1417-1431.
  • Gasiorowski, K., K. Szyba, B. Brokos, B. Kołaczyńska, M. Jankowiak-Włodarczyk & J. Oszmiański, 1997. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Letters, 119: 37-46.
  • Houle, D., D. R. Govindaraju & S. Omholt, 2010. Phenomics: The next challenge. Nature Reviews Genetics, 11: 855-866.
  • Jakobek, L., M. Seruga, M. Medvedovic-Kosanovic & I. Novak, 2007. Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agriculturae Conspectus Scientificus, 72: 301-306.
  • Jo, A.R. & J. Y. Imm, 2017. Effects of aronia extract on lifespan and age-related oxidative stress in Drosophila melanogaster. Food Science and Biotechnology, 26 (5): 1399-1406.
  • Kim, B., C. S. Ku, T. X. Pham, Y. Park, D. A. Martin, L. Xie, R. Taheri, J. Lee & B. W. Bolling, 2013. Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutrition Research, 33: 406-413.
  • Kokotkiewicz, A., Z. Jaremicz & M. Luczkiewicz, 2010. Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. Journal of Medicinal Food, 13: 255-269.
  • Lala, G., M. Malik, C. Zhao, J. He, Y. Kwon, M. M. Giusti & B. A. Magnuson, 2006. Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutrition and Cancer, 54: 84-93.
  • Leopold, P. & N. Perrimon, 2007. Drosophila and the genetics of the internal milieu. Nature, 450: 186-188.
  • Lloyd, T. E. & J. P. Taylor, 2010. Flightless flies: Drosophila models of neuromuscular disease. Annals of the New York Academy of Sciences, 1184: e1-e20.
  • Matsumoto, M., H. Hara, H. Chiji & T. Kasai, 2004. Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. Journal of Agricultural and Food Chemistry, 52: 2226-2229.
  • McGuigan, K., 2009 Condition dependence varies with mating success in male Drosophila bunnanda. Journal of Evolutionary Biology, 22: 1813-1825. Mitchell, I. D., P. J. Gilbert, A. J. Brice & D. J. White, 1981. Somatic eye mutation in Drosophila melanogaster as a short-term test for mutagens and carcinogens. Carcinogenesis, 2: 783-786.
  • Nascimento, J. C., I. B. M. Cruz, L. A. Monjeló & A. K. Oliveira, 2002. Genetic components affecting embryonic developmental time of Drosophila melanogaster. Genetics and Molecular Biology, 25: 157-160.
  • Nikolova, E., S. Valcheva-Kuzmanova, T. Markova, M. Krachanova & P. Denev, 2012. Chemoprotective, antioxidant and immunomodulatory in vitro effects of Aronia melanocarpa total extract on laboratory-cultivated normal and malignant cells. Journal of BioScience and Biotechnology, SE: 35-43.
  • Ohgami, K., I. Ilieva, K. Shiratori, Y. Koyama, X.H. Jin, K. Yoshida, S. Kase, N. Kitaichi, Y. Suzuki, T. Tanaka & S. Ohno, 2005. Antiinflammatory effects of Aronia extract on rat endotoxin-induced uveitis. Investigative Ophthalmology and Visual Science, 46: 275-281.
  • Owusu-Ansah, E. & N. Perrimon, 2014. Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Disease Models and Mechanisms, 7: 343-350.
  • Palsson, A. & G. Gibson, 2004. Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster. Genetics, 167: 1187-1198.
  • Poljsak, B., D. Šuput & I. Milisav, 2013. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, Volume 2013, ID 956792: 1-11.
  • Puupponen-Pimiä, R., L. Nohynek, H. L. Alakomi & K. M. Oksman-Caldentey, 2005. Bioactive berry compounds-novel tools against human pathogens. Applied Microbiology and Biotechnology, 67: 8-18.
  • Reiter, L. T., L. Potocki, S. Chien, M. Gribskov & E. A. Bier, 2001. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11: 1114-1125.
  • Santrucek, M. & J. Krepdka, 1988. Antioxidants - potential chemotherapeutic agents. Drugs of the Future, 13 (10): 974-996. Sharif, T., M. Stambouli, B. Burrus, F. Emhemmed, I. Dandache, C. Auger, N. Etienne-Selloumet, V. B. Schini-Kerth & G. Fuhrmann, 2013. The polyphenolic-rich Aronia melanocarpa juice kills teratocarcinomal cancer stem-like cells, but not their differentiated counterparts. Journal of Functional Foods, 5: 1244-1252.
  • Shingleton, A. W., 2010. The regulation of organ size in Drosophila physiology, plasticity, patterning and physical force. Organogenesis, 6: 76-87.
  • Sidhu, J. S. & T. A. Zafar, 2012. “Super Fruits: Pomegranate, Wolfberry, Aronia (Chokeberry), Acai, Noni and Amla, 653-679”. In: Handbook of Fruits and Fruit Processing (Eds. N. K. Sinha, J. S. Sidhu, J. Barta, J. S. B. Wu & M. Pilar Cano). 2nd Ed.: Wiley-Blackwell, A John Wiley & Sons, Ltd., Publication, UK, 694 pp.
  • Simeonov, S. B., N. P. Botushanov, E. B. Karahanian, M. B. Pavlova, H. K. Husianitis & D. M. Troev, 2002. Effects of Aronia melanocarpa juice as part of the dietary regimen in patients with diabetes mellitus. Folia Medica, 44: 20-23.
  • Slimestad, R., K. Torskangerpoll, H. S. Nateland, T. Johannessen & N. H. Giske, 2005, Flavonoids from black chokeberries, Aronia melanocarpa. Journal of Food Composition and Analysis, 18: 61-68.
  • Surh, Y. J., 2003. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3: 768-780.
  • Takahashi, K. H. & W. U. Blanckenhorn, 2015. Effect of genomic deficiencies on sexual size dimorphism through modification of developmental time in Drosophila melanogaster. Heredity, 115: 140-145.
  • Testa, N. D., S. M. Ghosh & A. W. Shingleton, 2013. Sex-specific weight loss mediates sexual size dimorphism in Drosophila melanogaster. PLoS ONE, 8: e58936.
  • Tomić, M., Đ. Ignjatović, G. Tovilović-Kovačević, D. Krstić-Milošević, S. Ranković, T. Popović & M. Glibetić, 2016. Reduction of anxiety-like and depression-like behaviors in rats after one month of drinking Aronia melanocarpa berry juice. Food and Function, 7: 3111-3120.
  • Trajković, J., S. Pavković-Lučić & T. Savić, 2013. Mating success and wing morphometry in Drosophila melanogaster after long-term rearing on different diets. Behaviour, 150: 1431-1448.
  • Trotta, V., S. Cavicchi, D. Guerra, H. Ditte, D. H. Andersen, G. A. Babbitt, N. K. Torsten, K. S. Pedersen, V. Loeschcke & C. Pertoldi, 2011. Allometric and non-allometric consequences of inbreeding on Drosophila melanogaster wings. Biological Journal of the Linnean Society, 102: 626-634.
  • Valcheva-Kuzmanova, S., P. Borisova, B. Galunska, I. Krasnaliev & A. Belcheva, 2004. Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats. Experimental and Toxicologic Pathology, 56: 195-201.
  • Valcheva-Kuzmanova, S., K. Kuzmanov, S. Tancheva & A. Belcheva, 2007. Hypoglycemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats. Methods and Findings in Experimental and Clinical Pharmacology, 29: 101-105.
  • Valcheva-Kuzmanova, S., K. Marazova, I. Krasnaliev, B. Galunska, P. Borisova & A. Belcheva, 2005. Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats. Experimental and Toxicologic Pathology, 56: 385-392.
  • Valcheva-Kuzmanova, S. & M. Zhelyazkova-Savova, 2009. Anxiolytic-like effect of Aronia melanocarpa fruit juice in rats. Methods and Findings in Experimental and Clinical Pharmacology, 31: 651-654.
  • Zafra-Stone, S., T. Yasmin, M. Bagchi, A. Chatterjee, J. A. Vinson & D. Bagchi, 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition and Food Research, 51: 675-683.
  • Zar, J. H., 1999. Biostatistical Analysis. 4th Ed. Prentice Hall, New Jersey, 469 pp.

"In different shades of purple": effects of different concentrations of commercial black chokeberry fruit extract [Aronia melanocarpa (Michx) Elliott] on fitness components and wing morphology of the fruit fly, Drosophila melanogaster Meigen, 1830

Year 2019, Volume: 43 Issue: 1, 3 - 16, 01.03.2019
https://doi.org/10.16970/entoted.480766

Abstract

It is now widely accepted that bioactive compounds of fruits and vegetables reduce oxidative stress, thus having the beneficial effect of decreasing the risk of many human diseases. The aim of this in vivostudy was to evaluate the possible protective effects of Aronia melanocarpa(Michx) Elliott fruit extract using Drosophila melanogasterMeigen, 1830 larvae. Study was done in the year 2016, in Department of Genetics of Populations and Ecogenotoxicology at the Institute for Biological Research, University of Belgrade. Simultaneously with treatments, co-treatments with the same concentrations of black chokeberry fruit extract mixed with a methyl methanesulfonate (MMS) were performed. Fitness traits and morphological characters were monitored.Flies fed on undiluted fruit extract, on MMS + undiluted fruit extract and on MMS, exhibited a prolonged developmental time, lower viability and negatively-impacted wing development. Positive biological effects were observed in flies that developed on substrates with 2 and 25% A. melanocarpaextract. Only a mixture of MMS + 25% fruit extract showed positive effects on both fitness components and wing development in comparisonwith other MMS co-treatments, indicating the ability of this concentration to protect the cells from MMS-induced damage.

References

  • Anonymous, 1987. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Overall Evaluations of Carcinogenicity. An updating of IARC Monographs Volumes 1 to 42 (Vol. 7): 442 pp.
  • Atanasova-Goranova, V. K., P. I. Dimova & G. T. Pevicharova, 1997. Effect of food products on endogenous generation of N-nitrosamines in rats. British Journal of Nutrition, 78: 335-345.
  • Baena-López, L. A., A. Baonza & A. García-Bellido, 2005. The orientation of cell divisions determines the shape of Drosophila organs. Current Biology, 15: 1640-1644.
  • Bermudez-Soto, M. J., F. A. Tomas-Barberan & M. T. Garcıa-Conesa, 2007. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 102: 865-874.
  • Bjelakovic, G., D. Nikolova, L. L. Gluud, R. G. Simonetti & C. Gluud, 2008. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database of Systematic Reviews, 16: CD007176.
  • Borowska, S. & M. M. Brzóska, 2016. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Comprehensive Reviews in Food Science and Food Safety, 15: 982-1017.
  • Bräunlich, M., R. Slimestad, H. Wangensteen, C. Brede, K. E. Malterud & H. Barsett, 2013. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients, 5: 663-678.
  • Briddle, P. & C. F. Timberlake, 1997. Anthocyanins as natural food colour-selected aspects. Food Chemistry, 58: 103-109.
  • Carreira, V.P., I. M. Soto, J. Mensch & J. J. Fanara, 2011. Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation. BMC Developmental Biology, 11 (32): 1-16.
  • Case, J., D. Agraz, I. M. Ahmad & M. C. Zimmerman, 2016. Low-dose Aronia melanocarpa concentrate attenuates paraquat-induced neurotoxicity. Oxidative Medicine and Cellular Longevity, Volume 2016, ID 5296271: 1-11.
  • Chrubasik, C., G. Li & S. Chrubasik, 2010. The clinical effectiveness of chokeberry: A systematic review. Phytotherapy Research, 24: 1107-1114.
  • de Celis, J. F., 2003. Pattern formation in the Drosophila wing: The development of the veins. Bioassays, 25: 443-451.
  • Dworkin, I. & G. Gibson, 2006. Epidermal growth factor receptor and transforming growth factor- signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics, 173: 1417-1431.
  • Gasiorowski, K., K. Szyba, B. Brokos, B. Kołaczyńska, M. Jankowiak-Włodarczyk & J. Oszmiański, 1997. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Letters, 119: 37-46.
  • Houle, D., D. R. Govindaraju & S. Omholt, 2010. Phenomics: The next challenge. Nature Reviews Genetics, 11: 855-866.
  • Jakobek, L., M. Seruga, M. Medvedovic-Kosanovic & I. Novak, 2007. Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agriculturae Conspectus Scientificus, 72: 301-306.
  • Jo, A.R. & J. Y. Imm, 2017. Effects of aronia extract on lifespan and age-related oxidative stress in Drosophila melanogaster. Food Science and Biotechnology, 26 (5): 1399-1406.
  • Kim, B., C. S. Ku, T. X. Pham, Y. Park, D. A. Martin, L. Xie, R. Taheri, J. Lee & B. W. Bolling, 2013. Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice. Nutrition Research, 33: 406-413.
  • Kokotkiewicz, A., Z. Jaremicz & M. Luczkiewicz, 2010. Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. Journal of Medicinal Food, 13: 255-269.
  • Lala, G., M. Malik, C. Zhao, J. He, Y. Kwon, M. M. Giusti & B. A. Magnuson, 2006. Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutrition and Cancer, 54: 84-93.
  • Leopold, P. & N. Perrimon, 2007. Drosophila and the genetics of the internal milieu. Nature, 450: 186-188.
  • Lloyd, T. E. & J. P. Taylor, 2010. Flightless flies: Drosophila models of neuromuscular disease. Annals of the New York Academy of Sciences, 1184: e1-e20.
  • Matsumoto, M., H. Hara, H. Chiji & T. Kasai, 2004. Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. Journal of Agricultural and Food Chemistry, 52: 2226-2229.
  • McGuigan, K., 2009 Condition dependence varies with mating success in male Drosophila bunnanda. Journal of Evolutionary Biology, 22: 1813-1825. Mitchell, I. D., P. J. Gilbert, A. J. Brice & D. J. White, 1981. Somatic eye mutation in Drosophila melanogaster as a short-term test for mutagens and carcinogens. Carcinogenesis, 2: 783-786.
  • Nascimento, J. C., I. B. M. Cruz, L. A. Monjeló & A. K. Oliveira, 2002. Genetic components affecting embryonic developmental time of Drosophila melanogaster. Genetics and Molecular Biology, 25: 157-160.
  • Nikolova, E., S. Valcheva-Kuzmanova, T. Markova, M. Krachanova & P. Denev, 2012. Chemoprotective, antioxidant and immunomodulatory in vitro effects of Aronia melanocarpa total extract on laboratory-cultivated normal and malignant cells. Journal of BioScience and Biotechnology, SE: 35-43.
  • Ohgami, K., I. Ilieva, K. Shiratori, Y. Koyama, X.H. Jin, K. Yoshida, S. Kase, N. Kitaichi, Y. Suzuki, T. Tanaka & S. Ohno, 2005. Antiinflammatory effects of Aronia extract on rat endotoxin-induced uveitis. Investigative Ophthalmology and Visual Science, 46: 275-281.
  • Owusu-Ansah, E. & N. Perrimon, 2014. Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Disease Models and Mechanisms, 7: 343-350.
  • Palsson, A. & G. Gibson, 2004. Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster. Genetics, 167: 1187-1198.
  • Poljsak, B., D. Šuput & I. Milisav, 2013. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, Volume 2013, ID 956792: 1-11.
  • Puupponen-Pimiä, R., L. Nohynek, H. L. Alakomi & K. M. Oksman-Caldentey, 2005. Bioactive berry compounds-novel tools against human pathogens. Applied Microbiology and Biotechnology, 67: 8-18.
  • Reiter, L. T., L. Potocki, S. Chien, M. Gribskov & E. A. Bier, 2001. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11: 1114-1125.
  • Santrucek, M. & J. Krepdka, 1988. Antioxidants - potential chemotherapeutic agents. Drugs of the Future, 13 (10): 974-996. Sharif, T., M. Stambouli, B. Burrus, F. Emhemmed, I. Dandache, C. Auger, N. Etienne-Selloumet, V. B. Schini-Kerth & G. Fuhrmann, 2013. The polyphenolic-rich Aronia melanocarpa juice kills teratocarcinomal cancer stem-like cells, but not their differentiated counterparts. Journal of Functional Foods, 5: 1244-1252.
  • Shingleton, A. W., 2010. The regulation of organ size in Drosophila physiology, plasticity, patterning and physical force. Organogenesis, 6: 76-87.
  • Sidhu, J. S. & T. A. Zafar, 2012. “Super Fruits: Pomegranate, Wolfberry, Aronia (Chokeberry), Acai, Noni and Amla, 653-679”. In: Handbook of Fruits and Fruit Processing (Eds. N. K. Sinha, J. S. Sidhu, J. Barta, J. S. B. Wu & M. Pilar Cano). 2nd Ed.: Wiley-Blackwell, A John Wiley & Sons, Ltd., Publication, UK, 694 pp.
  • Simeonov, S. B., N. P. Botushanov, E. B. Karahanian, M. B. Pavlova, H. K. Husianitis & D. M. Troev, 2002. Effects of Aronia melanocarpa juice as part of the dietary regimen in patients with diabetes mellitus. Folia Medica, 44: 20-23.
  • Slimestad, R., K. Torskangerpoll, H. S. Nateland, T. Johannessen & N. H. Giske, 2005, Flavonoids from black chokeberries, Aronia melanocarpa. Journal of Food Composition and Analysis, 18: 61-68.
  • Surh, Y. J., 2003. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3: 768-780.
  • Takahashi, K. H. & W. U. Blanckenhorn, 2015. Effect of genomic deficiencies on sexual size dimorphism through modification of developmental time in Drosophila melanogaster. Heredity, 115: 140-145.
  • Testa, N. D., S. M. Ghosh & A. W. Shingleton, 2013. Sex-specific weight loss mediates sexual size dimorphism in Drosophila melanogaster. PLoS ONE, 8: e58936.
  • Tomić, M., Đ. Ignjatović, G. Tovilović-Kovačević, D. Krstić-Milošević, S. Ranković, T. Popović & M. Glibetić, 2016. Reduction of anxiety-like and depression-like behaviors in rats after one month of drinking Aronia melanocarpa berry juice. Food and Function, 7: 3111-3120.
  • Trajković, J., S. Pavković-Lučić & T. Savić, 2013. Mating success and wing morphometry in Drosophila melanogaster after long-term rearing on different diets. Behaviour, 150: 1431-1448.
  • Trotta, V., S. Cavicchi, D. Guerra, H. Ditte, D. H. Andersen, G. A. Babbitt, N. K. Torsten, K. S. Pedersen, V. Loeschcke & C. Pertoldi, 2011. Allometric and non-allometric consequences of inbreeding on Drosophila melanogaster wings. Biological Journal of the Linnean Society, 102: 626-634.
  • Valcheva-Kuzmanova, S., P. Borisova, B. Galunska, I. Krasnaliev & A. Belcheva, 2004. Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats. Experimental and Toxicologic Pathology, 56: 195-201.
  • Valcheva-Kuzmanova, S., K. Kuzmanov, S. Tancheva & A. Belcheva, 2007. Hypoglycemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats. Methods and Findings in Experimental and Clinical Pharmacology, 29: 101-105.
  • Valcheva-Kuzmanova, S., K. Marazova, I. Krasnaliev, B. Galunska, P. Borisova & A. Belcheva, 2005. Effect of Aronia melanocarpa fruit juice on indomethacin-induced gastric mucosal damage and oxidative stress in rats. Experimental and Toxicologic Pathology, 56: 385-392.
  • Valcheva-Kuzmanova, S. & M. Zhelyazkova-Savova, 2009. Anxiolytic-like effect of Aronia melanocarpa fruit juice in rats. Methods and Findings in Experimental and Clinical Pharmacology, 31: 651-654.
  • Zafra-Stone, S., T. Yasmin, M. Bagchi, A. Chatterjee, J. A. Vinson & D. Bagchi, 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition and Food Research, 51: 675-683.
  • Zar, J. H., 1999. Biostatistical Analysis. 4th Ed. Prentice Hall, New Jersey, 469 pp.
There are 49 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tatjana Savić 0000-0002-3707-034X

Gordana Radivojević This is me

Jelena Trajković This is me 0000-0002-3906-7785

Nataša Bajalović This is me

Luka Lučić This is me

Dragana Miličić This is me 0000-0002-6034-5145

Vladimir Tomić This is me

Slobodan Makarov This is me

Sonja Duletić-laušević This is me

Sofija Pavković-lučić This is me 0000-0003-2415-7160

Publication Date March 1, 2019
Submission Date November 9, 2018
Acceptance Date January 19, 2019
Published in Issue Year 2019 Volume: 43 Issue: 1

Cite

APA Savić, T., Radivojević, G., Trajković, J., Bajalović, N., et al. (2019). "In different shades of purple": effects of different concentrations of commercial black chokeberry fruit extract [Aronia melanocarpa (Michx) Elliott] on fitness components and wing morphology of the fruit fly, Drosophila melanogaster Meigen, 1830. Turkish Journal of Entomology, 43(1), 3-16. https://doi.org/10.16970/entoted.480766
AMA Savić T, Radivojević G, Trajković J, Bajalović N, Lučić L, Miličić D, Tomić V, Makarov S, Duletić-laušević S, Pavković-lučić S. "In different shades of purple": effects of different concentrations of commercial black chokeberry fruit extract [Aronia melanocarpa (Michx) Elliott] on fitness components and wing morphology of the fruit fly, Drosophila melanogaster Meigen, 1830. TED. March 2019;43(1):3-16. doi:10.16970/entoted.480766
Chicago Savić, Tatjana, Gordana Radivojević, Jelena Trajković, Nataša Bajalović, Luka Lučić, Dragana Miličić, Vladimir Tomić, Slobodan Makarov, Sonja Duletić-laušević, and Sofija Pavković-lučić. “‘In Different Shades of purple’: Effects of Different Concentrations of Commercial Black Chokeberry Fruit Extract [Aronia Melanocarpa (Michx) Elliott] on Fitness Components and Wing Morphology of the Fruit Fly, Drosophila Melanogaster Meigen, 1830”. Turkish Journal of Entomology 43, no. 1 (March 2019): 3-16. https://doi.org/10.16970/entoted.480766.
EndNote Savić T, Radivojević G, Trajković J, Bajalović N, Lučić L, Miličić D, Tomić V, Makarov S, Duletić-laušević S, Pavković-lučić S (March 1, 2019) "In different shades of purple": effects of different concentrations of commercial black chokeberry fruit extract [Aronia melanocarpa (Michx) Elliott] on fitness components and wing morphology of the fruit fly, Drosophila melanogaster Meigen, 1830. Turkish Journal of Entomology 43 1 3–16.
IEEE T. Savić, “‘In different shades of purple’: effects of different concentrations of commercial black chokeberry fruit extract [Aronia melanocarpa (Michx) Elliott] on fitness components and wing morphology of the fruit fly, Drosophila melanogaster Meigen, 1830”, TED, vol. 43, no. 1, pp. 3–16, 2019, doi: 10.16970/entoted.480766.
ISNAD Savić, Tatjana et al. “‘In Different Shades of purple’: Effects of Different Concentrations of Commercial Black Chokeberry Fruit Extract [Aronia Melanocarpa (Michx) Elliott] on Fitness Components and Wing Morphology of the Fruit Fly, Drosophila Melanogaster Meigen, 1830”. Turkish Journal of Entomology 43/1 (March 2019), 3-16. https://doi.org/10.16970/entoted.480766.
JAMA Savić T, Radivojević G, Trajković J, Bajalović N, Lučić L, Miličić D, Tomić V, Makarov S, Duletić-laušević S, Pavković-lučić S. "In different shades of purple": effects of different concentrations of commercial black chokeberry fruit extract [Aronia melanocarpa (Michx) Elliott] on fitness components and wing morphology of the fruit fly, Drosophila melanogaster Meigen, 1830. TED. 2019;43:3–16.
MLA Savić, Tatjana et al. “‘In Different Shades of purple’: Effects of Different Concentrations of Commercial Black Chokeberry Fruit Extract [Aronia Melanocarpa (Michx) Elliott] on Fitness Components and Wing Morphology of the Fruit Fly, Drosophila Melanogaster Meigen, 1830”. Turkish Journal of Entomology, vol. 43, no. 1, 2019, pp. 3-16, doi:10.16970/entoted.480766.
Vancouver Savić T, Radivojević G, Trajković J, Bajalović N, Lučić L, Miličić D, Tomić V, Makarov S, Duletić-laušević S, Pavković-lučić S. "In different shades of purple": effects of different concentrations of commercial black chokeberry fruit extract [Aronia melanocarpa (Michx) Elliott] on fitness components and wing morphology of the fruit fly, Drosophila melanogaster Meigen, 1830. TED. 2019;43(1):3-16.