BibTex RIS Cite

Effect of microwave radiation on stored product pest Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae

Year 2014, Volume: 38 Issue: 2, 135 - 148, 01.04.2014
https://doi.org/10.16970/ted.67061

Abstract

This study was designed to examine the effects of microwave radiation exposure on Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) larvae. One to two day old larvae were exposed to microwave radiation at the powers of 70, 150, 300 and 600 W for different exposure times (1-50 s). Mortality ratio in larvae increased significantly with increasing exposure time at all powers of microwave radiation. Completele mortality was achieved at the power of 70 W and the longest exposure time (50 s) Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) in the larvae tissue were evaluated.. SOD, CAT, GPx activities decreased and MDA level increased in the microwave radiation-treated larvae tissue compared to control group at 300 and 600 W (P < 0.05). There was no significant DNA damage detectable at 70, 150 and 300 W for 50 s when compared with control group. However, 50 s of 600 W powers was showed effects on tail length and tail intensity indicating DNA damage.These results indicate that high powers of microwave radiation treatments cause some effects on the stored product pest E. kuehniella larvae

References

  • Abbott, W., 1925. A Method for Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18: 265-267.
  • Ahmad, S. & R.S. Pardini, 1990. Antioxidant defense of the cabbage looper, Trichoplusia ni: Enzymatic responses to the superoxide generating flavonoid, quercetin, and phododynamic furanocoumarin, xanthotoxin. Photochemistry and Photobiology,15: 305-311
  • Ahmed, M., 2001. Disinfestation of stored grains, pulses, dried fruits and nuts and other dried foods. In: Molins, R.A. (Ed.), Food Irradiation: Principles and Applications. John Wiley and Sons, New York, 77-112.
  • Ayvaz, A., O. Sağdıc, S. Karaborklu & I. Ozturk, 2010. Insecticidal activity of the essential oils from different plants against three stored product insects. Journal of Insect Science, 10: 1–13.
  • Ayvaz, A., S. Albayrak & S. Karaborklu, 2008. Gamma Radiation Sensitivity of the Eggs, Larvae and Pupae of Indian Meal Moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Management Science, 64: 505-512.
  • Azizoglu, U., S. Yılmaz, S. Karaborklu & A. Ayvaz, 2011. Ovicidal Activity of Microwave and UV Radiations on Mediterranean Flour Moth Ephestia kuehniella Zeller, 1879 (Lepidoptera: Pyralidae). Türkiye Entomoloji Dergisi, 35: 437-446.
  • Bulger, E.M. & W.S. Helton, 1998. Nutrient antioxidants in gastrointestinal diseases. Clinical Nutrition, 27: 403-419.
  • Cerda, H., B. Hofsten & K.J. Johanson, 1993. Identification of irradiated food by microelectrophoresis of DNA from single cells. In M. Leonardi, J. J. Belliardo, & J. RaY (Eds.), Recent advances of new methods of detection of irradiated food. Proceedings of the workshop. (24–26 September 1991, Ancona), 401–405 pp. Luxembourg: Commission of the European Communities EUR 14315.
  • Cerda, H., H. Delinceé, H. Haine & H. Rupp, 1997. The DNA “Comet Assay” as a rapid screening technique to control irradiated food. Mutation Research, 375: 167–181.
  • Cerda, H., & H. Delincee, H. Haine & H. Rupp, 1997. The DNA ‘comet assay’ as a rapid screening technique to control irradiated food. Mutation Research, 75: 161–181.
  • Delincee, H., 1996. Introduction to DNA methods for identification of irradiated foods. In:McMurray, C.H., Stewart, E.M., Gray, R., Pearce, J. (Eds.), Detection Methods for Irradiated Foods—Current Status., Royal Society of Chemistry, Cambridge, UK, 345–348 pp.
  • Delincée, H., 1998. Detection of food treated with ionizing radiation. Trends in Food Science and Technology, 9: 73– 82.
  • El-Naggar, S.M. & A.A. Mikhaiel, 2011. Disinfestation of stored wheat grain and flour using gamma rays and microwave heating. Journal of Stored Products Research, 47: 191-196.
  • Erel, Y., N. Yazici, S. Ozvatan, D. Ercin & N. Cetinkaya, 2009. Detection of irradiated quail meat by using DNA comet assay and evaluation of comets by image analysis. Radiation Physics and Chemistry, 78:776–781.
  • Ercan, S.F., H. Bas, M. Koc, D. Pandır & S. Oztemiz, 2013. Insecticidal activity of the essential oils from Prangos ferulacea (Umbelliferae) against different stages of Ephestia kuehniella (Lepidoptera: Pyralidae) and Trichogramma embryophagum (Hymenoptera: Trichogrammatidae). Turkish Journal of Agriculture and Forestry, 37(6): 719-725.
  • Fairbairn, D.W., P.L. Olive & K.L. O’Neil, 1995. The Comet Assay: a comprehensive review. Mutation Research, 339: 37–59.
  • FAO., 2008. Report of third session of the commission on phytosanitary measures. Food and Agriculture Organization, Rome.
  • FAO, 2009. Report of fourth session of the commission on phytosanitary measures. Food and Agriculture Organization, Rome.
  • Fridovich, I., 1978. The biology of oxygen radicals. Science, 201: 875-879.
  • Gaikwad, Y.B., S.M. Gaikwad & G.P. Bhawane, 2010. Effect of induced oxidative stress and herbal extracts on acid phosphatase activity in lysosomal and microsomal fractions of midgut tissue of the silkworm, Bombyx mori. Journal of Insect Science, 10:113.
  • George, D.G.M. & A.M.R. Gatehouse, 2013. Oxidative stress enzymes in Busseola fusca. International Journal of Current Microbiology and Applied Science, 2(10): 485-495.
  • Guven, E., D. Pandır & H. Bas, 2014. Non-ionizing (UV) radiation-induced oxidative stress and DNA damage Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae. Journal of Stored Products Reasearch (submitted).
  • Halliwell, B., K. Zhao & M. Whiteman, 2000. The gastrointestinal tract: a major site of antioxidant action? Free Radical Research, 33: 819-830.
  • Halliwell, B. & J.M.C. Gutteridge, 1990. The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics, 280: 1-8.
  • Hyršl, P., E. Buyukguzel & K. Buyukguzel, 2007. The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Archives of Insect Biochemistry and Physiology, 66:23–31.
  • Icen, E., F. Armutcu, K. Buyukguzel & A. Gurel, 2005. Biochemical stress indicators of greater wax moth exposure to organophosphorus insecticides. Journal of Economic Entomology, 98(2): 358-366.
  • Imamura, T., S. Todoriki, N. Sota, H. Nakakita, H. Ikenaga & T. Hayashi, 2004a. Effect of ‘‘soft-electron’’ (low- energy electron) treatment on three stored product insect pests. Journal of Stored Products Research, 40: 169–177.
  • Johnson, J.A., K.A. Valero & M.M. Hannel, 1997. Effect of low temperature storage on survival and reproduction of Indian meal moth (Lepidoptera: Pyralidae). Crop Protection, 16: 519–523.
  • Kameya, H., A. Miyanoshita, T. & S. Todoriki, 2012. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay. Radiation Physics and Chemistry, 81: 316–321.
  • Langlinais, S.J,. 1989. Economics of microwave treated rice for controlling weevils. American Society of Agricultural Engineers, 16: 89-3544.
  • Lowry, O.H., N.J. Rosebrough, A.L. Farr & R.J. Randall, 1951. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1): 265-75.
  • Lu, H., J. Zhou, S. Xiong & S. Zhao, 2010. Effects of low-intensity microwave radiation on Tribolium castaneum physiological and biochemical characteristics and survival. Journal of Insect Physiology, 56(9): 1356–1361.
  • Marklund, S. & G. Marklund, 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47: 469-474.
  • McKelvey-Martin, V.J., M.H.L. Green, P. Schmezer, B.L. Pool-Zobel, M. P. De Meo & A. Collins, 1993. The single cell gel electrophoresis assay (Comet Assay): a European review. Mutation Research, 288: 47–63.
  • Novotny, M., S. Jan, S. Karel, & Vladimir, T., 2013. Sterilization of biotic pests by microwave radiation. Procedia Engineering, 57: 1094–1099.
  • Ohkawa, H., N. Ohishi & K. Yagi, 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid rection. Analytical Biochemistry, 95: 351-358.
  • Olive, O.L. & R.E. Durand, 2005. Heterogeneity in DNA damage using the comet assay. Cytometry Part A, 66: 1–8.
  • Östling, O. & K.J. Johanson, 1984. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochemical Biophysical Research Communication, 123: 291–298.
  • Paglia, D.E. & W.N. Valentine, 1987. Studies on the quantative and qualitative characterization of glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70: 158-165.
  • Pandır, D., F.S. Ercan & H. Bas, 2013a. Toxicity effect of carbon dioxide against different developmental stages of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) and Trichogramma embryophagum Hartig (Hymenoptera: Trichogrammatidae). Turkish Journal of Entomology, 37(1): 57-64.
  • Pandır, D., R. Sahingoz & F.S. Ercan, 2013b. Effects of magnetic fields against different stage of Mediterranean flour moth Ephestia kuehniella and its eggs preferability by Trichogramma embryophagum females. Biocontrol Science and Technology, 23(12): 1402-1411.
  • Ptacek, O., D.A. Stavreva, J.K. Kim & T. Gichner, 2001. Induction and repair of DNA damage as measured by the Comet assay and the yield of somatic mutations in gamma-irradiated tobacco seedlings. Mutation Research, 91: 17–23.
  • Šuhajda, K., 2006. Rehabilitation of moist masonry structures - Use of rod antenna during microwave pre-drying of injection holes. Thesis. Brno.
  • Shayesteh, N. & N. Barthakur, 1996. Mortality and behaviour of two stored-product insect species during microwave irradiation. Journal of Stored Products Research, 32 (3): 239-246.
  • Steinbeck, M.J., A.U. Khan & Mj. Karnovsky, 1993. Extracellular production of singlet oxygen by stimulated macrophages quantified using 9, 10-diphenylanthracene and perylene in a polystyrene film. Journal of Biological Chemistry, 268: 15649–15654.
  • Trzeciak, A.R., J. Barnes & M.K. Evans, 2008. A modified alkaline comet assay for measuring DNA repair capacity in human populations. Journal of Radiation Research, 169: 110–121.
  • Tuncbilek, A.S., U. Canpolat & F. Sumer, 2009. Suitability of irradiated and cold-stored eggs of Ephestia kuehniella (Pyralidae: Lepidoptera) and Sitotroga cerealella (Gelechidae: Lepidoptera) for stockpiling the egg-parasitoid Trichogramma evanescens (Trichogrammatidae: Hymenoptera) in diapause. Biocontrol Science and Technology, 19: 127-138.
  • Vadivambal, R., D.S. Jayas & N.D.G. White, 2007. Wheat disinfestations using microwave energy. Journal of Stored Products Research, 43: 508–514.
  • Zhao, S., X. Shao, S. Xing, C.G. Qiu & Y.L. Xu, 2007. Effect of microwaves on rice quality. Journal of Stored Products Research, 43: 496–502.
  • Wang, S., J. Tang, J.A. Johnson, E. Mitcham, J.D. Hansen, G. Hallman, S.R. Drake & Y. Wang, 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering, 85 (2): 201-212.

Depo ürün zararlısı Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkisi

Year 2014, Volume: 38 Issue: 2, 135 - 148, 01.04.2014
https://doi.org/10.16970/ted.67061

Abstract

Bu çalışma Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkilerini araştırmak için düzenlenmiştir. Bir iki günlük larvalar 70, 150, 300 ve 600 W lık mikrodalga radyasyonuna farklı uygulama sürelerinde (1-50 sn) maruz bırakılmıştır. Larvaların ölüm oranı mikrodalga radyasyonun tüm uygulama gücünde artan sürelerle birlikte istatistiksel olarak artmıştır. Tam ölüm 70 W dozunda 50 sn’ye kadar sürerken 600 W’ta ölümlerin başladığı en kısa süre 5 sn’dir. Larva dokularında superoksit dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GPx)’ı ve malondialdehit (MDA) 50 sn için tüm mikrodalga radyasyon gücü için değerlendirilmiştir. 300 ve 600 W gücündeki mikrodalga radyasyonuna maruz kalan larva dokuları ile kontrol grubu karşılaştırıldığında SOD, CAT, GPx aktiviteleri azalırken MDA seviyeleri artmıştır (P < 0.05). 50 sn lik uygulama sonunda 70, 150 ve 300 W ta DNA hasarı bulunmamaktadır. Diğer taraftan DNA hasarını gösteren kuyruk uzunluğu ve kuyruk yoğunluğu kontrol ve uygulama grupları ile karşılaştırıldığında 600 W ta 50 sn deki etkileri gösterilmiştir. Bu sonuçlar gösteriyor ki yüksek mikrodalga radyasyon gücü uygulaması depo ürün zararlısı E. kuehniella larvaları için toksisiteye sebep olmaktadır

References

  • Abbott, W., 1925. A Method for Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18: 265-267.
  • Ahmad, S. & R.S. Pardini, 1990. Antioxidant defense of the cabbage looper, Trichoplusia ni: Enzymatic responses to the superoxide generating flavonoid, quercetin, and phododynamic furanocoumarin, xanthotoxin. Photochemistry and Photobiology,15: 305-311
  • Ahmed, M., 2001. Disinfestation of stored grains, pulses, dried fruits and nuts and other dried foods. In: Molins, R.A. (Ed.), Food Irradiation: Principles and Applications. John Wiley and Sons, New York, 77-112.
  • Ayvaz, A., O. Sağdıc, S. Karaborklu & I. Ozturk, 2010. Insecticidal activity of the essential oils from different plants against three stored product insects. Journal of Insect Science, 10: 1–13.
  • Ayvaz, A., S. Albayrak & S. Karaborklu, 2008. Gamma Radiation Sensitivity of the Eggs, Larvae and Pupae of Indian Meal Moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Management Science, 64: 505-512.
  • Azizoglu, U., S. Yılmaz, S. Karaborklu & A. Ayvaz, 2011. Ovicidal Activity of Microwave and UV Radiations on Mediterranean Flour Moth Ephestia kuehniella Zeller, 1879 (Lepidoptera: Pyralidae). Türkiye Entomoloji Dergisi, 35: 437-446.
  • Bulger, E.M. & W.S. Helton, 1998. Nutrient antioxidants in gastrointestinal diseases. Clinical Nutrition, 27: 403-419.
  • Cerda, H., B. Hofsten & K.J. Johanson, 1993. Identification of irradiated food by microelectrophoresis of DNA from single cells. In M. Leonardi, J. J. Belliardo, & J. RaY (Eds.), Recent advances of new methods of detection of irradiated food. Proceedings of the workshop. (24–26 September 1991, Ancona), 401–405 pp. Luxembourg: Commission of the European Communities EUR 14315.
  • Cerda, H., H. Delinceé, H. Haine & H. Rupp, 1997. The DNA “Comet Assay” as a rapid screening technique to control irradiated food. Mutation Research, 375: 167–181.
  • Cerda, H., & H. Delincee, H. Haine & H. Rupp, 1997. The DNA ‘comet assay’ as a rapid screening technique to control irradiated food. Mutation Research, 75: 161–181.
  • Delincee, H., 1996. Introduction to DNA methods for identification of irradiated foods. In:McMurray, C.H., Stewart, E.M., Gray, R., Pearce, J. (Eds.), Detection Methods for Irradiated Foods—Current Status., Royal Society of Chemistry, Cambridge, UK, 345–348 pp.
  • Delincée, H., 1998. Detection of food treated with ionizing radiation. Trends in Food Science and Technology, 9: 73– 82.
  • El-Naggar, S.M. & A.A. Mikhaiel, 2011. Disinfestation of stored wheat grain and flour using gamma rays and microwave heating. Journal of Stored Products Research, 47: 191-196.
  • Erel, Y., N. Yazici, S. Ozvatan, D. Ercin & N. Cetinkaya, 2009. Detection of irradiated quail meat by using DNA comet assay and evaluation of comets by image analysis. Radiation Physics and Chemistry, 78:776–781.
  • Ercan, S.F., H. Bas, M. Koc, D. Pandır & S. Oztemiz, 2013. Insecticidal activity of the essential oils from Prangos ferulacea (Umbelliferae) against different stages of Ephestia kuehniella (Lepidoptera: Pyralidae) and Trichogramma embryophagum (Hymenoptera: Trichogrammatidae). Turkish Journal of Agriculture and Forestry, 37(6): 719-725.
  • Fairbairn, D.W., P.L. Olive & K.L. O’Neil, 1995. The Comet Assay: a comprehensive review. Mutation Research, 339: 37–59.
  • FAO., 2008. Report of third session of the commission on phytosanitary measures. Food and Agriculture Organization, Rome.
  • FAO, 2009. Report of fourth session of the commission on phytosanitary measures. Food and Agriculture Organization, Rome.
  • Fridovich, I., 1978. The biology of oxygen radicals. Science, 201: 875-879.
  • Gaikwad, Y.B., S.M. Gaikwad & G.P. Bhawane, 2010. Effect of induced oxidative stress and herbal extracts on acid phosphatase activity in lysosomal and microsomal fractions of midgut tissue of the silkworm, Bombyx mori. Journal of Insect Science, 10:113.
  • George, D.G.M. & A.M.R. Gatehouse, 2013. Oxidative stress enzymes in Busseola fusca. International Journal of Current Microbiology and Applied Science, 2(10): 485-495.
  • Guven, E., D. Pandır & H. Bas, 2014. Non-ionizing (UV) radiation-induced oxidative stress and DNA damage Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae. Journal of Stored Products Reasearch (submitted).
  • Halliwell, B., K. Zhao & M. Whiteman, 2000. The gastrointestinal tract: a major site of antioxidant action? Free Radical Research, 33: 819-830.
  • Halliwell, B. & J.M.C. Gutteridge, 1990. The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics, 280: 1-8.
  • Hyršl, P., E. Buyukguzel & K. Buyukguzel, 2007. The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Archives of Insect Biochemistry and Physiology, 66:23–31.
  • Icen, E., F. Armutcu, K. Buyukguzel & A. Gurel, 2005. Biochemical stress indicators of greater wax moth exposure to organophosphorus insecticides. Journal of Economic Entomology, 98(2): 358-366.
  • Imamura, T., S. Todoriki, N. Sota, H. Nakakita, H. Ikenaga & T. Hayashi, 2004a. Effect of ‘‘soft-electron’’ (low- energy electron) treatment on three stored product insect pests. Journal of Stored Products Research, 40: 169–177.
  • Johnson, J.A., K.A. Valero & M.M. Hannel, 1997. Effect of low temperature storage on survival and reproduction of Indian meal moth (Lepidoptera: Pyralidae). Crop Protection, 16: 519–523.
  • Kameya, H., A. Miyanoshita, T. & S. Todoriki, 2012. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay. Radiation Physics and Chemistry, 81: 316–321.
  • Langlinais, S.J,. 1989. Economics of microwave treated rice for controlling weevils. American Society of Agricultural Engineers, 16: 89-3544.
  • Lowry, O.H., N.J. Rosebrough, A.L. Farr & R.J. Randall, 1951. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1): 265-75.
  • Lu, H., J. Zhou, S. Xiong & S. Zhao, 2010. Effects of low-intensity microwave radiation on Tribolium castaneum physiological and biochemical characteristics and survival. Journal of Insect Physiology, 56(9): 1356–1361.
  • Marklund, S. & G. Marklund, 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47: 469-474.
  • McKelvey-Martin, V.J., M.H.L. Green, P. Schmezer, B.L. Pool-Zobel, M. P. De Meo & A. Collins, 1993. The single cell gel electrophoresis assay (Comet Assay): a European review. Mutation Research, 288: 47–63.
  • Novotny, M., S. Jan, S. Karel, & Vladimir, T., 2013. Sterilization of biotic pests by microwave radiation. Procedia Engineering, 57: 1094–1099.
  • Ohkawa, H., N. Ohishi & K. Yagi, 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid rection. Analytical Biochemistry, 95: 351-358.
  • Olive, O.L. & R.E. Durand, 2005. Heterogeneity in DNA damage using the comet assay. Cytometry Part A, 66: 1–8.
  • Östling, O. & K.J. Johanson, 1984. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochemical Biophysical Research Communication, 123: 291–298.
  • Paglia, D.E. & W.N. Valentine, 1987. Studies on the quantative and qualitative characterization of glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70: 158-165.
  • Pandır, D., F.S. Ercan & H. Bas, 2013a. Toxicity effect of carbon dioxide against different developmental stages of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) and Trichogramma embryophagum Hartig (Hymenoptera: Trichogrammatidae). Turkish Journal of Entomology, 37(1): 57-64.
  • Pandır, D., R. Sahingoz & F.S. Ercan, 2013b. Effects of magnetic fields against different stage of Mediterranean flour moth Ephestia kuehniella and its eggs preferability by Trichogramma embryophagum females. Biocontrol Science and Technology, 23(12): 1402-1411.
  • Ptacek, O., D.A. Stavreva, J.K. Kim & T. Gichner, 2001. Induction and repair of DNA damage as measured by the Comet assay and the yield of somatic mutations in gamma-irradiated tobacco seedlings. Mutation Research, 91: 17–23.
  • Šuhajda, K., 2006. Rehabilitation of moist masonry structures - Use of rod antenna during microwave pre-drying of injection holes. Thesis. Brno.
  • Shayesteh, N. & N. Barthakur, 1996. Mortality and behaviour of two stored-product insect species during microwave irradiation. Journal of Stored Products Research, 32 (3): 239-246.
  • Steinbeck, M.J., A.U. Khan & Mj. Karnovsky, 1993. Extracellular production of singlet oxygen by stimulated macrophages quantified using 9, 10-diphenylanthracene and perylene in a polystyrene film. Journal of Biological Chemistry, 268: 15649–15654.
  • Trzeciak, A.R., J. Barnes & M.K. Evans, 2008. A modified alkaline comet assay for measuring DNA repair capacity in human populations. Journal of Radiation Research, 169: 110–121.
  • Tuncbilek, A.S., U. Canpolat & F. Sumer, 2009. Suitability of irradiated and cold-stored eggs of Ephestia kuehniella (Pyralidae: Lepidoptera) and Sitotroga cerealella (Gelechidae: Lepidoptera) for stockpiling the egg-parasitoid Trichogramma evanescens (Trichogrammatidae: Hymenoptera) in diapause. Biocontrol Science and Technology, 19: 127-138.
  • Vadivambal, R., D.S. Jayas & N.D.G. White, 2007. Wheat disinfestations using microwave energy. Journal of Stored Products Research, 43: 508–514.
  • Zhao, S., X. Shao, S. Xing, C.G. Qiu & Y.L. Xu, 2007. Effect of microwaves on rice quality. Journal of Stored Products Research, 43: 496–502.
  • Wang, S., J. Tang, J.A. Johnson, E. Mitcham, J.D. Hansen, G. Hallman, S.R. Drake & Y. Wang, 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering, 85 (2): 201-212.
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Dilek Pandır This is me

Esra Guven This is me

Publication Date April 1, 2014
Submission Date January 26, 2015
Published in Issue Year 2014 Volume: 38 Issue: 2

Cite

APA Pandır, D. ., & Guven, E. . (2014). Depo ürün zararlısı Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkisi. Turkish Journal of Entomology, 38(2), 135-148. https://doi.org/10.16970/ted.67061
AMA Pandır D, Guven E. Depo ürün zararlısı Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkisi. TED. April 2014;38(2):135-148. doi:10.16970/ted.67061
Chicago Pandır, Dilek, and Esra Guven. “Depo ürün zararlısı Ephestia Kuehniella Zeller (Lepidoptera: Pyralidae) Larvaları üzerine Mikrodalga Radyasyonunun Etkisi”. Turkish Journal of Entomology 38, no. 2 (April 2014): 135-48. https://doi.org/10.16970/ted.67061.
EndNote Pandır D, Guven E (April 1, 2014) Depo ürün zararlısı Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkisi. Turkish Journal of Entomology 38 2 135–148.
IEEE D. . Pandır and E. . Guven, “Depo ürün zararlısı Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkisi”, TED, vol. 38, no. 2, pp. 135–148, 2014, doi: 10.16970/ted.67061.
ISNAD Pandır, Dilek - Guven, Esra. “Depo ürün zararlısı Ephestia Kuehniella Zeller (Lepidoptera: Pyralidae) Larvaları üzerine Mikrodalga Radyasyonunun Etkisi”. Turkish Journal of Entomology 38/2 (April 2014), 135-148. https://doi.org/10.16970/ted.67061.
JAMA Pandır D, Guven E. Depo ürün zararlısı Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkisi. TED. 2014;38:135–148.
MLA Pandır, Dilek and Esra Guven. “Depo ürün zararlısı Ephestia Kuehniella Zeller (Lepidoptera: Pyralidae) Larvaları üzerine Mikrodalga Radyasyonunun Etkisi”. Turkish Journal of Entomology, vol. 38, no. 2, 2014, pp. 135-48, doi:10.16970/ted.67061.
Vancouver Pandır D, Guven E. Depo ürün zararlısı Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvaları üzerine mikrodalga radyasyonunun etkisi. TED. 2014;38(2):135-48.