Research Article
BibTex RIS Cite

Bazı rizobakterilerin hıyar bitkisinde Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)’ya karşı etkinliği

Year 2024, Volume: 48 Issue: 2, 195 - 204, 12.07.2024
https://doi.org/10.16970/entoted.1452672

Abstract

Bu çalışmada, 3 adet özgün rizobakteri izolatının, Beith alpha çeşidi hıyar bitkisinde Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) ile mücadelede kullanım olanakları 2023 yılında araştırılmıştır. Yapılan çalışmalarda bakteri uygulamalarının M. incognita’ya karşı etkinliği iklim odası ve laboratuvar denemesi yapılarak değerlendirilmiştir. İklim odası denemesinin karakterlerini özgün bakteri izolatlarının ve QST713 (Serenade®) ticari izolatının fide ve tohum kaplama uygulamaları, bu uygulamaların nematodlu (1500 J2/saksı) ve nematodsuz uygulamaları, pozitif ve negatif kontrol uygulamaları oluşturmuştur. Deneme sonunda, hıyar köklerindeki urlanma oranı Zeck skalasına göre değerlendirildiğinde, köklerdeki urlanma miktarını azaltma konusunda en başarılı uygulama KD29 izolatının (2.64) fide uygulaması olurken, en yüksek urlanma miktarı pozitif kontrolde (6.27) görülmüştür. Bakteri uygulamaları pozitif kontrol ile kıyaslandığında, yumurta kümesi oluşumu üzerinde tüm bakteri uygulamalarının azaltıcı etkiye sahip olduğu görülmüştür. Yapılan uygulamaların, J2 popülasyonunun üreme oranı üzerindeki etkileri araştırıldığında, KD238 (0.69) izolatı ve QST713 (0.86) ticari izolatının fide uygulamalarının, topraktaki J2 üreme oranı üzerinde azaltıcı etkiye sahip olduğu saptanmıştır. Yapılan laboratuvar denemesi sonucunda KD157, KD238 ve KD29 izolatlarının 96 saat sonunda J2’ler üzerinde sırasıyla %42.25, 33.98 ve 27.77 oranında öldürücü etkiye sahip olduğu saptanmıştır. Ancak özellikle topraktaki J2 popülasyonunun azalması, kökte oluşan ur miktarı ve yumurta kümesi sayılarındaki azalma göz önüne alındığında, bu bakterilerin uyarılmış sistemik dayanıklılığı (ISR) teşvik ettiği düşünülmektedir.

References

  • Abd-El-Khair, H., W. M. A. El-Nagdi, M. M. A. Youssef, M. M. M. Abd-Elgawad & M. G. Dawood, 2019. Protective effect of Bacillus subtilis, B. pumilus, and Pseudomonas fluorescens isolates against root knot nematode Meloidogyne incognita on cowpea. Bulletin of the National Research Centre, 43 (1): 1-7.
  • Akbaba, M. & H. Özaktan, 2018. Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egyptian Journal of Biological Pest Control, 28 (1): 1-10.
  • Almaghrabi, O.A., S. I. Massoud & T. S. Abdelmoneim, 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20 (1): 57-61.
  • Anonymous, 2008. Zirai Mücadele Teknik Talimatları Cilt 6. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü, Ankara, 286 s (in Turkish).
  • Ashoub, A. H. & M. T. Amara, 2010. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science, 6 (10): 321-328.
  • Choi, T. G., C. E. H. Maung, D. R. Lee, A. B. Henry, Y. S. Lee & K. Y. Kim, 2020. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Science and Technology, 30 (7): 685-700.
  • Dawar, S., M. Tariq & M. Zaki, 2008. Application of Bacillus species in control of Meloidogyne javanica (Treub) Chitwood on cowpea and mash bean. Pakistan Journal of Botany, 40 (1): 439-444.
  • Echeverrigaray, S., J. Zacaria & R. Beltrão, 2010. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology, 100: 199-203.
  • Elsharkawy, M. M., M. Nakatani, M. Nishimura, T. Arakawa, M. Shimizu & M. Hyakumachi, 2015. Control of tomato bacterial wilt and root-knot diseases by Bacillus thuringiensis CR-371 and Streptomyces avermectinius NBRC14893. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 65 (6): 575-580.
  • FAOSTAT, 2021. Value of agricultural production. (Web page: https://www.fao.org/faostat/en/#data/QV) (Date accessed: 12.06.2023).
  • Gowda, A. P. A., B. Pankaj, D. Singh, A. K. Singh & R. Sowmya, 2022. Nematicidal potential of plant growth-promoting rhizobacteria against Meloidogyne incognita infesting tomato under protected cultivation. Egyptian Journal of Biological Pest Control, 32 (1): 145 (1-13).
  • Kaşkavalcı, G., H. Özaktan, A. Hatipoğlu & A. Uslu, 2006. Preliminary investigations on suppression of Meloidogyne incognita (Kofoid & White) Chitwood (Nematoda: Heteroderidae) by antagonistic rhizobacteria. Türkiye Entomoloji Dergisi, 30 (3): 173-182.
  • Khalil, M. S. & S. S. El-Naby, 2018. The integration efficacy of formulated abamectin, Bacillus thuringiensis and Bacillus subtilis for managing Meloidogyne incognita (Kofoid & White) Chitwood on tomatoes. Journal of Biopesticides, 11 (2): 146-153.
  • Khalil, M. S., A. Kenawy, M. A. Gohrab & E. E. Mohammed, 2012. Impact of microbial agents on Meloidogyne incognita management and morphogenesis of tomato. Journal of Biopesticides, 5 (1): 28-35.
  • Mohamedova, M., D. Draganova, I. Valcheva & M. Naydenov, 2016. Effects of Rhizobacteria on Meloidogyne javanica infection on eggplants. African Journal of Agricultural Research, 11 (41): 4141-4146.
  • Netscher, C. & R. A. Sikora, 1990. “Nematode Parasites on Vegetables, 231-283”. In: Plant Parasitic Nematodes in Suptropical and Tropical Agriculture (Eds. M. Luc, R. A. Sikora & J. Bridge) CAB International, UK, 629 pp.
  • Oka, Y., 2020. From old-generation to next-generation nematicides. Agronomy, 10 (9):1387.
  • Oliveira, D. F., V. P. Campos, D. R. Amaral, A. S. Nunes, J. A. Pantaleao & D. A. Costa, 2007. selection of Rhizobacteria able to produce metabolites active against Meloidogyne exigua. European Journal of Plant Pathology, 119 (4): 477-479.
  • Paul, D. & H. Lade, 2014. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agronomy for Sustainable Development, 34 (4): 737-752.
  • Singh, S., R. Balodi, P. N. Meena & S. Singhal, 2021. Biocontrol activity of Trichoderma harzianum, Bacillus subtilis and Pseudomonas fluorescens against Meloidogyne incognita, Fusarium oxysporum and Rhizoctonia solani. Indian Phytopathology, 74 (3): 703-714.
  • Tian, B., J. Yang & K.Q. Zhang, 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61 (2): 197-213.
  • TÜİK, 2022. Bitkisel üretim istatistikleri. (Web page: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504) (Date accessed: 12 June 2023) (in Turkish).
  • Zeck, W. M., 1971. A Rating Scheme for Field Evaluation of Root-knot Nematode Infestation. Pflanzenschutz Nachrichten, Bayer. Published by Farbenfabriken Ag. Leverkusen, 10 (1): 361 pp.

The effectiveness of some rhizobacteria on Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants

Year 2024, Volume: 48 Issue: 2, 195 - 204, 12.07.2024
https://doi.org/10.16970/entoted.1452672

Abstract

In this study, the possibilities of using 3 specific rhizobacteria isolates for the control of Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants of Beith alpha cultivar were investigated in 2023. The variables of the climate chamber experiment were seedling and seed treatments of the specific bacterial isolates and the QST713 (Serenade®) commercial isolate, nematode (1500 J2/pot) and non-nematode treatments, as well as positive and negative control treatments. As a result of the study, when the rate of root galling on cucumber roots was determined according to the Zeck scale, the most successful treatment in decreasing root galling was the seedling treatment of KD29 isolate (2.64), while the highest rate of root galling was observed in the positive control (6.27). When the bacterial treatments were compared with the positive control, it was observed that all bacterial treatments had a decreasing effect on the number of egg mass. When the effects of the treatments on the reproduction rate of the J2 population were analyzed, it was found that seedling treatments of isolate KD238 (0.69) and commercial isolate QST713 (0.86) had a decreasing effect on the J2 reproduction rate in the soil. As a result of the laboratory experiment, it was determined that KD157, KD238 and KD29 isolates had 42.25, 33.98 and 27.77% mortality effect on J2s after 96 hours, respectively. However, especially considering the decrease in the J2 population in the soil, the amount of root growth and the decrease in the number of egg mass, these bacteria stimulate the induced systemic resistance (ISR).

Ethical Statement

The work prepared in accordance with ethical rules is not subject to any ethical permission.

Thanks

We would like to thank Prof. Dr. Hatice Özaktan for providing the bacterial isolates used in the study from her own stock and sharing her valuable ideas and opinions. We would like to thank Dr. Utku Şanver for his help with the statistical analysis of the experimental data; Esmeray Ayhan Cafarlı for her help with the collection of the nematode population and, Barış Çipli for guiding with his knowledge and experience. We would also like to extent my heartfelt thanks to Esra Partal, Ayten Özay, İrem Dağ, Mehmet Emin Kurter in the Nematology laboratory and Gizem Toyğar in the Bacteriology laboratory for their support in conducting this study.

References

  • Abd-El-Khair, H., W. M. A. El-Nagdi, M. M. A. Youssef, M. M. M. Abd-Elgawad & M. G. Dawood, 2019. Protective effect of Bacillus subtilis, B. pumilus, and Pseudomonas fluorescens isolates against root knot nematode Meloidogyne incognita on cowpea. Bulletin of the National Research Centre, 43 (1): 1-7.
  • Akbaba, M. & H. Özaktan, 2018. Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egyptian Journal of Biological Pest Control, 28 (1): 1-10.
  • Almaghrabi, O.A., S. I. Massoud & T. S. Abdelmoneim, 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20 (1): 57-61.
  • Anonymous, 2008. Zirai Mücadele Teknik Talimatları Cilt 6. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü, Ankara, 286 s (in Turkish).
  • Ashoub, A. H. & M. T. Amara, 2010. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science, 6 (10): 321-328.
  • Choi, T. G., C. E. H. Maung, D. R. Lee, A. B. Henry, Y. S. Lee & K. Y. Kim, 2020. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE 100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato. Biocontrol Science and Technology, 30 (7): 685-700.
  • Dawar, S., M. Tariq & M. Zaki, 2008. Application of Bacillus species in control of Meloidogyne javanica (Treub) Chitwood on cowpea and mash bean. Pakistan Journal of Botany, 40 (1): 439-444.
  • Echeverrigaray, S., J. Zacaria & R. Beltrão, 2010. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology, 100: 199-203.
  • Elsharkawy, M. M., M. Nakatani, M. Nishimura, T. Arakawa, M. Shimizu & M. Hyakumachi, 2015. Control of tomato bacterial wilt and root-knot diseases by Bacillus thuringiensis CR-371 and Streptomyces avermectinius NBRC14893. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 65 (6): 575-580.
  • FAOSTAT, 2021. Value of agricultural production. (Web page: https://www.fao.org/faostat/en/#data/QV) (Date accessed: 12.06.2023).
  • Gowda, A. P. A., B. Pankaj, D. Singh, A. K. Singh & R. Sowmya, 2022. Nematicidal potential of plant growth-promoting rhizobacteria against Meloidogyne incognita infesting tomato under protected cultivation. Egyptian Journal of Biological Pest Control, 32 (1): 145 (1-13).
  • Kaşkavalcı, G., H. Özaktan, A. Hatipoğlu & A. Uslu, 2006. Preliminary investigations on suppression of Meloidogyne incognita (Kofoid & White) Chitwood (Nematoda: Heteroderidae) by antagonistic rhizobacteria. Türkiye Entomoloji Dergisi, 30 (3): 173-182.
  • Khalil, M. S. & S. S. El-Naby, 2018. The integration efficacy of formulated abamectin, Bacillus thuringiensis and Bacillus subtilis for managing Meloidogyne incognita (Kofoid & White) Chitwood on tomatoes. Journal of Biopesticides, 11 (2): 146-153.
  • Khalil, M. S., A. Kenawy, M. A. Gohrab & E. E. Mohammed, 2012. Impact of microbial agents on Meloidogyne incognita management and morphogenesis of tomato. Journal of Biopesticides, 5 (1): 28-35.
  • Mohamedova, M., D. Draganova, I. Valcheva & M. Naydenov, 2016. Effects of Rhizobacteria on Meloidogyne javanica infection on eggplants. African Journal of Agricultural Research, 11 (41): 4141-4146.
  • Netscher, C. & R. A. Sikora, 1990. “Nematode Parasites on Vegetables, 231-283”. In: Plant Parasitic Nematodes in Suptropical and Tropical Agriculture (Eds. M. Luc, R. A. Sikora & J. Bridge) CAB International, UK, 629 pp.
  • Oka, Y., 2020. From old-generation to next-generation nematicides. Agronomy, 10 (9):1387.
  • Oliveira, D. F., V. P. Campos, D. R. Amaral, A. S. Nunes, J. A. Pantaleao & D. A. Costa, 2007. selection of Rhizobacteria able to produce metabolites active against Meloidogyne exigua. European Journal of Plant Pathology, 119 (4): 477-479.
  • Paul, D. & H. Lade, 2014. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agronomy for Sustainable Development, 34 (4): 737-752.
  • Singh, S., R. Balodi, P. N. Meena & S. Singhal, 2021. Biocontrol activity of Trichoderma harzianum, Bacillus subtilis and Pseudomonas fluorescens against Meloidogyne incognita, Fusarium oxysporum and Rhizoctonia solani. Indian Phytopathology, 74 (3): 703-714.
  • Tian, B., J. Yang & K.Q. Zhang, 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61 (2): 197-213.
  • TÜİK, 2022. Bitkisel üretim istatistikleri. (Web page: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504) (Date accessed: 12 June 2023) (in Turkish).
  • Zeck, W. M., 1971. A Rating Scheme for Field Evaluation of Root-knot Nematode Infestation. Pflanzenschutz Nachrichten, Bayer. Published by Farbenfabriken Ag. Leverkusen, 10 (1): 361 pp.
There are 23 citations in total.

Details

Primary Language English
Subjects Nematology
Journal Section Articles
Authors

Deniz Yaşar 0000-0003-0991-360X

Galip Kaşkavalcı 0000-0001-9281-4703

Early Pub Date July 12, 2024
Publication Date July 12, 2024
Submission Date March 15, 2024
Acceptance Date May 1, 2024
Published in Issue Year 2024 Volume: 48 Issue: 2

Cite

APA Yaşar, D., & Kaşkavalcı, G. (2024). The effectiveness of some rhizobacteria on Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants. Turkish Journal of Entomology, 48(2), 195-204. https://doi.org/10.16970/entoted.1452672
AMA Yaşar D, Kaşkavalcı G. The effectiveness of some rhizobacteria on Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants. TED. July 2024;48(2):195-204. doi:10.16970/entoted.1452672
Chicago Yaşar, Deniz, and Galip Kaşkavalcı. “The Effectiveness of Some Rhizobacteria on Meloidogyne Incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in Cucumber Plants”. Turkish Journal of Entomology 48, no. 2 (July 2024): 195-204. https://doi.org/10.16970/entoted.1452672.
EndNote Yaşar D, Kaşkavalcı G (July 1, 2024) The effectiveness of some rhizobacteria on Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants. Turkish Journal of Entomology 48 2 195–204.
IEEE D. Yaşar and G. Kaşkavalcı, “The effectiveness of some rhizobacteria on Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants”, TED, vol. 48, no. 2, pp. 195–204, 2024, doi: 10.16970/entoted.1452672.
ISNAD Yaşar, Deniz - Kaşkavalcı, Galip. “The Effectiveness of Some Rhizobacteria on Meloidogyne Incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in Cucumber Plants”. Turkish Journal of Entomology 48/2 (July 2024), 195-204. https://doi.org/10.16970/entoted.1452672.
JAMA Yaşar D, Kaşkavalcı G. The effectiveness of some rhizobacteria on Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants. TED. 2024;48:195–204.
MLA Yaşar, Deniz and Galip Kaşkavalcı. “The Effectiveness of Some Rhizobacteria on Meloidogyne Incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in Cucumber Plants”. Turkish Journal of Entomology, vol. 48, no. 2, 2024, pp. 195-04, doi:10.16970/entoted.1452672.
Vancouver Yaşar D, Kaşkavalcı G. The effectiveness of some rhizobacteria on Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae) in cucumber plants. TED. 2024;48(2):195-204.