Research Article
BibTex RIS Cite

Kütiküler ipuçlarıyla zamanın izlenmesi: Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae)'da yetiştirme koşullarının ve nesiller arası farklılaşmanın rolü

Year 2025, Volume: 49 Issue: 3, 241 - 256, 30.09.2025
https://doi.org/10.16970/entoted.1669440

Abstract

Yetişkin sineklerin kimyasal profilleri, çevresel faktörlerden ve nesiller arası değişimlerden etkilenmektedir, ancak bu etkilerin derecesi ve mekanizmaları yeterince anlaşılmamıştır. Bu araştırma, yetiştirme ortamlarının ve nesiller arası değişimlerin, Haziran 2019'da Swindon'daki (Birleşik Krallık) doğal ortamdan toplanan yetişkin sineklerin kutiküler hidrokarbon profilleri üzerindeki etkisini titizlikle incelemiştir. Hidrokarbon profillerini analiz etmek için gaz kromatografisi-kütle spektrometrisi (GC-MS) kullanılmıştır. Ardından kimyasal değişim desenlerini belirlemek için kemometrik analiz uygulanmış, bu sayede örnekler kimyasal parmak izlerine göre sınıflandırılmıştır. Laboratuvarda muhafaza edilen ve doğal ortamdan toplanan örnekler arasında hidrokarbon bileşiminde önemli farklılıklar belirlenmiş ve çevre koşullarının hidrokarbon yapısı üzerindeki etkisi vurgulanmıştır. Ayrıca, kontrollü bir ortamda yetiştirilen nesiller arasında hidrokarbon içeriğinde tespit edilen kademeli değişiklikler, bu durumun adaptif fizyolojik veya epigenetik mekanizmalarla ilişkili olduğunu düşündürmüştür. Bu sonuçların etkileri aynı zamanda adli soruşturmalara da uzanmaktadır; kutiküler hidrokarbon profilleri (CHC'ler) kriminal vakalarda ölüm sonrası zaman aralığı (PMI) tahmin doğruluğunu ve tür tanımlamasını geliştirme potansiyeli göstermektedir. Yetiştirme koşulları ve nesiller arasında CHC bileşiminde ölçülebilir farklılıklar (çoğu karşılaştırmada AUC değerleri ≥0.92) sergileyerek, bu çalışma kimyasal belirteçlerin adli soruşturmalarda daha geniş uygulanması için bir temel sağlamaktadır.

Supporting Institution

Canan Kula received sponsorship from the Ministry of National Education of the Republic of Türkiye.

Thanks

First author (Dr. Canna Kula) received sponsorship from the Ministry of National Education of the Republic of Türkiye.

References

  • Aagaard, A., J. Bechsgaard, J. G. Sørensen, T. Sandfeld, V. Settepani, T. L. Bird, M. B. Lund, K. G. Malmos, K. Falck-Rasmussen, I. Darolti, K. L. Nielsen, M. Johannsen, T. Vosegaard, T. Tregenza, K. J. F. Verhoeven, J. E. Mank, A. Schramm & T. Bilde, 2024. Molecular mechanisms of temperature tolerance plasticity in an arthropod. Genome Biology and Evolution, 16 (8): evae165 (1-17).
  • Alotaibi, F., M. Alkuriji, S. Alreshaidan, R. Alajmi, D. M. Metwally, B. Almutairi, M. Alorf, R. Haddadi & A. Ahmed, 2021. Body size and cuticular hydrocarbons as larval age indicators in the forensic blowfly, Chrysomya albiceps (Diptera: Calliphoridae). Journal of Medical Entomology, 58 (3): 1048-1055.
  • Amendt, J., R. Krettek & R. Zehner, 2004. Forensic entomology. Naturwissenschaften, 91: 51-65.
  • Baker, J. E., D. R. Nelson & C. L. Fatland, 1979. Developmental changes in cuticular lipids of the black carpet beetle, Attagenus megatoma. Insect Biochemistry, 9 (3): 335-339.
  • Bell, M. A., G. Lim, C. Caldwell, D. J. Emlen & B. O. Swanson, 2024. Rhinoceros beetle (Trypoxylus dichotomus) cuticular hydrocarbons contain information about body size and sex. Plos one, 19 (3): e0299796 (1-8).
  • Benecke, M., 2001. A brief history of forensic entomology. Forensic Science International, 120 (1-2): 2-14.
  • Bernier, U. R., D. A. Carlson & C. J. Geden, 1998. Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. Journal of the American Society for Mass Spectrometry, 9 (4): 320-332.
  • Blomquist, G. J. & A. G. Bagnères, 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, 492 pp.
  • Brown, W. V., H. A. Rose, M. J. Lacey & K. Wright, 2000. The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): Analysis with respect to age, sex and location. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 127 (3): 261-277.
  • Butterworth, N.J., P. G. Byrne, P. A. Keller & J. F. Wallman, 2018. Body odor and sex: Do cuticular hydrocarbons facilitate sexual attraction in the small hairy maggot blowfly? Journal of Chemical Ecology, 44 (3): 248-256.
  • Charabidze, D., M. Gosselin & V. Hedouin, 2017. Use of necrophagous insects as evidence of cadaver relocation: Myth or reality? PeerJ, 5: e3506 (1-32).
  • Chown, S.L., J. G. Sørensen & J. S. Terblanche, 2011. Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 57 (8): 1070-1084.
  • Cortot, J., J. P. Farine, J. F. Ferveur & C. Everaerts, 2022. Aging-related variation of cuticular hydrocarbons in wild type and variant Drosophila melanogaster. Journal of Chemical Ecology, 48 (2): 152-164.
  • Drijfhout, F. P., R. Kather & S. J. Martin, 2009. "The Role of Cuticular Hydrocarbons in Insects, 91-114”. In: Behavioral and Chemical Ecology (Eds. W. Zhang & H. Liu). Nova Science Publishers, New York, 260 pp.
  • Drijfhout, F. P., 2010. “Cuticular Hydrocarbons: A New Tool in Forensic Entomology?, 79-204”. In: Current Concepts in Forensic Entomology (Eds. J. Amendt, M. L. Goff, C. P. Campobasso & M. Grassberger). Springer Verlag, Heidelberg, Germany, 375 pp.
  • Everaerts, C. L., J. P. Farine & R. Brossut, 1997. Changes of species specific cuticular hydrocarbon profiles in the cockroaches Nauphoeta cinerea and Leucophaea maderae reared in heterospecific groups. Entomologia Experimentalis et Applicata, 85 (2): 145-150.
  • Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27 (8): 861-874.
  • Gibbs, A. G., 1998. Water-proofing properties of cuticular lipids. American Zoologist, 38 (3): 471-482.
  • Gibbs, A. G. & E. L. Crockett, 1998. The biology of lipids: Integrative and comparative perspectives. American Zoologist, 38 (2): 265-267.
  • Hall, M. J., 2021. The relationship between research and casework in forensic entomology. Insects, 12 (2): 174 (1-13).
  • Haverty, M. I., M. S. Collins, L. J. Nelson & B. L. Thorne, 1997. Cuticular hydrocarbons of termites of the British Virgin Islands. Journal of Chemical Ecology, 23: 927-964.
  • Howard, R. W. & G. J. Blomquist, 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50: 371-393.
  • Hugo, L. E., B. H. Kay, G. K. Eaglesham, N. Holling & P. A. Ryan, 2006. Investigation of cuticular hydrocarbons for determining the age and survivorship of Australasian mosquitoes. The American Journal of Tropical Medicine and Hygiene, 74 (3): 462-474.
  • Kamhawi, S., R. P. Lane, M. Cameron, A. Phillips, P. Milligan & D. H. Molyneux, 1992. The cuticular hydrocarbons of Phlebotomus argentipes (Diptera: Phlebotominae) from field populations in northern India and Sri Lanka, and their change with laboratory colonization. Bulletin of Entomological Research, 82 (2): 209-212.
  • Krikken, J. & J. Huijbregts, 2001. Insects as forensic informants: The Dutch experience and procedure. Proceedings of the Section Experimental and Applied Entomology-Netherlands Entomological Society, 12: 159-164.
  • Lavine, B. K. & M. N. Vora, 2005. Identification of Africanized honeybees. Journal of Chromatography A, 1096 (1-2): 69-75.
  • Lee, L. C. & A. A. Jemain, 2021. On overview of PCA application strategy in processing high dimensionality forensic data. Microchemical Journal, 169: 106608 (1-16).
  • León-Morán, L. O., M. Pastor-Belda, P. Viñas, N. Arroyo-Manzanares, M. D. García, M. I. Arnaldos & N. Campillo, 2024. Discrimination of diptera order insects based on their saturated cuticular hydrocarbon content using a new microextraction procedure and chromatographic analysis. Analytical Methods, 16 (18): 2938-2947.
  • Levada, A. L., 2020. Parametric PCA for unsupervised metric learning. Pattern Recognition Letters, 135: 425-430.
  • Lim, J. Y., J. S. Nam, H. Shin, J. Park, H. I. Song, M. Kang, K. I. Lim & Y. Choi, 2019. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis. Analytical Chemistry, 91 (9): 5677-5684.
  • Lockey, K. H., 1991. Insect hydrocarbon classes: Implications for chemotaxonomy. Insect Biochemistry, 21 (1): 91-97.
  • Martin, S. J., H. Helanterä & F. P. Drijfhout, 2008. Colony-specific hydrocarbons identify nest mates in two species of Formica ant. Journal of Chemical Ecology, 34 (8): 1072-1080.
  • Martin, S. J. & F. P. Drijfhout, 2009. How reliable is the analysis of complex cuticular hydrocarbon profiles by multivariate statistical methods? Journal of Chemical Ecology, 35 (3): 375-382.
  • McLachlan, G. J., 2005. Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons, 526 pp.
  • Menzel, F., B. B. Blaimer & T. Schmitt, 2017. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proceedings of the Royal Society B: Biological Sciences, 284 (1850): 20161727 (1-10).
  • Moore, H. E., C. D. Adam & F. P. Drijfhout, 2013. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval. Journal of Forensic Sciences, 58 (2): 404-412.
  • Moore, H. E., C. D. Adam & F. P. Drijfhout, 2014. Identifying 1st instar larvae for three forensically important blowfly species using “fingerprint” cuticular hydrocarbon analysis. Forensic Science International, 240: 48-53.
  • Moore, H. E., J. B. Butcher, C. R. Day & F. P. Drijfhout, 2017. Adult fly age estimations using cuticular hydrocarbons and Artificial Neural Networks in forensically important Calliphoridae species. Forensic Science International, 28: 233-244.
  • Moore, H. E., M. J. Hall, F. P. Drijfhout, R. B. Cody & D. Whitmore, 2021. Cuticular hydrocarbons for identifying Sarcophagidae (Diptera). Scientific Reports, 11 (1): 7732 (1-11).
  • Otte, T., M. Hilker & S. Geiselhardt, 2018. Phenotypic plasticity of cuticular hydrocarbon profiles in insects. Journal of Chemical Ecology, 44 (3): 35-247.
  • Ozdemir, E. K., H. Sevgili & E. Bagdatli, 2024. Diversity in body size, bioacoustic traits, and cuticular hydrocarbon profiles in Isophya autumnalis populations. Journal of Orthoptera Research, 33 (2): 233-248.
  • Paula, M. C., K. B. Michelutti, A. D. Eulalio, R. C. Piva, C. A. Cardoso & W. F. Antonialli-Junior, 2018. New method for estimating the post-mortem interval using the chemical composition of different generations of empty puparia: Indoor cases. PLoS One, 13 (12): e0209776 (1-9).
  • Paula, M.C., W. F. Antonialli-Junior, A. Mendonça, K. B. Michelutti, A. D. M. M. Eulalio, C. A. L. Cardoso, T. de Lima & C. J. Von Zuben, 2017. Chemotaxonomic profile and intraspecific variation in the blow fly of forensic interest Chrysomya megacephala (Diptera: Calliphoridae). Journal of Medical Entomology, 54 (1): 14-23.
  • Pechal, J. L., H. Moore, F. P. Drijfhout & M. E. Benbow, 2014. Hydrocarbon profiles throughout adult Calliphoridae aging: A promising tool for forensic entomology. Forensic Science International, 245: 65-71.
  • Reibe, S. & B. Madea, 2010. How promptly do blowflies colonise fresh carcasses? A study comparing indoor with outdoor locations. Forensic Science International, 195 (1-3): 52-57.
  • Roux, O., C. Gers & L. Legal, 2006. When, during ontogeny, waxes in the blowfly (Calliphoridae) cuticle can act as phylogenetic markers. Biochemical Systematics and Ecology, 34 (5): 406-416.
  • Roux, O., C. Gers & L. Legal, 2008. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Medical And Veterinary Entomology, 22 (4): 309-317.
  • Sharif, S., C. Wunder, J. Amendt & A. Qamar, 2024. Variations in cuticular hydrocarbons of Calliphora vicina (Diptera: Calliphoridae) empty puparia: Insights for estimating late postmortem intervals. International Journal of Legal Medicine, 138 (6): 2717-2733.
  • Stewart-Yates, D., G. L. Maker, S. D’Errico & P. A. Magni, 2025. Advances and current status in the use of cuticular hydrocarbons for forensic entomology applications. Insects, 16 (2): 144 (1-11).
  • Tissot, M., D. R. Nelson & D. M. Gordon, 2001. Qualitative and quantitative differences in cuticular hydrocarbons between laboratory and field colonies of Pogonomyrmex barbatus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 130 (3): 349-358.
  • Toolson, E. C. & R. Kuper-Simbron, 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: Effects on sexual dimorphism and thermal-acclimation ability. Evolution, 43 (2): 468-473.
  • Toolson, E. C., T. A. Markow, L. L. Jackson & R. W. Howard, 1990. Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Annals of the Entomological Society of America, 83 (6): 1165-1176.
  • Tregenza, T., S. H. Buckley, V. L. Pritchard & R. K. Butlin, 2000. Inter-and intrapopulation effects of sex and age on epicuticular composition of meadow grasshopper, Chorthippus parallelus. Journal of Chemical Ecology, 26: 257-278.
  • Vaníčková, L., R. Břízová, A. L. Mendonça, A. Pompeiano & R. R. Do Nascimento, 2015. Intraspecific variation of cuticular hydrocarbon profiles in the Anastrepha fraterculus (Diptera: Tephritidae) species complex. Journal of Applied Entomology, 139 (9): 679-689.
  • Ye, G., K. Li, J. Zhu, G. Zhu & C. Hu, 2007. Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. Journal of Medical Entomology, 44 (3): 450-456.

Tracing time through cuticular clues: The role of rearing conditions and generational divergence in Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae)

Year 2025, Volume: 49 Issue: 3, 241 - 256, 30.09.2025
https://doi.org/10.16970/entoted.1669440

Abstract

The chemical profiles of the cuticle of adult flies are highly influenced by environmental factors and generational variation, although the extent and mechanisms of these influences are still poorly understood. This research rigorously investigates the influence of rearing environment and generational changes on the cuticular hydrocarbon (CHC) profiles of adult flies collected from the natural environment in Swindon (UK), in June 2019. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the hydrocarbon profiles. Then, chemometric analysis was applied to determine the chemical variation patterns, allowing the samples to be classified according to their chemical fingerprints. Significant differences in hydrocarbon composition were found between laboratory-maintained and field-collected specimens, underscoring the impact of environmental conditions on CHC expression. Additionally, gradual modifications in hydrocarbon content were detected across generations raised in the controlled environment, suggesting the involvement of adaptive physiological or epigenetic mechanisms. These findings contribute valuable insights into cuticle plasticity, highlighting its relevance in forensic entomology, chemical ecology, and insect evolutionary biology. The implications also extend to forensic investigations, where cuticular hydrocarbon profiles (CHCs) demonstrate potential for enhancing postmortem interval (PMI) estimation accuracy and species identification in criminal cases. By demonstrating quantifiable differences in CHC composition across rearing conditions and generations (AUC values ≥0.92 for all comparisons), this study provides a foundation for the broader application of chemical markers in forensic investigations.

Supporting Institution

Canan Kula received sponsorship from the Ministry of National Education of the Republic of Türkiye.

Thanks

First author (Dr. Canna Kula) received sponsorship from the Ministry of National Education of the Republic of Türkiye.

References

  • Aagaard, A., J. Bechsgaard, J. G. Sørensen, T. Sandfeld, V. Settepani, T. L. Bird, M. B. Lund, K. G. Malmos, K. Falck-Rasmussen, I. Darolti, K. L. Nielsen, M. Johannsen, T. Vosegaard, T. Tregenza, K. J. F. Verhoeven, J. E. Mank, A. Schramm & T. Bilde, 2024. Molecular mechanisms of temperature tolerance plasticity in an arthropod. Genome Biology and Evolution, 16 (8): evae165 (1-17).
  • Alotaibi, F., M. Alkuriji, S. Alreshaidan, R. Alajmi, D. M. Metwally, B. Almutairi, M. Alorf, R. Haddadi & A. Ahmed, 2021. Body size and cuticular hydrocarbons as larval age indicators in the forensic blowfly, Chrysomya albiceps (Diptera: Calliphoridae). Journal of Medical Entomology, 58 (3): 1048-1055.
  • Amendt, J., R. Krettek & R. Zehner, 2004. Forensic entomology. Naturwissenschaften, 91: 51-65.
  • Baker, J. E., D. R. Nelson & C. L. Fatland, 1979. Developmental changes in cuticular lipids of the black carpet beetle, Attagenus megatoma. Insect Biochemistry, 9 (3): 335-339.
  • Bell, M. A., G. Lim, C. Caldwell, D. J. Emlen & B. O. Swanson, 2024. Rhinoceros beetle (Trypoxylus dichotomus) cuticular hydrocarbons contain information about body size and sex. Plos one, 19 (3): e0299796 (1-8).
  • Benecke, M., 2001. A brief history of forensic entomology. Forensic Science International, 120 (1-2): 2-14.
  • Bernier, U. R., D. A. Carlson & C. J. Geden, 1998. Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. Journal of the American Society for Mass Spectrometry, 9 (4): 320-332.
  • Blomquist, G. J. & A. G. Bagnères, 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, 492 pp.
  • Brown, W. V., H. A. Rose, M. J. Lacey & K. Wright, 2000. The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): Analysis with respect to age, sex and location. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 127 (3): 261-277.
  • Butterworth, N.J., P. G. Byrne, P. A. Keller & J. F. Wallman, 2018. Body odor and sex: Do cuticular hydrocarbons facilitate sexual attraction in the small hairy maggot blowfly? Journal of Chemical Ecology, 44 (3): 248-256.
  • Charabidze, D., M. Gosselin & V. Hedouin, 2017. Use of necrophagous insects as evidence of cadaver relocation: Myth or reality? PeerJ, 5: e3506 (1-32).
  • Chown, S.L., J. G. Sørensen & J. S. Terblanche, 2011. Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 57 (8): 1070-1084.
  • Cortot, J., J. P. Farine, J. F. Ferveur & C. Everaerts, 2022. Aging-related variation of cuticular hydrocarbons in wild type and variant Drosophila melanogaster. Journal of Chemical Ecology, 48 (2): 152-164.
  • Drijfhout, F. P., R. Kather & S. J. Martin, 2009. "The Role of Cuticular Hydrocarbons in Insects, 91-114”. In: Behavioral and Chemical Ecology (Eds. W. Zhang & H. Liu). Nova Science Publishers, New York, 260 pp.
  • Drijfhout, F. P., 2010. “Cuticular Hydrocarbons: A New Tool in Forensic Entomology?, 79-204”. In: Current Concepts in Forensic Entomology (Eds. J. Amendt, M. L. Goff, C. P. Campobasso & M. Grassberger). Springer Verlag, Heidelberg, Germany, 375 pp.
  • Everaerts, C. L., J. P. Farine & R. Brossut, 1997. Changes of species specific cuticular hydrocarbon profiles in the cockroaches Nauphoeta cinerea and Leucophaea maderae reared in heterospecific groups. Entomologia Experimentalis et Applicata, 85 (2): 145-150.
  • Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27 (8): 861-874.
  • Gibbs, A. G., 1998. Water-proofing properties of cuticular lipids. American Zoologist, 38 (3): 471-482.
  • Gibbs, A. G. & E. L. Crockett, 1998. The biology of lipids: Integrative and comparative perspectives. American Zoologist, 38 (2): 265-267.
  • Hall, M. J., 2021. The relationship between research and casework in forensic entomology. Insects, 12 (2): 174 (1-13).
  • Haverty, M. I., M. S. Collins, L. J. Nelson & B. L. Thorne, 1997. Cuticular hydrocarbons of termites of the British Virgin Islands. Journal of Chemical Ecology, 23: 927-964.
  • Howard, R. W. & G. J. Blomquist, 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50: 371-393.
  • Hugo, L. E., B. H. Kay, G. K. Eaglesham, N. Holling & P. A. Ryan, 2006. Investigation of cuticular hydrocarbons for determining the age and survivorship of Australasian mosquitoes. The American Journal of Tropical Medicine and Hygiene, 74 (3): 462-474.
  • Kamhawi, S., R. P. Lane, M. Cameron, A. Phillips, P. Milligan & D. H. Molyneux, 1992. The cuticular hydrocarbons of Phlebotomus argentipes (Diptera: Phlebotominae) from field populations in northern India and Sri Lanka, and their change with laboratory colonization. Bulletin of Entomological Research, 82 (2): 209-212.
  • Krikken, J. & J. Huijbregts, 2001. Insects as forensic informants: The Dutch experience and procedure. Proceedings of the Section Experimental and Applied Entomology-Netherlands Entomological Society, 12: 159-164.
  • Lavine, B. K. & M. N. Vora, 2005. Identification of Africanized honeybees. Journal of Chromatography A, 1096 (1-2): 69-75.
  • Lee, L. C. & A. A. Jemain, 2021. On overview of PCA application strategy in processing high dimensionality forensic data. Microchemical Journal, 169: 106608 (1-16).
  • León-Morán, L. O., M. Pastor-Belda, P. Viñas, N. Arroyo-Manzanares, M. D. García, M. I. Arnaldos & N. Campillo, 2024. Discrimination of diptera order insects based on their saturated cuticular hydrocarbon content using a new microextraction procedure and chromatographic analysis. Analytical Methods, 16 (18): 2938-2947.
  • Levada, A. L., 2020. Parametric PCA for unsupervised metric learning. Pattern Recognition Letters, 135: 425-430.
  • Lim, J. Y., J. S. Nam, H. Shin, J. Park, H. I. Song, M. Kang, K. I. Lim & Y. Choi, 2019. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis. Analytical Chemistry, 91 (9): 5677-5684.
  • Lockey, K. H., 1991. Insect hydrocarbon classes: Implications for chemotaxonomy. Insect Biochemistry, 21 (1): 91-97.
  • Martin, S. J., H. Helanterä & F. P. Drijfhout, 2008. Colony-specific hydrocarbons identify nest mates in two species of Formica ant. Journal of Chemical Ecology, 34 (8): 1072-1080.
  • Martin, S. J. & F. P. Drijfhout, 2009. How reliable is the analysis of complex cuticular hydrocarbon profiles by multivariate statistical methods? Journal of Chemical Ecology, 35 (3): 375-382.
  • McLachlan, G. J., 2005. Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons, 526 pp.
  • Menzel, F., B. B. Blaimer & T. Schmitt, 2017. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proceedings of the Royal Society B: Biological Sciences, 284 (1850): 20161727 (1-10).
  • Moore, H. E., C. D. Adam & F. P. Drijfhout, 2013. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval. Journal of Forensic Sciences, 58 (2): 404-412.
  • Moore, H. E., C. D. Adam & F. P. Drijfhout, 2014. Identifying 1st instar larvae for three forensically important blowfly species using “fingerprint” cuticular hydrocarbon analysis. Forensic Science International, 240: 48-53.
  • Moore, H. E., J. B. Butcher, C. R. Day & F. P. Drijfhout, 2017. Adult fly age estimations using cuticular hydrocarbons and Artificial Neural Networks in forensically important Calliphoridae species. Forensic Science International, 28: 233-244.
  • Moore, H. E., M. J. Hall, F. P. Drijfhout, R. B. Cody & D. Whitmore, 2021. Cuticular hydrocarbons for identifying Sarcophagidae (Diptera). Scientific Reports, 11 (1): 7732 (1-11).
  • Otte, T., M. Hilker & S. Geiselhardt, 2018. Phenotypic plasticity of cuticular hydrocarbon profiles in insects. Journal of Chemical Ecology, 44 (3): 35-247.
  • Ozdemir, E. K., H. Sevgili & E. Bagdatli, 2024. Diversity in body size, bioacoustic traits, and cuticular hydrocarbon profiles in Isophya autumnalis populations. Journal of Orthoptera Research, 33 (2): 233-248.
  • Paula, M. C., K. B. Michelutti, A. D. Eulalio, R. C. Piva, C. A. Cardoso & W. F. Antonialli-Junior, 2018. New method for estimating the post-mortem interval using the chemical composition of different generations of empty puparia: Indoor cases. PLoS One, 13 (12): e0209776 (1-9).
  • Paula, M.C., W. F. Antonialli-Junior, A. Mendonça, K. B. Michelutti, A. D. M. M. Eulalio, C. A. L. Cardoso, T. de Lima & C. J. Von Zuben, 2017. Chemotaxonomic profile and intraspecific variation in the blow fly of forensic interest Chrysomya megacephala (Diptera: Calliphoridae). Journal of Medical Entomology, 54 (1): 14-23.
  • Pechal, J. L., H. Moore, F. P. Drijfhout & M. E. Benbow, 2014. Hydrocarbon profiles throughout adult Calliphoridae aging: A promising tool for forensic entomology. Forensic Science International, 245: 65-71.
  • Reibe, S. & B. Madea, 2010. How promptly do blowflies colonise fresh carcasses? A study comparing indoor with outdoor locations. Forensic Science International, 195 (1-3): 52-57.
  • Roux, O., C. Gers & L. Legal, 2006. When, during ontogeny, waxes in the blowfly (Calliphoridae) cuticle can act as phylogenetic markers. Biochemical Systematics and Ecology, 34 (5): 406-416.
  • Roux, O., C. Gers & L. Legal, 2008. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Medical And Veterinary Entomology, 22 (4): 309-317.
  • Sharif, S., C. Wunder, J. Amendt & A. Qamar, 2024. Variations in cuticular hydrocarbons of Calliphora vicina (Diptera: Calliphoridae) empty puparia: Insights for estimating late postmortem intervals. International Journal of Legal Medicine, 138 (6): 2717-2733.
  • Stewart-Yates, D., G. L. Maker, S. D’Errico & P. A. Magni, 2025. Advances and current status in the use of cuticular hydrocarbons for forensic entomology applications. Insects, 16 (2): 144 (1-11).
  • Tissot, M., D. R. Nelson & D. M. Gordon, 2001. Qualitative and quantitative differences in cuticular hydrocarbons between laboratory and field colonies of Pogonomyrmex barbatus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 130 (3): 349-358.
  • Toolson, E. C. & R. Kuper-Simbron, 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: Effects on sexual dimorphism and thermal-acclimation ability. Evolution, 43 (2): 468-473.
  • Toolson, E. C., T. A. Markow, L. L. Jackson & R. W. Howard, 1990. Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Annals of the Entomological Society of America, 83 (6): 1165-1176.
  • Tregenza, T., S. H. Buckley, V. L. Pritchard & R. K. Butlin, 2000. Inter-and intrapopulation effects of sex and age on epicuticular composition of meadow grasshopper, Chorthippus parallelus. Journal of Chemical Ecology, 26: 257-278.
  • Vaníčková, L., R. Břízová, A. L. Mendonça, A. Pompeiano & R. R. Do Nascimento, 2015. Intraspecific variation of cuticular hydrocarbon profiles in the Anastrepha fraterculus (Diptera: Tephritidae) species complex. Journal of Applied Entomology, 139 (9): 679-689.
  • Ye, G., K. Li, J. Zhu, G. Zhu & C. Hu, 2007. Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. Journal of Medical Entomology, 44 (3): 450-456.
There are 55 citations in total.

Details

Primary Language English
Subjects Entomology
Journal Section Articles
Authors

Canan Kula 0000-0001-8655-4079

Hannah Moore 0000-0001-7263-8132

Publication Date September 30, 2025
Submission Date April 3, 2025
Acceptance Date July 8, 2025
Published in Issue Year 2025 Volume: 49 Issue: 3

Cite

APA Kula, C., & Moore, H. (2025). Tracing time through cuticular clues: The role of rearing conditions and generational divergence in Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae). Turkish Journal of Entomology, 49(3), 241-256. https://doi.org/10.16970/entoted.1669440
AMA Kula C, Moore H. Tracing time through cuticular clues: The role of rearing conditions and generational divergence in Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae). TED. September 2025;49(3):241-256. doi:10.16970/entoted.1669440
Chicago Kula, Canan, and Hannah Moore. “Tracing Time through Cuticular Clues: The Role of Rearing Conditions and Generational Divergence in Lucilia Sericata (Meigen, 1826) (Diptera: Calliphoridae)”. Turkish Journal of Entomology 49, no. 3 (September 2025): 241-56. https://doi.org/10.16970/entoted.1669440.
EndNote Kula C, Moore H (September 1, 2025) Tracing time through cuticular clues: The role of rearing conditions and generational divergence in Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae). Turkish Journal of Entomology 49 3 241–256.
IEEE C. Kula and H. Moore, “Tracing time through cuticular clues: The role of rearing conditions and generational divergence in Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae)”, TED, vol. 49, no. 3, pp. 241–256, 2025, doi: 10.16970/entoted.1669440.
ISNAD Kula, Canan - Moore, Hannah. “Tracing Time through Cuticular Clues: The Role of Rearing Conditions and Generational Divergence in Lucilia Sericata (Meigen, 1826) (Diptera: Calliphoridae)”. Turkish Journal of Entomology 49/3 (September2025), 241-256. https://doi.org/10.16970/entoted.1669440.
JAMA Kula C, Moore H. Tracing time through cuticular clues: The role of rearing conditions and generational divergence in Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae). TED. 2025;49:241–256.
MLA Kula, Canan and Hannah Moore. “Tracing Time through Cuticular Clues: The Role of Rearing Conditions and Generational Divergence in Lucilia Sericata (Meigen, 1826) (Diptera: Calliphoridae)”. Turkish Journal of Entomology, vol. 49, no. 3, 2025, pp. 241-56, doi:10.16970/entoted.1669440.
Vancouver Kula C, Moore H. Tracing time through cuticular clues: The role of rearing conditions and generational divergence in Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae). TED. 2025;49(3):241-56.