Research Article
BibTex RIS Cite

Size and shape variability of the wing in burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae)

Year 2022, Volume: 46 Issue: 2, 239 - 247, 01.06.2022
https://doi.org/10.16970/entoted.1096288

Abstract

The burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae) is a distinctly polymorphic species of moth appearing in several color morphotypes. This study examined whether the variability of the Z. ephialtes forewing could be explained by geometric morphometric methods. The analysis included 70 male specimens from five localities in Montenegro (Plužine, Tepca, Dobrilovina, Gusinje and Rugovska Gorge), and one locality in North Macedonia (Kožuf Mountain) belonging to the subspecies Zygaena ephialtes pannonica Holik, 1937 and Zygaena ephialtes istoki Silbernagel, 1944, respectively, collected between 1981 to 2018. The forewing outline and the aposematic color pattern formed by five spots were analyzed separately. Neither forewing size nor forewing spots pattern size exhibited interpopulation heterogeneity. Size variation of the basal spot was independent from the rest. Considering the forewing outline shape, the apical portion was the most variable and different among populations. Two morphological groups were recognized: a group with a narrower pointed forewing (samples: Kožuf Mountain, Rugovska Gorge and Tepca), and a group with a wider forewing with a blunt apex (Plužine, Gusinje). Neither the outline or the spots pattern of the forewing supported the distinction between the subspecies Z. e. pannonica and Z. e. istoki.

Supporting Institution

the Slovenian Research Agency and the Research Programme Computationally Intensive Complex Systems

Project Number

Grant P1-0403

References

  • Adams, D. C., F. J. Rohlf & D. E. Slice, 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix, 24 (1): 1-8.
  • Bai, Y., L. Bin Ma, S.-Q. Xu & G.-H. Wang, 2015. A geometric morphometric study of the wing shapes of Pieris rapae (Lepidoptera: Pieridae) from the Qinling Mountains and adjacent regions: An environmental and distance-based consideration. Florida Entomologist, 98 (1): 162-169.
  • Berwaerts, K., Van H. Dyck & P. Aerts, 2002. Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Functional Ecology, 16 (4): 484-491.
  • Blanckenhorn, W. U., 2009. “Causes and Consequences of Phenotypic Plasticity in Body Size: The Case of the Yellow Dung Fly Scathophaga stercoraria (Diptera: Scathophagidae), 369-422”. In: Phenotypic Plasticity of Insects: Mechanism and Consequences. (Eds. D. W. Whitman & T. N. Ananthakrishnan). Science Publishers, Enfield, NH, USA, 904 pp.
  • Bookstein, F. L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge, UK, 456 pp. Briolat, E. S., M. Zagrobelny, C. E. Olsen, J. D. Blount & M. Stevens, 2019. No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera: Zygaenidae). Journal of Evolutionary Biology, 32 (1): 31-48.
  • Dudley, R., 2002. The Biomechanics of Insect Flight: Form, Function, Evolution, Princeton, NJ: Princeton University Press, USA, 496 pp.
  • Hofmann, A., 2003a. Zygaena (Zygaena) ephialtes (L., 1767) in südlichen Balkan Peninsula nebst Anmerkungen zur Entstehung von Polymorphismus sowie melanistischer Zygaena-Formen im Mittelmeerraum (Lepidoptera: Zygaenidae). Entomologische Zeitschrift mit Insekten-Börse, 113 (2): 50-54 (in German).
  • Hofmann, A., 2003b. Zygaena (Zygaena) ephialtes (L., 1767) in südlichen Balkan Peninsula nebst Anmerkungen zur Entstehung von Polymorphismus sowie melanistischer Zygaena-Formen im Mittelmeerraum (Lepidoptera: Zygaenidae). Entomologische Zeitschrift mit Insekten-Börse, 113 (3): 75-86 (in German).
  • Hofmann, A., 2003c. Zygaena (Zygaena) ephialtes (L., 1767) in südlichen Balkan Peninsula nebst Anmerkungen zur Entstehung von Polymorphismus sowie melanistischer Zygaena-Formen im Mittelmeerraum (Lepidoptera: Zygaenidae). Entomologische Zeitschrift mit Insekten-Börse, 113 (4): 108-120 (in German).
  • Hofmann, A. F. & W. G. Tremewan, 2020. The Natural history of Burnet moths (Zygaena Fabricius, 1775) (Lepidoptera: Zygaenidae), Part 3. Proceedings of the Museum Witt Munich, 6 (3.1): 1-508; 6 (3.2): 509-1097.
  • Horák, J., 2013. Habitat requirements of conspicuous burnet moth Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae). North-Western Journal of Zoology, 9 (1): 1-5.
  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11 (2): 353-357.
  • Martin, M. A., C. Craioveanu, C. Sitar & L. Rákosy, 2016. Why morphometrics: a short review and a case study on Zygaena carniolica (Scopoli, 1763). Entomologica Romanica, 20 (1): 57-62.
  • Muhtasib, H. & D. L. Evans, 1987. Linamarin and histamine in the defense of adult Zygaena filipendulae. Journal of Chemical Ecology, 13: 133-142.
  • Naumann, C. M., G. M. Tarmann & W. G. Tremewan, 1999. The Western Palaearctic Zygaenidae. Apollo Books, Stenstrup, Denmark, 304 pp.
  • Nishida, R., 2017. “Chemical Ecology of Poisonous Butterflies: Model or Mimic? A Paradox of Sexual Dimorphisms in Mullerian Mimicry, 205-220”. In: Diversity and Evolution of Butterfly Wing Patterns (Eds. T. Sekimura & H. F. Nijhout). Springer, Singapore, 333 pp.
  • Rohlf, F. J., 2015. The tps series of software. Hystrix, 26 (1): 9-12.
  • Shkurikhin, A. O. & T. S. Oslina, 2016. Seasonal variation of the forewing in polyvoltine whites Pieris rapae L. and P. napi L. (Lepidoptera: Pieridae) in the forest-steppe zone of the Southern Urals. Russian Journal of Ecology, 47 (3): 296-301.
  • Whitman, D. W. & A. A. Agrawal, 2009. “What is Phenotypic Plasticity and Why is it Important?, 1-63”. In: Phenotypic Plasticity of Insects: Mechanism and Consequences (Eds. D. W. Whitman & T. N. Ananthakrishnan). Science Publishers, Enfield, NH, USA, 904 pp.
  • Yen, S.-H., G. S. Robinson & D. L. J. Quicke, 2005. The phylogenetic relationships of Chalcosiinae (Lepidoptera, Zygaenoidea, Zygaenidae). Zoological Journal of the Linnean Society, 143 (2): 161-341.
  • Zagrobelny, M. & B. L. Møller, 2011. Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry, 72 (13): 1585-1592.
  • Zelditch, M. L., D. L. Swiderski & H. D. Sheets, 2012. Geometric Morphometrics for Biologists: A Primer. Elsevier, Academic Press, London, UK, 488 pp.

Burnet güvesi, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae)’nde kanadın boy ve şekil değişkenliği

Year 2022, Volume: 46 Issue: 2, 239 - 247, 01.06.2022
https://doi.org/10.16970/entoted.1096288

Abstract

Burnet güvesi, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae) farklı renk morfotiplerinde görülen belirgin şekilde polimorfik bir güve türüdür. Bu çalışmada, Z. ephialtes’in ön kanatlarındaki değişkenliğin geometrik morfometri yöntemleri ile açıklanıp açıklanamayacağını incelenmiştir. Analizde, 1981 ile 2018 yılları arasında toplanan sırasıyla Zygaena ephialtes pannonica Holik, 1937 ve Zygaena ephialtes istoki Silbernagel, 1944 alt türlerine ait Karadağ'daki beş bölgeden (Plužine, Tepca, Dobrilovina, Gusinje, Rugovska Gorge) ve Kuzey Makedonya'daki bir bölgeden (Kožuf Dağı) 70 erkek örnek kullanılmıştır. Beş noktanın oluşturduğu ön kanat taslağı ve aposematik renk modeli ayrı ayrı analiz edilmiştir. Hem ön kanat boyu hem de nokta desen boyu, popülasyonlar arası heterojenlik göstermemiştir. Bazal noktanın boyut değişimi diğerlerinden bağımsızdır. Ön kanadın anahat şekli göz önüne alındığında apikal kısım, popülasyonlar arasında en değişken ve farklı olanıdır. Daha dar sivri uçlu bir grup (Örneğin: Kožuf Dağı, Rugovska Gorge ve Tepca) ve küt bir tepeye sahip daha geniş bir ön kanatlı bir grup (Plužine, Gusinje) olmak üzere iki morfolojik grup tanımlanmıştır. Ön kanadın ne anahattı ne de benek deseni, Z. e. pannonica ve Z. e. istoki alt türleri arasındaki ayrımı desteklememiştir.

Project Number

Grant P1-0403

References

  • Adams, D. C., F. J. Rohlf & D. E. Slice, 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix, 24 (1): 1-8.
  • Bai, Y., L. Bin Ma, S.-Q. Xu & G.-H. Wang, 2015. A geometric morphometric study of the wing shapes of Pieris rapae (Lepidoptera: Pieridae) from the Qinling Mountains and adjacent regions: An environmental and distance-based consideration. Florida Entomologist, 98 (1): 162-169.
  • Berwaerts, K., Van H. Dyck & P. Aerts, 2002. Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Functional Ecology, 16 (4): 484-491.
  • Blanckenhorn, W. U., 2009. “Causes and Consequences of Phenotypic Plasticity in Body Size: The Case of the Yellow Dung Fly Scathophaga stercoraria (Diptera: Scathophagidae), 369-422”. In: Phenotypic Plasticity of Insects: Mechanism and Consequences. (Eds. D. W. Whitman & T. N. Ananthakrishnan). Science Publishers, Enfield, NH, USA, 904 pp.
  • Bookstein, F. L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge, UK, 456 pp. Briolat, E. S., M. Zagrobelny, C. E. Olsen, J. D. Blount & M. Stevens, 2019. No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera: Zygaenidae). Journal of Evolutionary Biology, 32 (1): 31-48.
  • Dudley, R., 2002. The Biomechanics of Insect Flight: Form, Function, Evolution, Princeton, NJ: Princeton University Press, USA, 496 pp.
  • Hofmann, A., 2003a. Zygaena (Zygaena) ephialtes (L., 1767) in südlichen Balkan Peninsula nebst Anmerkungen zur Entstehung von Polymorphismus sowie melanistischer Zygaena-Formen im Mittelmeerraum (Lepidoptera: Zygaenidae). Entomologische Zeitschrift mit Insekten-Börse, 113 (2): 50-54 (in German).
  • Hofmann, A., 2003b. Zygaena (Zygaena) ephialtes (L., 1767) in südlichen Balkan Peninsula nebst Anmerkungen zur Entstehung von Polymorphismus sowie melanistischer Zygaena-Formen im Mittelmeerraum (Lepidoptera: Zygaenidae). Entomologische Zeitschrift mit Insekten-Börse, 113 (3): 75-86 (in German).
  • Hofmann, A., 2003c. Zygaena (Zygaena) ephialtes (L., 1767) in südlichen Balkan Peninsula nebst Anmerkungen zur Entstehung von Polymorphismus sowie melanistischer Zygaena-Formen im Mittelmeerraum (Lepidoptera: Zygaenidae). Entomologische Zeitschrift mit Insekten-Börse, 113 (4): 108-120 (in German).
  • Hofmann, A. F. & W. G. Tremewan, 2020. The Natural history of Burnet moths (Zygaena Fabricius, 1775) (Lepidoptera: Zygaenidae), Part 3. Proceedings of the Museum Witt Munich, 6 (3.1): 1-508; 6 (3.2): 509-1097.
  • Horák, J., 2013. Habitat requirements of conspicuous burnet moth Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae). North-Western Journal of Zoology, 9 (1): 1-5.
  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11 (2): 353-357.
  • Martin, M. A., C. Craioveanu, C. Sitar & L. Rákosy, 2016. Why morphometrics: a short review and a case study on Zygaena carniolica (Scopoli, 1763). Entomologica Romanica, 20 (1): 57-62.
  • Muhtasib, H. & D. L. Evans, 1987. Linamarin and histamine in the defense of adult Zygaena filipendulae. Journal of Chemical Ecology, 13: 133-142.
  • Naumann, C. M., G. M. Tarmann & W. G. Tremewan, 1999. The Western Palaearctic Zygaenidae. Apollo Books, Stenstrup, Denmark, 304 pp.
  • Nishida, R., 2017. “Chemical Ecology of Poisonous Butterflies: Model or Mimic? A Paradox of Sexual Dimorphisms in Mullerian Mimicry, 205-220”. In: Diversity and Evolution of Butterfly Wing Patterns (Eds. T. Sekimura & H. F. Nijhout). Springer, Singapore, 333 pp.
  • Rohlf, F. J., 2015. The tps series of software. Hystrix, 26 (1): 9-12.
  • Shkurikhin, A. O. & T. S. Oslina, 2016. Seasonal variation of the forewing in polyvoltine whites Pieris rapae L. and P. napi L. (Lepidoptera: Pieridae) in the forest-steppe zone of the Southern Urals. Russian Journal of Ecology, 47 (3): 296-301.
  • Whitman, D. W. & A. A. Agrawal, 2009. “What is Phenotypic Plasticity and Why is it Important?, 1-63”. In: Phenotypic Plasticity of Insects: Mechanism and Consequences (Eds. D. W. Whitman & T. N. Ananthakrishnan). Science Publishers, Enfield, NH, USA, 904 pp.
  • Yen, S.-H., G. S. Robinson & D. L. J. Quicke, 2005. The phylogenetic relationships of Chalcosiinae (Lepidoptera, Zygaenoidea, Zygaenidae). Zoological Journal of the Linnean Society, 143 (2): 161-341.
  • Zagrobelny, M. & B. L. Møller, 2011. Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry, 72 (13): 1585-1592.
  • Zelditch, M. L., D. L. Swiderski & H. D. Sheets, 2012. Geometric Morphometrics for Biologists: A Primer. Elsevier, Academic Press, London, UK, 488 pp.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tına Klenovšek 0000-0003-4656-834X

Predrag Jakšić 0000-0002-2604-9449

Franc Janžekovič 0000-0002-7950-3780

Project Number Grant P1-0403
Early Pub Date May 14, 2022
Publication Date June 1, 2022
Submission Date March 31, 2022
Acceptance Date June 29, 2022
Published in Issue Year 2022 Volume: 46 Issue: 2

Cite

APA Klenovšek, T., Jakšić, P., & Janžekovič, F. (2022). Size and shape variability of the wing in burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae). Turkish Journal of Entomology, 46(2), 239-247. https://doi.org/10.16970/entoted.1096288
AMA Klenovšek T, Jakšić P, Janžekovič F. Size and shape variability of the wing in burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae). TED. June 2022;46(2):239-247. doi:10.16970/entoted.1096288
Chicago Klenovšek, Tına, Predrag Jakšić, and Franc Janžekovič. “Size and Shape Variability of the Wing in Burnet Moth, Zygaena Ephialtes (L., 1767) (Lepidoptera: Zygaenidae)”. Turkish Journal of Entomology 46, no. 2 (June 2022): 239-47. https://doi.org/10.16970/entoted.1096288.
EndNote Klenovšek T, Jakšić P, Janžekovič F (June 1, 2022) Size and shape variability of the wing in burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae). Turkish Journal of Entomology 46 2 239–247.
IEEE T. Klenovšek, P. Jakšić, and F. Janžekovič, “Size and shape variability of the wing in burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae)”, TED, vol. 46, no. 2, pp. 239–247, 2022, doi: 10.16970/entoted.1096288.
ISNAD Klenovšek, Tına et al. “Size and Shape Variability of the Wing in Burnet Moth, Zygaena Ephialtes (L., 1767) (Lepidoptera: Zygaenidae)”. Turkish Journal of Entomology 46/2 (June 2022), 239-247. https://doi.org/10.16970/entoted.1096288.
JAMA Klenovšek T, Jakšić P, Janžekovič F. Size and shape variability of the wing in burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae). TED. 2022;46:239–247.
MLA Klenovšek, Tına et al. “Size and Shape Variability of the Wing in Burnet Moth, Zygaena Ephialtes (L., 1767) (Lepidoptera: Zygaenidae)”. Turkish Journal of Entomology, vol. 46, no. 2, 2022, pp. 239-47, doi:10.16970/entoted.1096288.
Vancouver Klenovšek T, Jakšić P, Janžekovič F. Size and shape variability of the wing in burnet moth, Zygaena ephialtes (L., 1767) (Lepidoptera: Zygaenidae). TED. 2022;46(2):239-47.