BibTex RIS Cite

Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) erginlerinin yağ asidi kompozisyonundaki mevsimsel değişimler

Year 2010, Volume: 34 Issue: 1, 15 - 27, 01.02.2010

Abstract

References

  • Baldus, T. J. & J. A. Mutchmor, 1988. The effect of temperature acclimation on the fatty acid composition of the nerve cord and fat body of the American cockroach. Periplaneta americana. Comparative Biochemistry and Physiology, 89: 141- 147.
  • Bashan, M. & O. Cakmak, 2005. Changes in phosholipid and triacylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Annals of the Entomological Society of America, 98 (4): 575-579.
  • Bashan, M., H. Akbas & K. Yurdakoc, 2002. Phospholipid and triacylglycerol fatty acid composition of major life stage of sunn pest Eurygaster integriceps (Heteroptera: Scutelleridae). Comparative Biochemistry and Physiology, 132 (2): 375-380.
  • Bennett, V. A., N. L. Pruitt & R. E. Lee, 1997. Seasonal changes in fatty acid composition associated with coldhardening in third instar larvae of Eurosta solidaginis. Journal of Comperative Physiology B, 167: 249-255.
  • Blingh, E. G. & W. J. Dyer, 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physololgy, 37: 911-917.
  • Candan, S. & Z. Suludere, 2001. Chrionic structure of eggs with parasites and normal of Rhaphigaster nebulosa (Poda, 1761) (Hetroptera: Pentatomidae). Turkish Journal of Entomology, 25 (1): 41-48.
  • Cakmak, O., M. Bashan & E. Kocak, 2008. The influence of life-cycle on phospholipid and triacylglycerol fatty acid profiles of Aelia rostrata Boheman (Heteroptera: Pentatomidae). Journal of Kansas Entomological Society, 81 (3): 261-275.
  • Cakmak, O., M. Bashan & H. Bolu, 2005. Fatty acid composition in phospholipid and triacylglycerol fractions of Monosteira lobulifera Reut (Heteroptera: Tingidae). International Science and Engineering Journal, 17 (4): 637-643.
  • Cakmak, O., M. Bashan & H. Bolu, 2007. The fatty acid compositions of predator Piecoris luridus (Heteroptera: Lygaidea) and its host Monosteria unicostata (Heteroptera: Tingidae) reared on almond. Insect Science, 14: 461-466.
  • Cossins, A. R, 1983. “The adaptation of biological membrane structure and function to changes in temperature, 3-31”. In: Cellular Acclimatisation to Environmental Change (Eds. A. R. Cossins & P. Sheterline). Cambridge University Press, Cambridge, 376 pp.
  • Cripps, C., G. Blomquist & M. de Renobales, 1986. De novo biosynthesis of linoleic acid in insects. Biochimica et Biophysica Acta, 876: 572–580.
  • Denlinger, D. L., 1991. “Relationship between cold hardiness and diapause, 174-198”. In: Insects at Low Temperature (Eds. R.E. Lee & D. L. Denlinger). Chapman and Hall, New York, 423 pp.
  • Hazel, J. R., 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology, 57: 19-42.
  • Hodková, M., P. Simek, H. A. Zahradnícková & O. Nováková, 1999. Seasonal changes in the phospholipid composition in thoracic muscles of a heteropteran, Pyrrhocoris apterus. Insect Biochemistry and Molecular Biology, 29: 367-376.
  • Hsieh, S. L. & C. M. Kuo, 2005. Stearoly-CoA desaturase expression and fatty acid composition in milkfish (Chanos chanos) and grass carp (Ctenopharyngodon idella) during cold acclimation. Comparative Biochemistry and Physiology B, 141: 95–101.
  • Joanisse, D. R. & K. B. Storey, 1996. Fatty acid content and enzymes of fatty acid metabolism in over wintering cold-hardy gall insects. Physiological Zoology, 69: 1079-1095.
  • Khani, A., S. Moharramipour, B. Barzegar & H. Naderi-Manesh, 2007. Comparison of fatty acid composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae). Insect Science, 14: 125-131.
  • Kostal, V., P. Berkova & P. Simek, 2003. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology B, 135: 407-419.
  • Michaud, R. M. & D. L. Denlinger, 2006. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 52: 1073-1082.
  • Ohtsu, T., M. T. Kimura & C. Katagiri, 1998. How Drosophila species acquire cold tolerance: qualitative changes of phospholipids. European Journal of Biochemistry, 252: 608-611.
  • Overgaard, J., J. G. Sorensen, S. O. Petersen, V. Loeschcke & M. Holmstrup, 2005. Changes in membrane lipid composition following rapid cold hardening in Drosphila melanogaster. Journal of Insect Physiology, 51: 1173–1182.
  • Sinensky, M., 1974. Homeoviseous adaptation a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 71: 522-525.
  • Spike, B. P., R. J. Wright, S. D. Danielson & D. W. Stanley-Samuelson, 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta: Hemiptera: Lygaeîdae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology B, 99: 799-802.
  • Stanley-Samuelson, D. W., R. A. Jurenka, C. Cripps, G. J. Blomquist & M. de Renobales, 1988. Fatty acids in insect composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9: 1-33.
  • Stanley-Samuelson, D. W., T. O'Dell, C. L. Ogg & M. A. Keena, 1992. Polyunsaturated
  • fatty acid metabolism inferred from fatty acid compositions of the diets and
  • tissues of the gypsy moth Lymantria dispar. Comparative Biochemistry and
  • Physiology A, 102: 173-178.
  • Starling, A. P., J. M. East & A. G. Lee, 1993. Effects of phosphatidylcholine fatty acyl chain length on calcium binding and other functions of the (Ca2+–Mg2+)-ATPase. Biochemistry, 32: 1593–1600. SON SAYFA

Seasonal changes in fatty acid composition of Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) adults

Year 2010, Volume: 34 Issue: 1, 15 - 27, 01.02.2010

Abstract

The goal of the study was to investigate the role of phospholipid and triacylglycerol fatty acid compositional changes in Eysarcoris inconspicuous (HerrichSchaffer, 1844) (Heteroptera: Pentatomidae) with respect to seasonal changes. E. inconspicuous adults were collected from Diyarbakır, Turkey in 2007-2008. The fatty acid compositions of phospholipid and triacylglycerol fractions that were extracted from whole-body of adult E. inconspicuous were isolated and analyzed using gas chromatography and gas chromatography-mass spectrometry. Qualitative analysis has revealed the presence of 15 fatty acids during most of the months. The major components were C16 and C18 saturated and unsaturated components which are ubiquitous in most animal species. In addition to these components, three odd-chain (C13:0), (C15:0), (C17:0), and prostaglandin precursor fatty acids were found. The fatty acid profiles of phospholipids and triacylglycerols have some diferences. In contrast to triacylglycerol fraction, linolenic acid and C20 polyunsaturated fatty acids increased during autumn and winter in phospholipid fraction were detected. The unsaturated fatty acid to saturated fatty acid ratio significantly increased in both fractions but the increase was dramatic in phospholipid fraction during autumn, and reaches its maximum level in january and february, when outdoor temperatures are low. Thus, temperature seems to play an important role in seasonal variation of lipid metabolism of E. inconspicuous. Preventing cellular damage due to low temperatures is a major challenge for insects. These findings indicate that E. inconspicuous can modify its fatty acid composition in response to changes in environmental conditions

References

  • Baldus, T. J. & J. A. Mutchmor, 1988. The effect of temperature acclimation on the fatty acid composition of the nerve cord and fat body of the American cockroach. Periplaneta americana. Comparative Biochemistry and Physiology, 89: 141- 147.
  • Bashan, M. & O. Cakmak, 2005. Changes in phosholipid and triacylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Annals of the Entomological Society of America, 98 (4): 575-579.
  • Bashan, M., H. Akbas & K. Yurdakoc, 2002. Phospholipid and triacylglycerol fatty acid composition of major life stage of sunn pest Eurygaster integriceps (Heteroptera: Scutelleridae). Comparative Biochemistry and Physiology, 132 (2): 375-380.
  • Bennett, V. A., N. L. Pruitt & R. E. Lee, 1997. Seasonal changes in fatty acid composition associated with coldhardening in third instar larvae of Eurosta solidaginis. Journal of Comperative Physiology B, 167: 249-255.
  • Blingh, E. G. & W. J. Dyer, 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physololgy, 37: 911-917.
  • Candan, S. & Z. Suludere, 2001. Chrionic structure of eggs with parasites and normal of Rhaphigaster nebulosa (Poda, 1761) (Hetroptera: Pentatomidae). Turkish Journal of Entomology, 25 (1): 41-48.
  • Cakmak, O., M. Bashan & E. Kocak, 2008. The influence of life-cycle on phospholipid and triacylglycerol fatty acid profiles of Aelia rostrata Boheman (Heteroptera: Pentatomidae). Journal of Kansas Entomological Society, 81 (3): 261-275.
  • Cakmak, O., M. Bashan & H. Bolu, 2005. Fatty acid composition in phospholipid and triacylglycerol fractions of Monosteira lobulifera Reut (Heteroptera: Tingidae). International Science and Engineering Journal, 17 (4): 637-643.
  • Cakmak, O., M. Bashan & H. Bolu, 2007. The fatty acid compositions of predator Piecoris luridus (Heteroptera: Lygaidea) and its host Monosteria unicostata (Heteroptera: Tingidae) reared on almond. Insect Science, 14: 461-466.
  • Cossins, A. R, 1983. “The adaptation of biological membrane structure and function to changes in temperature, 3-31”. In: Cellular Acclimatisation to Environmental Change (Eds. A. R. Cossins & P. Sheterline). Cambridge University Press, Cambridge, 376 pp.
  • Cripps, C., G. Blomquist & M. de Renobales, 1986. De novo biosynthesis of linoleic acid in insects. Biochimica et Biophysica Acta, 876: 572–580.
  • Denlinger, D. L., 1991. “Relationship between cold hardiness and diapause, 174-198”. In: Insects at Low Temperature (Eds. R.E. Lee & D. L. Denlinger). Chapman and Hall, New York, 423 pp.
  • Hazel, J. R., 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology, 57: 19-42.
  • Hodková, M., P. Simek, H. A. Zahradnícková & O. Nováková, 1999. Seasonal changes in the phospholipid composition in thoracic muscles of a heteropteran, Pyrrhocoris apterus. Insect Biochemistry and Molecular Biology, 29: 367-376.
  • Hsieh, S. L. & C. M. Kuo, 2005. Stearoly-CoA desaturase expression and fatty acid composition in milkfish (Chanos chanos) and grass carp (Ctenopharyngodon idella) during cold acclimation. Comparative Biochemistry and Physiology B, 141: 95–101.
  • Joanisse, D. R. & K. B. Storey, 1996. Fatty acid content and enzymes of fatty acid metabolism in over wintering cold-hardy gall insects. Physiological Zoology, 69: 1079-1095.
  • Khani, A., S. Moharramipour, B. Barzegar & H. Naderi-Manesh, 2007. Comparison of fatty acid composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae). Insect Science, 14: 125-131.
  • Kostal, V., P. Berkova & P. Simek, 2003. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology B, 135: 407-419.
  • Michaud, R. M. & D. L. Denlinger, 2006. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 52: 1073-1082.
  • Ohtsu, T., M. T. Kimura & C. Katagiri, 1998. How Drosophila species acquire cold tolerance: qualitative changes of phospholipids. European Journal of Biochemistry, 252: 608-611.
  • Overgaard, J., J. G. Sorensen, S. O. Petersen, V. Loeschcke & M. Holmstrup, 2005. Changes in membrane lipid composition following rapid cold hardening in Drosphila melanogaster. Journal of Insect Physiology, 51: 1173–1182.
  • Sinensky, M., 1974. Homeoviseous adaptation a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 71: 522-525.
  • Spike, B. P., R. J. Wright, S. D. Danielson & D. W. Stanley-Samuelson, 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta: Hemiptera: Lygaeîdae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology B, 99: 799-802.
  • Stanley-Samuelson, D. W., R. A. Jurenka, C. Cripps, G. J. Blomquist & M. de Renobales, 1988. Fatty acids in insect composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9: 1-33.
  • Stanley-Samuelson, D. W., T. O'Dell, C. L. Ogg & M. A. Keena, 1992. Polyunsaturated
  • fatty acid metabolism inferred from fatty acid compositions of the diets and
  • tissues of the gypsy moth Lymantria dispar. Comparative Biochemistry and
  • Physiology A, 102: 173-178.
  • Starling, A. P., J. M. East & A. G. Lee, 1993. Effects of phosphatidylcholine fatty acyl chain length on calcium binding and other functions of the (Ca2+–Mg2+)-ATPase. Biochemistry, 32: 1593–1600. SON SAYFA
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Özlem Çakmak This is me

Publication Date February 1, 2010
Submission Date February 8, 2014
Published in Issue Year 2010 Volume: 34 Issue: 1

Cite

APA Çakmak, Ö. . (2010). Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) erginlerinin yağ asidi kompozisyonundaki mevsimsel değişimler. Turkish Journal of Entomology, 34(1), 15-27.
AMA Çakmak Ö. Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) erginlerinin yağ asidi kompozisyonundaki mevsimsel değişimler. TED. February 2010;34(1):15-27.
Chicago Çakmak, Özlem. “Eysarcoris Inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) Erginlerinin Yağ Asidi Kompozisyonundaki Mevsimsel değişimler”. Turkish Journal of Entomology 34, no. 1 (February 2010): 15-27.
EndNote Çakmak Ö (February 1, 2010) Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) erginlerinin yağ asidi kompozisyonundaki mevsimsel değişimler. Turkish Journal of Entomology 34 1 15–27.
IEEE Ö. . Çakmak, “Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) erginlerinin yağ asidi kompozisyonundaki mevsimsel değişimler”, TED, vol. 34, no. 1, pp. 15–27, 2010.
ISNAD Çakmak, Özlem. “Eysarcoris Inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) Erginlerinin Yağ Asidi Kompozisyonundaki Mevsimsel değişimler”. Turkish Journal of Entomology 34/1 (February 2010), 15-27.
JAMA Çakmak Ö. Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) erginlerinin yağ asidi kompozisyonundaki mevsimsel değişimler. TED. 2010;34:15–27.
MLA Çakmak, Özlem. “Eysarcoris Inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) Erginlerinin Yağ Asidi Kompozisyonundaki Mevsimsel değişimler”. Turkish Journal of Entomology, vol. 34, no. 1, 2010, pp. 15-27.
Vancouver Çakmak Ö. Eysarcoris inconspicuous (Herrich-Schaffer, 1844) (Heteroptera: Pentatomidae) erginlerinin yağ asidi kompozisyonundaki mevsimsel değişimler. TED. 2010;34(1):15-27.