Research Article
BibTex RIS Cite

Pathogenicity of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and crude secondary metabolites against Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae)

Year 2025, Volume: 49 Issue: 3, 349 - 364, 30.09.2025
https://doi.org/10.16970/entoted.1684139

Abstract

Beauveria bassiana (Balsamo-Vuillemin, 1912) (Hypocreales: Clavicipitaceae) is a valuable source of natural bioactive compounds, particularly secondary metabolites. This study, conducted in 2024 at Trabzon Forest Pests and Biological Control Laboratory, aimed to evaluate the insecticidal efficacy of a crude ethyl acetate extract of its secondary metabolites against Dendroctonus micans (Kugelann, 1794) (Coleoptera: Curculionidae) larvae and its antimicrobial activities. Pa-4 strain caused 100% mortality of D. micans larvae within ten days of 1 × 109 spores/mL, and the LC50 value was determined to be 1.63 × 105 spores/mL. The crude secondary metabolites extract concentration was 0.065 g/mL in the biomass and insoluble residues (mycelial extract) and 0.68 g/mL in the supernatant. The LC50 value for micelle-extract was 1019 ppm, while for the supernatant extract it was 1382 ppm (p<0.05). The antimicrobial activity of the crude secondary metabolites mycelial extract exhibited the largest zone of inhibition against Enterococcus faecalis ATCC 51299, with a diameter of 9.73 mm, followed by Bacillus subtilis ATCC 6633 (9.28 mm), and Candida albicans ATCC 10351 (6.94 mm) (p<0.001). This study suggests that the Pa-4 strain and crude secondary metabolites extract could be potential agents for the biological control of D. micans and antimicrobial properties.

Thanks

The author would like to thank the Trabzon Regional Directorate of Forestry and Biological Control Laboratory against Forest Pests for supporting this study.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Abdullah, R. R., 2019. Insecticidal activity of secondary metabolites of locally isolated fungal strains against some cotton insect pests. Journal of Plant Protection and Pathology, 10 (12): 647-653.
  • Aksoy, A., S. M., Dmour, H. Qaralleh, W. S. Alwaneen, R. M. Farsi, R. M. Alreemi, M. W. Hindi, F. N. Mosleh, S. E. Mazloom, D. Sukmawati & A. M. Priskaningrum, 2023. An in vitro antimicrobial activity of Beauveria bassiana secondary metabolites. Pakistan Journal of Agricultural Sciences, 60 (3): 331-336.
  • Alkan-Akıncı H, M. Eroğlu & G. Özcan, 2014. Attack strategy and development of Dendroctonus micans (Kug.) (Coleoptera: Curculionidae) on oriental spruce in Turkey. Turkish Journal of Entomology, 38 (1): 31-41.
  • Alkan Akıncı, H. & J.C. Grégoire, 2025. Investigation of the oviposition and predation impact on Dendroctonus micans (Kug.) of wild and laboratory-produced Rhizophagus grandis Gyll. on oriental spruce in Türkiye. International Journal of Tropical Insect Science, 45 (3): 1415-1424.
  • Ávila-Hernández, J. G., P. Aguilar-Zárate, M. L. Carrillo-Inungaray, M. R. Michel, J. E. Wong-Paz, D. B. Muñiz-Márquez, R. Rojas-Molina, J. A. Ascacio-Valdés & G. C. G. Martínez-Ávila, 2022. The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA. Brazilian Journal of Microbiology, 53 (1): 143-152.
  • Bakr, W. H., M. F. Ghaly, W. G. Tantawy & S. N. El-Shafeiy, 2025. Detection of some secondary metabolites of Beauveria bassiana and the potential effects on Spodoptera littoralis. Chemical and Biological Technologies in Agriculture, 12 (1): 59 (1-15).
  • Balumahendhiran, K., P. Vivekanandhan & M. S. Shivakumar, 2019. Mosquito control potential of secondary metabolites isolated from Aspergillus flavus and Aspergillus fumigatus. Biocatalysis and Agricultural Biotechnology, 21 (1): 101334 (1-7).
  • Baron, N. C., E. C. Rigobelo & D. C. Zied, 2019. Filamentous fungi in biological control: Current status and future perspectives. Chilean Journal of Agricultural Research, 79 (2): 307-315.
  • Barry, A.L., F. Garcia & L. D. Thrupp, 1970. An improved single-disk method for testing the antibiotic susceptibility of rapidly growing pathogens. American Journal of Clinical Pathology, 53 (2): 149-158.
  • Bauer, A. W., W. M. M. Kirby, J. C. Sherris & M. Turck, 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45 (4): 493-496.
  • Biryol, S., N. Araz, A. Eski, R. Akturk, Y. Aksu, B. C. Gokturk, L. Bilgin & I. Demir, 2021a. Biodiversity and pathogenicity of entomopathogenic fungi associated with the lesser spruce sawfly, Pristophora abietina. Entomologia Experimentalis et Applicata, 169 (5): 414-423.
  • Biryol, S., E. Güney, A. Eski, Z. Bayramoğlu, K. Sezen, Z. Demirbag & İ. Demir, 2021b. Development of mycoinsecticide formulations with Beauveria bassiana and Metarhizium brunneum for the control of Orosanga japonica (Hemiptera: Ricaniidae). Annals of Applied Biology, 179 (3): 319-330.
  • Biryol, S., Z. Demirbağ, P. Erdoğan & I. Demir, 2022. Development of Beauveria bassiana (Ascomycota: Hypocreales) as a mycoinsecticide to control green peach aphid, Myzus persicae (Homoptera: Aphididae) and investigation of its biocontrol potential. Journal of Asia-Pacific Entomology, 25 (1): 101878 (1-10).
  • Biryol, S., A. Soydinç & S. İşık, 2024. Morphological, molecular identification and virulence of entomopathogenic fungi isolated from Dendroctonus micans (Kugelann, 1794) (Coleoptera: Curculionidae). Sakarya University Journal of Science, 28 (2): 381-391.
  • Biryol, S., N. Araz Sayın, R. Aktürk, L. Bilgin, S. İşık, A. Soydinç, E. F. Topkara, O. Yanar, S. Ayvaz, H. Turna & I. Demir, 2025. Target and non-target impact of oil-based Beauveria bassiana formulation in controlling forest insect pests. Journal of Pest Science, 98 (4): 1-16. (in Press) (https://doi.org/10.1007/s10340-025-01929-8).
  • Büyükterzi, A., G. E. Özcan & O. E. Sakici, 2022. Variations in the attack pattern of Dendroctonus micans and the colonization rate of Rhizophagus grandis in Picea orientalis stands. Biologia, 77 (9): 2475-2485.
  • Camele, I., S. A. Sadeek, R. Racioppi & H. S. Elshafie, 2023. Antimicrobial activity of diffusible and volatile metabolites emitted by Beauveria bassiana: Chemical profile of volatile organic compounds (VOCs) using SPME-GC/MS analysis. Plants, 12 (15): 2854 (1-13).
  • Dadgostar, P., 2019. Antimicrobial resistance: implications and costs. Infection and Drug Resistance, 20 (12): 3903-3910.
  • Daniel, J. F. S., A. A. Silva, D. H. Nakagawa, L. S. de Medeiros, M. G. Carvalho, L. J. Tavares, L. M. Abreu & E. Rodrigues-Filho, 2017. Larvicidal activity of Beauveria bassiana extracts against Aedes aegypti and identification of beauvericins. Journal of the Brazilian Chemical Society, 28 (6): 1003-1013.
  • Dannon, H. F., A. E. Dannon, O. K. Douro-Kpindou, A. V. Zinsou, A. T. Houndete, J. Toffa-Mehinto, I. M. Elegbede, B. D. Olou & M. Tamò, 2020. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3 (24): 1-21.
  • Davis, T. S., A. J. Mann, D. Malesky, E. Jankowski & C. Bradley, 2018. Laboratory and field evaluation of the entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for population management of spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae) in felled trees and factors limiting pathogen success. Environmental Entomology, 47 (3): 594-602.
  • de Faria, M. R. & S. P. Wraight, 2007. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43 (3): 237-256.
  • Deb, L., P. Dutta, M. K. Mandal & S. B. Singh, 2023. Antimicrobial traits of Beauveria bassiana against Rhizoctonia solani, the causal agent of sheath blight of rice under field conditions. Plant Disease, 107 (6): 1739-1756.
  • Dembilio, O., E. Quesada-Moraga, C. Santiago-Alvarez & J. A. Jacas, 2010. Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus. Journal of Invertebrate Pathology, 104 (3): 214-221.
  • Elhamouly, N. A., O. A. Hewedy, A. Zaitoon, A. Miraples, O. T. Elshorbagy, S. Hussien, A. El-Tahan & D. Peng, 2022. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Frontiers in Plant, 12 (13): 1044896.
  • Fora, C. G., N. Boja M. Moatar, F. Tóth & A. Balog, 2020. Effect of entomopathogenic fungi, Beauveria bassiana (Cordycipitaceae), on the bark beetle, Ips typographus (L.), under field conditions. Insects 13 (10): 885 (1-10).
  • Forestry Statistics, 2021. T.C. Tarım ve Orman Bakanlığı, Orman Genel Müdürlüğü. (Web page: https://www.ogm.gov.tr/tr/ormanlarimiz/resmi-istatistikler) (Date accessed: 24 August 2025).
  • Gillespie, A. T. & N. Claydon, 1989. The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pesticide Science, 27 (2): 203-215.
  • Glare, T., M. Campbell, P. Biggs, D. Winter, A. Durrant, A. McKinnon & M. Cox, 2020. Mitochondrial evolution in the entomopathogenic fungal genus Beauveria. Archives of Insect Biochemistry & Physiology, 105 (4): e21754 (1-17).
  • Gurulingappa, P., P. A. McGee & G. Sword, 2011. Endophytic Lecanicillium lecanii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection, 30 (3): 349-353.
  • Gustianingtyas, M., S. Herlinda, S. Suwandi, H. Hamidson, S. A. Hasbi, M. Verawaty & A. Elfita, 2020. Toxicity of entomopathogenic fungal culture filtrate of lowland and highland soil of South Sumatra (Indonesia) against Spodoptera litura larvae. Biodiversitas Journal of Biological Diversity, 21 (5): 1839-1849.
  • Hallet, S., J. C. Grégoire & J. Coremans-Pelseneer, 1994. Prospects in using entomopathogenous fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes: Hyphomycetes) to control the spruce bark beetle Ips typographus L. (Coleoptera: Scolytidae). Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent, 59 (2): 379-383.
  • Hamill, R. L., C. E. Higgens, H. E. Boza & M. Gorman, 1969. The structure of beauvericin, a new depsipeptide antibiotic to Artemia salina. Tetrahedron Letters, 49 (10): 4255-4258.
  • Holighaus, G. & M. Rohlfs, 2016. Fungal allelochemicals in insect pest management. Applied Microbiology and Biotechnology, 100 (13): 5681-5689.
  • Hywell-Jones, N. L. & A. T. Gillespie, 1990. Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycological Research, 94 (3): 389-392.
  • Ibrahim, A. A., B. B. Haroun, A. F. El-Fekky & H. K. Bekhiet, 2012. Isolation and identification of three entomopathogenic fungi. Egyptian Journal of Agricultural Research, 90 (2): 558-574.
  • Islam, W., M. Adnan, A. Shabbir, H. Naveed, Y. S. Abubakar, M. Qasim, M. Tayyab, A. Noman, M. S. Nisar, K. A. Khan & H. Ali, 2021. Insect-fungal interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis, 159 (1): 105122 (1-16).
  • Jankielsohn, A., 2018. The importance of insects in agricultural ecosystems. Advances in Entomology, 6 (2): 62-73.
  • Kannan, S., V. Perumal, A. Yuvaraj, S. Pittarate, J. S. Kim & P. Krutmuang, 2023. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon, 10 (1): e23406 (1-17).
  • Keswani, C., H. B. Singh, R. Hermosa, C. García-Estrada, J. Caradus, Y. W. He, S. Mezaache-Aichour, T. R. Glare, R. Borriss, F. Vinale & E. Sansinenea, 2019. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology, 103 (23): 9287-9303.
  • Kocacevik, S., A. Sevim, M. Eroglu, Z. Demirbag & I. Demir, 2015. Molecular characterization, virulence and horizontal transmission of Beauveria pseudobassiana from Dendroctonus micans (Kug.) (Coleoptera: Curculionidae). Journal of Applied Entomology, 139 (5): 381-389.
  • Kreutz, J., O. Vaupel & G. Zimmermann, 2004. Efficacy of Beauveria bassiana (Bals.) Vuill. against the spruce bark beetle, Ips typographus L, in the laboratory under various conditions. Journal of Applied Entomology, 128 (6): 384-389.
  • Langor, D. W., 1991. Arthropods and nematodes co-occur with the eastern larch beetle, Dendroctonus simplex (Col.: Scolytidae), in Newfoundland, Entomophaga, 36 (2): 303-313.
  • Lee, S. Y., I. Nakajima, F. Ihara, H. Kinoshita & T. Nihira, 2005. Cultivation of entomopathogenic fungi for the search of antibacterial compounds. Mycopathologia, 160 (4): 321-325.
  • Litwin, A., M. Nowak, & S. Różalska, 2020. Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology, 19 (1): 23-42.
  • Logeswaran, C., P. Vivekanandhan & M. S. Shivakumar, 2019. Chemical constituents of thermal stress induced Ganoderma applantum (Per.) secondary metabolites on larvae of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and histopathological effects in mosquito larvae. Biocatalysis and Agricultural Biotechnology, 20 (1): 101253 (1-8).
  • Logrieco, A., A. Moretti, A. Ritieni, M. F. Caiaffa & L. Macchia, 2002. "Beauvericin: Chemistry, Biology and Significance, 23-30". In: Advances in Microbial Toxin Research and its Biotechnological Exploitation (Eds R. K. Upadhyay). Springer, Boston, MA, 288 pp.
  • Lozano-Tovar, M. D., A. Ortiz-Urquiza, I. Garrido-Jurado, A. Trapero-Casas & E. Quesada-Moraga, 2013. Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. Biological Control, 67 (3): 409-420.
  • Lutczyk, P. & H. Swieczynska, 1984. Trials of control of the larger pine-shoot beetle Tomicus piniperda L. with the use of the fungus Beauveria bassiana (Bals.) Vuill. on piled wood. Sylwan, 128 (9): 41-45.
  • Madla, S., P. Methacanon, M. Prasitsil, & K. Kirtikara, 2005. Characterization of biocompatible fungi-derived polymers that induce IL-8 production. Carbohydrate Polymers, 59 (3): 275-280.
  • Mannino, M.C., B. Davyt-Colo & N. Pedrini, 2021. ‘’Toxic Secondary Metabolites and Virulence Factors Expression by Entomopathogenic Fungi during Insect Infection and Potential Impact as a Tool for Pest Management, 121-134’’ In: Microbes for Sustainable Insect Pest Management Sustainability in Plant and Crop Protection (Eds M. A. Khan & W. Ahmad), Springer Cham, 274 pp.
  • McGee, P. A., 2002. Reduced growth and deterrence from feeding of the insect pest Helicoverpa armigera associated with fungal endophytes from cotton. Australian Journal of Experimental Agriculture, 42 (7): 995-999.
  • McKinnon, A. C., S. Saari, M. E. Moran-Diez, N. V. Meyling, M. Raad & T. R. Glare, 2017. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl, 62 (1): 1-17.
  • Mwamburi, L. A., 2020. ‘’ Chapter 37-Beauveria, 727-748’’. In: Beneficial Microbes in Agro-Ecology Amaresan (Eds N. Senthil, M. Kumar, K. Annapurna, K. Kumar & A. Sankaranarayanan). Academic Press, 932 pp.
  • Nicoletti, R., A. Andolfi, A. Becchimanzi & M. M. Salvatore, 2023. Anti-insect properties of Penicillium secondary metabolites. Microorganisms, 11 (5): 1302 (1-32).
  • Parine, N. R., A. K. Pathan, B. Sarayu, V. S. Nishanth & V. Bobbarala, 2010. Antibacterial efficacy of secondary metabolites from entomopathogenic fungi Beauveria bassiana. International Journal of Chemical and Analytical Science, 1 (5): 94-96.
  • Patocka, J., 2016. Bioactive metabolites of entomopathogenic fungi Beauveria bassiana. Military Medical Science Letters, 85 (2): 80-88.
  • Pedrini, N., 2022. The Entomopathogenic fungus Beauveria bassiana shows its toxic side within insects: expression of genes encoding secondary metabolites during pathogenesis. Journal of Fungi, 8 (5): 488 (2-9).
  • Perumal, V., S. Kannan, L. Alford, S. Pittarate, R. Geedi, D. Elangovan & P. Krutmuang, 2023a. First report on the enzymatic and immune response of Metarhizium majus bag formulated conidia against Spodoptera frugiperda: An eco-friendly microbial insecticide. Frontiers in Microbiology, 14 (1): 1104079 (1-11).
  • Perumal, V., S. Kannan, L. Alford, S. Pittarate, S. Mekchay & G. V. Reddy, 2023b. Biocontrol effect of entomopathogenic fungi Metarhizium anisopliae ethyl acetate-derived chemical molecules: An eco-friendly anti-malarial drug and insecticide. Archives of Insect Biochemistry and Physiology, 114 (2): 1-19.
  • Perumal, V., S. Kannan, S. Pittarate, R. Chinnasamy & P. Krutmuang, 2023c. Essential oils from Acacia nilotica (Fabales: Fabaceae) seeds: May have insecticidal effects? Heliyon, 9 (4): e14808 (1-12).
  • Quesada‐Moraga, E., J. A. Carrasco‐Díaz & C. Santiago‐Álvarez, 2006. Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). Journal of Applied Entomology, 130 (8): 442-452.
  • Sahab, A. F., 2012. Antimicrobial efficacy of secondary metabolites of Beauveria bassiana against selected bacteria and phytopathogenic fungi. The Journal of Applied Sciences Research, 8 (3): 1441-1444.
  • Sandhu, S. S., A. K. Sharma, V. Beniwal, G. Goel, P. Batra, A. Kumar, S. Jaglan, A. K. Sharma & S. Malhotra, 2012. Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. Journal of Pathogens, 2012 (1): 126819 (1-10).
  • Schmidt, K., Z. Li, B. Schubert, B. Huang, S. Stoyanova & M. Hamburger, 2003. Screening of entomopathogenic Deuteromycetes for activities on targets involved in degenerative diseases of the central nervous system. Journal of Ethnopharmacology, 89 (2-3): 251-260.
  • Schrader, K. K., A. Andolfi, C. L. Cantrell, A. Cimmino, S. O. Duke, W. Osbrink & A. Evidente, 2010. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chemistry & Biodiversity, 7 (9): 2261-2280.
  • Sevim, A., I. Demir, E. Tanyeli & Z. Demirbağ, 2009. Screening of entomopathogenic fungi against the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biocontrol Science and Technology, 20 (1): 3-11.
  • Shahid, I. M., E. Haq, A. Mohamed, P. Q. Rizvi & E. Kolanthasamy, 2023. Entomopathogen-based biopesticides: insights into unravelling their potential in insect pest management. Frontiers in Microbiology, 14 (1): 1208237 (1-24).
  • Sharma, S., H. N. Verma & N. K. Sharma, 2014. Cationic bioactive peptide from the seeds of Benincasa hispida. International Journal of Peptides, 2014 (1): 156160 (1-12).
  • Shin, T. Y., S. H. Ko, W. W. Lee, S. M. Bae, J. B. Choi & S. D. Woo, 2013a. Screening and evaluation of antibacterial metabolites from entomopathogenic fungi. International Journal of Industrial Entomology, 26 (2): 89-94.
  • Shin, T. Y., W. W. Lee, S. H. Ko, J. B. Choi, S. M. Bae, J. Y. Choi & S. D. Woo, 2013b. Distribution and characterization of entomopathogenic fungi from Korean soils. Biocontrol Science and Technology, 23 (3): 288-304.
  • Shin, T. Y., S. M. Bae, J. B. Choi & S. D. Woo, 2014. Simple and rapid screening of entomopathogenic fungi having radical-scavenging and anticancer activities. Journal of Asia-Pacific Entomology, 17 (3): 543-547.
  • Shin, T. Y., M. R. Lee, S. E. Park, S. J. Lee, W. J. Kim & J. S. Kim, 2020. Pathogenesis-related genes of entomopathogenic fungi. Archives of Insect Biochemistry and Physiology, 105 (4): e21747 (1-10).
  • Silva, A. C. L., G. A. Silva, P. H. N. Abib, A. T. Carolino & R. I. Samuels, 2020. Endophytic colonization of tomato plants by the entomopathogenic fungus Beauveria bassiana for controlling the South American tomato pinworm, Tuta absoluta. CABI Agriculture and Bioscience, 1 (1): 1-9.
  • Silva, F. L., I. S. Prado, R. E. Fraga, M. A. Rocha, F. A. Juncá & M. B. Da Silva, 2021. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicology and Environmental Contamination, 16 (1): 13-18.
  • Singh, J. & D. S. Gaikwad, 2020. "Phytogenic Feed Additives in Animal Nutrition, 273-289". In: Natural Bioactive Products in Sustainable Agriculture (Eds: J. Singh & A. Yadav). Springer, Singapore, 307 pp.
  • Singh, R., M. Kumar, A. Mittal & P. K. Mehta, 2017. Microbial metabolites in nutrition, healthcare and agriculture. 3Biotech, 7 (1): 1-14.
  • Sinha, K. K., A. K. Choudhary & P. Kumari, 2016. "Entomopathogenic Fungi, 475-505". In: Ecofriendly Pest Management for Food Security (Eds: O. Omkar). Elsevier Inc.: Amsterdam, The Netherlands, 762 pp.
  • Soesanto, L., L. Sari, E. Mugiastuti & A. Manan, 2021. Cross application of entomopathogenic fungi raw secondary metabolites for controlling Fusarium wilt of chilli seedlings. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 21 (2): 82-90.
  • Soth, S., T. Glare, J. Hampton, S. Card, J. Brookes & J. Narciso, 2022. You are what you eat: fungal metabolites and host plant affect the susceptibility of diamondback moth to entomopathogenic fungi. Peerj, 10 (1): e14491 (1-18).
  • Staats, C. C., Â. Junges & R. L. M. Guedes, 2014. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics, 15 (1): 822 (1-18).
  • Tsoupras, A., V. N. Kouvelis, K. M. Pappas, C. A. Demopoulos & M. A. Typas, 2022. Anti-inflammatory and anti-thrombotic properties of lipid bioactives from the entomopathogenic fungus Beauveria bassiana. Prostaglandins & Other Lipid Mediators, 158 (1): 106606 (1-7).
  • Tu, C., Y. Zhang, P. Zhu, L. Sun, P. Xu, T. Wang, J. Luo, J. Yu & L. Xu, 2023. Enhanced toxicity of entomopathogenic fungi Beauveria bassiana with bacteria expressing immune suppressive dsRNA in a leaf beetle. Pesticide Biochemistry and Physiology, 193 (1): 105431 (1-9).
  • Usta, M., S. Biryol, S. İşık & A. Soydinç, 2025. Determination of the entomopathogenic effects of different Bacillus species and Pantoea dispersa on agricultural and forest pests: host range study. Journal of Plant Diseases and Protection, 132 (29): 1-13.
  • Vidhate, R. P., V. V. Dawkar, S. A. Punekar & A. P. Giri, 2023. Genomic determinants of entomopathogenic fungi and their involvement in pathogenesis. Microbial Ecology, 85 (1): 49-60.
  • Vivekanandhan, P., T. Kavitha, S. Karthi, S. Senthil-Nathan & M. Shivakumar, 2018. Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae). International Journal of Environmental Research and Public Health, 15 (3): 440 (1-11).
  • Vivekanandhan, P., K. Swathy, L. Alford, S. Pittarate, S. P. R. R. Subala & S. Mekchay, 2022a. Toxicity of Metarhizium flavoviride conidia virulence against Spodoptera litura (Lepidoptera: Noctuidae) and its impact on physiological and biochemical activities. Scientific Reports, 12 (1): 16775 (1-10).
  • Vivekanandhan, P., K. Swathy & M. S. Shivakumar, 2022b. Identification of insecticidal molecule aucubin from Metarhizium anisopliae ethyl acetate crude extract against disease mosquito vector. International Journal of Tropical Insect Science, 42 (5): 3303-3318.
  • Vizcaíno, J. A., L. Sanz, A. Basilio, F. Vicente, S. Gutiérrez, M. R. Hermosa & E. Monte, 2005. Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycological Research, 109 (12): 1397-1406.
  • Wahengbam, J., L. S. Bhushan, J. B. Patil & J. Pathma, 2021. "Insecticides Derived from Natural Products: Diversity and Potential Applications, 403-437". In: Current Trends in Microbial Biotechnology for Sustainable Agriculture (Eds, A. N. Yadav, J. Singh, C. Singh & N. Yadav) Environmental and Microbial Biotechnology. Springer, Singapore. 571 pp.
  • Wang, H., H. Peng, W. Li, P. Cheng & M. Gong, 2021. The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12 (1): 705343 (1-11).
  • Wang, Y., Q. Fan, D. Wang, W. Q. Zou, D. X. Tang, P. Hongthong & H. Yu, 2022. Species diversity and virulence potential of the Beauveria bassiana complex and Beauveria scarabaeidicola complex. Frontiers in Microbiology, 4 (13): 841604 (1-15).
  • Yaman, M. & R. Radek, 2008. Pathogens and parasites of adults of the great spruce bark beetle, Dendroctonus micans (Kugelann) (Coleoptera: Curculionidae, Scolytinae) from Turkey. Journal of Pest Science, 81 (2): 91-97.
  • Yaman, M., Ö. Ertürk & İ. Aslan, 2010. Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiologica, 55 (1): 35-38.
  • Yanar O., E. F. Topkara, F. Şahin, Y. Yanar, D. Yanar D & Y. Terzi, 2023. Efficacy of Beauveria bassiana and Metarhizium brunneum isolates against the pine processionary moth, Thaumetopoea wilkinsoni Tams, 1926 (Lepidoptera: Notodontidae). Egyptian Journal of Biological Pest Control, 33 (1): 32 (1-7).
  • Yin, M., D. Xiao, C. Wang, L. Zhang, B. Dun & Q. Yue, 2022. The regulation of BbLaeA on the production of beauvericin and bassiatin in Beauveria bassiana. World Journal of Microbiology and Biotechnology, 38 (1): 1-10.
  • Yılmaz, H., K. Sezen, H. Kati & Z. Demirbag, 2006.The first study on the bacterial flora of the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biologia Bratislava, 61 (6): 679-686.
  • Zibaee, A., A. Bandani, R. Talaei-Hassanlouei & D. Malagoli, 2011. Cellular immune reactions of the sunn pest, eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. Journal of Insect Science, 11 (138): 1-16.

Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) ve ham sekonder metabolitin Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae)’a karşı patojenitesi

Year 2025, Volume: 49 Issue: 3, 349 - 364, 30.09.2025
https://doi.org/10.16970/entoted.1684139

Abstract

Beauveria bassiana (Balsamo-Vuillemin, 1912) (Hypocreales: Clavicipitaceae), özellikle sekonder metabolitleri ile doğal biyolojik aktif bileşiklerin önemli bir kaynağıdır. Bu çalışma, 2024 yılında Trabzon Orman Zararlıları ile Biyolojik Mücadele Laboratuvarı'nda yapılmış olup, B. bassiana’nın Pa-4 suşunun Dendroctonus micans (Kugelann, 1794) (Coleoptera: Curculionidae) larvalarına karşı etil asetat ekstraktının insektisidal etkinliği ve antimikrobiyal aktivitelerini değerlendirmeyi amaçlamıştır. Pa-4 suşu, 1 × 10⁹ spor/mL’lik konsantrasyonda, D. micans larvalarında on gün içinde %100 mortaliteye yol açtı ve LC₅₀ değeri 1.63 × 10⁵ spor/mL olarak belirlendi. Ham sekonder metabolitler ekstraktının konsantrasyonu biyokütle ve çözünmeyen kalıntılarda (miseliyal ekstrat) 0.065 g/mL, süpernatantta ise 0.68 g/mL olarak ölçüldü. Misel ekstraktının LC₅₀ değeri 1019 ppm, süpernatant ekstraktının ise 1382 ppm olarak belirlendi (p<0.05). Ham sekonder metabolitler miseliyal ekstraktının antimikrobiyal aktivitesi, Enterococcus faecalis ATCC 51299’a karşı 9.73 mm çapında en büyük inhibisyon zonunu gösterirken, Bacillus subtilis ATCC 6633 (9.28 mm) ve Candida albicans ATCC 10351 (6.94 mm) içinde etkili oldu (p<0.001). Bu çalışma, Pa-4 suşu ve ham sekonder metabolitler ekstraktının D. micans’ın biyolojik mücadelesi ve antimikrobiyal özellikler için potansiyel ajanlar olabileceğini önermektedir.

Thanks

The author would like to thank the Trabzon Regional Directorate of Forestry and Biological Control Laboratory against Forest Pests for supporting this study.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Abdullah, R. R., 2019. Insecticidal activity of secondary metabolites of locally isolated fungal strains against some cotton insect pests. Journal of Plant Protection and Pathology, 10 (12): 647-653.
  • Aksoy, A., S. M., Dmour, H. Qaralleh, W. S. Alwaneen, R. M. Farsi, R. M. Alreemi, M. W. Hindi, F. N. Mosleh, S. E. Mazloom, D. Sukmawati & A. M. Priskaningrum, 2023. An in vitro antimicrobial activity of Beauveria bassiana secondary metabolites. Pakistan Journal of Agricultural Sciences, 60 (3): 331-336.
  • Alkan-Akıncı H, M. Eroğlu & G. Özcan, 2014. Attack strategy and development of Dendroctonus micans (Kug.) (Coleoptera: Curculionidae) on oriental spruce in Turkey. Turkish Journal of Entomology, 38 (1): 31-41.
  • Alkan Akıncı, H. & J.C. Grégoire, 2025. Investigation of the oviposition and predation impact on Dendroctonus micans (Kug.) of wild and laboratory-produced Rhizophagus grandis Gyll. on oriental spruce in Türkiye. International Journal of Tropical Insect Science, 45 (3): 1415-1424.
  • Ávila-Hernández, J. G., P. Aguilar-Zárate, M. L. Carrillo-Inungaray, M. R. Michel, J. E. Wong-Paz, D. B. Muñiz-Márquez, R. Rojas-Molina, J. A. Ascacio-Valdés & G. C. G. Martínez-Ávila, 2022. The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA. Brazilian Journal of Microbiology, 53 (1): 143-152.
  • Bakr, W. H., M. F. Ghaly, W. G. Tantawy & S. N. El-Shafeiy, 2025. Detection of some secondary metabolites of Beauveria bassiana and the potential effects on Spodoptera littoralis. Chemical and Biological Technologies in Agriculture, 12 (1): 59 (1-15).
  • Balumahendhiran, K., P. Vivekanandhan & M. S. Shivakumar, 2019. Mosquito control potential of secondary metabolites isolated from Aspergillus flavus and Aspergillus fumigatus. Biocatalysis and Agricultural Biotechnology, 21 (1): 101334 (1-7).
  • Baron, N. C., E. C. Rigobelo & D. C. Zied, 2019. Filamentous fungi in biological control: Current status and future perspectives. Chilean Journal of Agricultural Research, 79 (2): 307-315.
  • Barry, A.L., F. Garcia & L. D. Thrupp, 1970. An improved single-disk method for testing the antibiotic susceptibility of rapidly growing pathogens. American Journal of Clinical Pathology, 53 (2): 149-158.
  • Bauer, A. W., W. M. M. Kirby, J. C. Sherris & M. Turck, 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45 (4): 493-496.
  • Biryol, S., N. Araz, A. Eski, R. Akturk, Y. Aksu, B. C. Gokturk, L. Bilgin & I. Demir, 2021a. Biodiversity and pathogenicity of entomopathogenic fungi associated with the lesser spruce sawfly, Pristophora abietina. Entomologia Experimentalis et Applicata, 169 (5): 414-423.
  • Biryol, S., E. Güney, A. Eski, Z. Bayramoğlu, K. Sezen, Z. Demirbag & İ. Demir, 2021b. Development of mycoinsecticide formulations with Beauveria bassiana and Metarhizium brunneum for the control of Orosanga japonica (Hemiptera: Ricaniidae). Annals of Applied Biology, 179 (3): 319-330.
  • Biryol, S., Z. Demirbağ, P. Erdoğan & I. Demir, 2022. Development of Beauveria bassiana (Ascomycota: Hypocreales) as a mycoinsecticide to control green peach aphid, Myzus persicae (Homoptera: Aphididae) and investigation of its biocontrol potential. Journal of Asia-Pacific Entomology, 25 (1): 101878 (1-10).
  • Biryol, S., A. Soydinç & S. İşık, 2024. Morphological, molecular identification and virulence of entomopathogenic fungi isolated from Dendroctonus micans (Kugelann, 1794) (Coleoptera: Curculionidae). Sakarya University Journal of Science, 28 (2): 381-391.
  • Biryol, S., N. Araz Sayın, R. Aktürk, L. Bilgin, S. İşık, A. Soydinç, E. F. Topkara, O. Yanar, S. Ayvaz, H. Turna & I. Demir, 2025. Target and non-target impact of oil-based Beauveria bassiana formulation in controlling forest insect pests. Journal of Pest Science, 98 (4): 1-16. (in Press) (https://doi.org/10.1007/s10340-025-01929-8).
  • Büyükterzi, A., G. E. Özcan & O. E. Sakici, 2022. Variations in the attack pattern of Dendroctonus micans and the colonization rate of Rhizophagus grandis in Picea orientalis stands. Biologia, 77 (9): 2475-2485.
  • Camele, I., S. A. Sadeek, R. Racioppi & H. S. Elshafie, 2023. Antimicrobial activity of diffusible and volatile metabolites emitted by Beauveria bassiana: Chemical profile of volatile organic compounds (VOCs) using SPME-GC/MS analysis. Plants, 12 (15): 2854 (1-13).
  • Dadgostar, P., 2019. Antimicrobial resistance: implications and costs. Infection and Drug Resistance, 20 (12): 3903-3910.
  • Daniel, J. F. S., A. A. Silva, D. H. Nakagawa, L. S. de Medeiros, M. G. Carvalho, L. J. Tavares, L. M. Abreu & E. Rodrigues-Filho, 2017. Larvicidal activity of Beauveria bassiana extracts against Aedes aegypti and identification of beauvericins. Journal of the Brazilian Chemical Society, 28 (6): 1003-1013.
  • Dannon, H. F., A. E. Dannon, O. K. Douro-Kpindou, A. V. Zinsou, A. T. Houndete, J. Toffa-Mehinto, I. M. Elegbede, B. D. Olou & M. Tamò, 2020. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3 (24): 1-21.
  • Davis, T. S., A. J. Mann, D. Malesky, E. Jankowski & C. Bradley, 2018. Laboratory and field evaluation of the entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for population management of spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae) in felled trees and factors limiting pathogen success. Environmental Entomology, 47 (3): 594-602.
  • de Faria, M. R. & S. P. Wraight, 2007. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43 (3): 237-256.
  • Deb, L., P. Dutta, M. K. Mandal & S. B. Singh, 2023. Antimicrobial traits of Beauveria bassiana against Rhizoctonia solani, the causal agent of sheath blight of rice under field conditions. Plant Disease, 107 (6): 1739-1756.
  • Dembilio, O., E. Quesada-Moraga, C. Santiago-Alvarez & J. A. Jacas, 2010. Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus. Journal of Invertebrate Pathology, 104 (3): 214-221.
  • Elhamouly, N. A., O. A. Hewedy, A. Zaitoon, A. Miraples, O. T. Elshorbagy, S. Hussien, A. El-Tahan & D. Peng, 2022. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Frontiers in Plant, 12 (13): 1044896.
  • Fora, C. G., N. Boja M. Moatar, F. Tóth & A. Balog, 2020. Effect of entomopathogenic fungi, Beauveria bassiana (Cordycipitaceae), on the bark beetle, Ips typographus (L.), under field conditions. Insects 13 (10): 885 (1-10).
  • Forestry Statistics, 2021. T.C. Tarım ve Orman Bakanlığı, Orman Genel Müdürlüğü. (Web page: https://www.ogm.gov.tr/tr/ormanlarimiz/resmi-istatistikler) (Date accessed: 24 August 2025).
  • Gillespie, A. T. & N. Claydon, 1989. The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pesticide Science, 27 (2): 203-215.
  • Glare, T., M. Campbell, P. Biggs, D. Winter, A. Durrant, A. McKinnon & M. Cox, 2020. Mitochondrial evolution in the entomopathogenic fungal genus Beauveria. Archives of Insect Biochemistry & Physiology, 105 (4): e21754 (1-17).
  • Gurulingappa, P., P. A. McGee & G. Sword, 2011. Endophytic Lecanicillium lecanii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection, 30 (3): 349-353.
  • Gustianingtyas, M., S. Herlinda, S. Suwandi, H. Hamidson, S. A. Hasbi, M. Verawaty & A. Elfita, 2020. Toxicity of entomopathogenic fungal culture filtrate of lowland and highland soil of South Sumatra (Indonesia) against Spodoptera litura larvae. Biodiversitas Journal of Biological Diversity, 21 (5): 1839-1849.
  • Hallet, S., J. C. Grégoire & J. Coremans-Pelseneer, 1994. Prospects in using entomopathogenous fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes: Hyphomycetes) to control the spruce bark beetle Ips typographus L. (Coleoptera: Scolytidae). Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent, 59 (2): 379-383.
  • Hamill, R. L., C. E. Higgens, H. E. Boza & M. Gorman, 1969. The structure of beauvericin, a new depsipeptide antibiotic to Artemia salina. Tetrahedron Letters, 49 (10): 4255-4258.
  • Holighaus, G. & M. Rohlfs, 2016. Fungal allelochemicals in insect pest management. Applied Microbiology and Biotechnology, 100 (13): 5681-5689.
  • Hywell-Jones, N. L. & A. T. Gillespie, 1990. Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycological Research, 94 (3): 389-392.
  • Ibrahim, A. A., B. B. Haroun, A. F. El-Fekky & H. K. Bekhiet, 2012. Isolation and identification of three entomopathogenic fungi. Egyptian Journal of Agricultural Research, 90 (2): 558-574.
  • Islam, W., M. Adnan, A. Shabbir, H. Naveed, Y. S. Abubakar, M. Qasim, M. Tayyab, A. Noman, M. S. Nisar, K. A. Khan & H. Ali, 2021. Insect-fungal interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis, 159 (1): 105122 (1-16).
  • Jankielsohn, A., 2018. The importance of insects in agricultural ecosystems. Advances in Entomology, 6 (2): 62-73.
  • Kannan, S., V. Perumal, A. Yuvaraj, S. Pittarate, J. S. Kim & P. Krutmuang, 2023. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon, 10 (1): e23406 (1-17).
  • Keswani, C., H. B. Singh, R. Hermosa, C. García-Estrada, J. Caradus, Y. W. He, S. Mezaache-Aichour, T. R. Glare, R. Borriss, F. Vinale & E. Sansinenea, 2019. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology, 103 (23): 9287-9303.
  • Kocacevik, S., A. Sevim, M. Eroglu, Z. Demirbag & I. Demir, 2015. Molecular characterization, virulence and horizontal transmission of Beauveria pseudobassiana from Dendroctonus micans (Kug.) (Coleoptera: Curculionidae). Journal of Applied Entomology, 139 (5): 381-389.
  • Kreutz, J., O. Vaupel & G. Zimmermann, 2004. Efficacy of Beauveria bassiana (Bals.) Vuill. against the spruce bark beetle, Ips typographus L, in the laboratory under various conditions. Journal of Applied Entomology, 128 (6): 384-389.
  • Langor, D. W., 1991. Arthropods and nematodes co-occur with the eastern larch beetle, Dendroctonus simplex (Col.: Scolytidae), in Newfoundland, Entomophaga, 36 (2): 303-313.
  • Lee, S. Y., I. Nakajima, F. Ihara, H. Kinoshita & T. Nihira, 2005. Cultivation of entomopathogenic fungi for the search of antibacterial compounds. Mycopathologia, 160 (4): 321-325.
  • Litwin, A., M. Nowak, & S. Różalska, 2020. Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology, 19 (1): 23-42.
  • Logeswaran, C., P. Vivekanandhan & M. S. Shivakumar, 2019. Chemical constituents of thermal stress induced Ganoderma applantum (Per.) secondary metabolites on larvae of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and histopathological effects in mosquito larvae. Biocatalysis and Agricultural Biotechnology, 20 (1): 101253 (1-8).
  • Logrieco, A., A. Moretti, A. Ritieni, M. F. Caiaffa & L. Macchia, 2002. "Beauvericin: Chemistry, Biology and Significance, 23-30". In: Advances in Microbial Toxin Research and its Biotechnological Exploitation (Eds R. K. Upadhyay). Springer, Boston, MA, 288 pp.
  • Lozano-Tovar, M. D., A. Ortiz-Urquiza, I. Garrido-Jurado, A. Trapero-Casas & E. Quesada-Moraga, 2013. Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. Biological Control, 67 (3): 409-420.
  • Lutczyk, P. & H. Swieczynska, 1984. Trials of control of the larger pine-shoot beetle Tomicus piniperda L. with the use of the fungus Beauveria bassiana (Bals.) Vuill. on piled wood. Sylwan, 128 (9): 41-45.
  • Madla, S., P. Methacanon, M. Prasitsil, & K. Kirtikara, 2005. Characterization of biocompatible fungi-derived polymers that induce IL-8 production. Carbohydrate Polymers, 59 (3): 275-280.
  • Mannino, M.C., B. Davyt-Colo & N. Pedrini, 2021. ‘’Toxic Secondary Metabolites and Virulence Factors Expression by Entomopathogenic Fungi during Insect Infection and Potential Impact as a Tool for Pest Management, 121-134’’ In: Microbes for Sustainable Insect Pest Management Sustainability in Plant and Crop Protection (Eds M. A. Khan & W. Ahmad), Springer Cham, 274 pp.
  • McGee, P. A., 2002. Reduced growth and deterrence from feeding of the insect pest Helicoverpa armigera associated with fungal endophytes from cotton. Australian Journal of Experimental Agriculture, 42 (7): 995-999.
  • McKinnon, A. C., S. Saari, M. E. Moran-Diez, N. V. Meyling, M. Raad & T. R. Glare, 2017. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl, 62 (1): 1-17.
  • Mwamburi, L. A., 2020. ‘’ Chapter 37-Beauveria, 727-748’’. In: Beneficial Microbes in Agro-Ecology Amaresan (Eds N. Senthil, M. Kumar, K. Annapurna, K. Kumar & A. Sankaranarayanan). Academic Press, 932 pp.
  • Nicoletti, R., A. Andolfi, A. Becchimanzi & M. M. Salvatore, 2023. Anti-insect properties of Penicillium secondary metabolites. Microorganisms, 11 (5): 1302 (1-32).
  • Parine, N. R., A. K. Pathan, B. Sarayu, V. S. Nishanth & V. Bobbarala, 2010. Antibacterial efficacy of secondary metabolites from entomopathogenic fungi Beauveria bassiana. International Journal of Chemical and Analytical Science, 1 (5): 94-96.
  • Patocka, J., 2016. Bioactive metabolites of entomopathogenic fungi Beauveria bassiana. Military Medical Science Letters, 85 (2): 80-88.
  • Pedrini, N., 2022. The Entomopathogenic fungus Beauveria bassiana shows its toxic side within insects: expression of genes encoding secondary metabolites during pathogenesis. Journal of Fungi, 8 (5): 488 (2-9).
  • Perumal, V., S. Kannan, L. Alford, S. Pittarate, R. Geedi, D. Elangovan & P. Krutmuang, 2023a. First report on the enzymatic and immune response of Metarhizium majus bag formulated conidia against Spodoptera frugiperda: An eco-friendly microbial insecticide. Frontiers in Microbiology, 14 (1): 1104079 (1-11).
  • Perumal, V., S. Kannan, L. Alford, S. Pittarate, S. Mekchay & G. V. Reddy, 2023b. Biocontrol effect of entomopathogenic fungi Metarhizium anisopliae ethyl acetate-derived chemical molecules: An eco-friendly anti-malarial drug and insecticide. Archives of Insect Biochemistry and Physiology, 114 (2): 1-19.
  • Perumal, V., S. Kannan, S. Pittarate, R. Chinnasamy & P. Krutmuang, 2023c. Essential oils from Acacia nilotica (Fabales: Fabaceae) seeds: May have insecticidal effects? Heliyon, 9 (4): e14808 (1-12).
  • Quesada‐Moraga, E., J. A. Carrasco‐Díaz & C. Santiago‐Álvarez, 2006. Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). Journal of Applied Entomology, 130 (8): 442-452.
  • Sahab, A. F., 2012. Antimicrobial efficacy of secondary metabolites of Beauveria bassiana against selected bacteria and phytopathogenic fungi. The Journal of Applied Sciences Research, 8 (3): 1441-1444.
  • Sandhu, S. S., A. K. Sharma, V. Beniwal, G. Goel, P. Batra, A. Kumar, S. Jaglan, A. K. Sharma & S. Malhotra, 2012. Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. Journal of Pathogens, 2012 (1): 126819 (1-10).
  • Schmidt, K., Z. Li, B. Schubert, B. Huang, S. Stoyanova & M. Hamburger, 2003. Screening of entomopathogenic Deuteromycetes for activities on targets involved in degenerative diseases of the central nervous system. Journal of Ethnopharmacology, 89 (2-3): 251-260.
  • Schrader, K. K., A. Andolfi, C. L. Cantrell, A. Cimmino, S. O. Duke, W. Osbrink & A. Evidente, 2010. A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chemistry & Biodiversity, 7 (9): 2261-2280.
  • Sevim, A., I. Demir, E. Tanyeli & Z. Demirbağ, 2009. Screening of entomopathogenic fungi against the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biocontrol Science and Technology, 20 (1): 3-11.
  • Shahid, I. M., E. Haq, A. Mohamed, P. Q. Rizvi & E. Kolanthasamy, 2023. Entomopathogen-based biopesticides: insights into unravelling their potential in insect pest management. Frontiers in Microbiology, 14 (1): 1208237 (1-24).
  • Sharma, S., H. N. Verma & N. K. Sharma, 2014. Cationic bioactive peptide from the seeds of Benincasa hispida. International Journal of Peptides, 2014 (1): 156160 (1-12).
  • Shin, T. Y., S. H. Ko, W. W. Lee, S. M. Bae, J. B. Choi & S. D. Woo, 2013a. Screening and evaluation of antibacterial metabolites from entomopathogenic fungi. International Journal of Industrial Entomology, 26 (2): 89-94.
  • Shin, T. Y., W. W. Lee, S. H. Ko, J. B. Choi, S. M. Bae, J. Y. Choi & S. D. Woo, 2013b. Distribution and characterization of entomopathogenic fungi from Korean soils. Biocontrol Science and Technology, 23 (3): 288-304.
  • Shin, T. Y., S. M. Bae, J. B. Choi & S. D. Woo, 2014. Simple and rapid screening of entomopathogenic fungi having radical-scavenging and anticancer activities. Journal of Asia-Pacific Entomology, 17 (3): 543-547.
  • Shin, T. Y., M. R. Lee, S. E. Park, S. J. Lee, W. J. Kim & J. S. Kim, 2020. Pathogenesis-related genes of entomopathogenic fungi. Archives of Insect Biochemistry and Physiology, 105 (4): e21747 (1-10).
  • Silva, A. C. L., G. A. Silva, P. H. N. Abib, A. T. Carolino & R. I. Samuels, 2020. Endophytic colonization of tomato plants by the entomopathogenic fungus Beauveria bassiana for controlling the South American tomato pinworm, Tuta absoluta. CABI Agriculture and Bioscience, 1 (1): 1-9.
  • Silva, F. L., I. S. Prado, R. E. Fraga, M. A. Rocha, F. A. Juncá & M. B. Da Silva, 2021. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicology and Environmental Contamination, 16 (1): 13-18.
  • Singh, J. & D. S. Gaikwad, 2020. "Phytogenic Feed Additives in Animal Nutrition, 273-289". In: Natural Bioactive Products in Sustainable Agriculture (Eds: J. Singh & A. Yadav). Springer, Singapore, 307 pp.
  • Singh, R., M. Kumar, A. Mittal & P. K. Mehta, 2017. Microbial metabolites in nutrition, healthcare and agriculture. 3Biotech, 7 (1): 1-14.
  • Sinha, K. K., A. K. Choudhary & P. Kumari, 2016. "Entomopathogenic Fungi, 475-505". In: Ecofriendly Pest Management for Food Security (Eds: O. Omkar). Elsevier Inc.: Amsterdam, The Netherlands, 762 pp.
  • Soesanto, L., L. Sari, E. Mugiastuti & A. Manan, 2021. Cross application of entomopathogenic fungi raw secondary metabolites for controlling Fusarium wilt of chilli seedlings. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 21 (2): 82-90.
  • Soth, S., T. Glare, J. Hampton, S. Card, J. Brookes & J. Narciso, 2022. You are what you eat: fungal metabolites and host plant affect the susceptibility of diamondback moth to entomopathogenic fungi. Peerj, 10 (1): e14491 (1-18).
  • Staats, C. C., Â. Junges & R. L. M. Guedes, 2014. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics, 15 (1): 822 (1-18).
  • Tsoupras, A., V. N. Kouvelis, K. M. Pappas, C. A. Demopoulos & M. A. Typas, 2022. Anti-inflammatory and anti-thrombotic properties of lipid bioactives from the entomopathogenic fungus Beauveria bassiana. Prostaglandins & Other Lipid Mediators, 158 (1): 106606 (1-7).
  • Tu, C., Y. Zhang, P. Zhu, L. Sun, P. Xu, T. Wang, J. Luo, J. Yu & L. Xu, 2023. Enhanced toxicity of entomopathogenic fungi Beauveria bassiana with bacteria expressing immune suppressive dsRNA in a leaf beetle. Pesticide Biochemistry and Physiology, 193 (1): 105431 (1-9).
  • Usta, M., S. Biryol, S. İşık & A. Soydinç, 2025. Determination of the entomopathogenic effects of different Bacillus species and Pantoea dispersa on agricultural and forest pests: host range study. Journal of Plant Diseases and Protection, 132 (29): 1-13.
  • Vidhate, R. P., V. V. Dawkar, S. A. Punekar & A. P. Giri, 2023. Genomic determinants of entomopathogenic fungi and their involvement in pathogenesis. Microbial Ecology, 85 (1): 49-60.
  • Vivekanandhan, P., T. Kavitha, S. Karthi, S. Senthil-Nathan & M. Shivakumar, 2018. Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae). International Journal of Environmental Research and Public Health, 15 (3): 440 (1-11).
  • Vivekanandhan, P., K. Swathy, L. Alford, S. Pittarate, S. P. R. R. Subala & S. Mekchay, 2022a. Toxicity of Metarhizium flavoviride conidia virulence against Spodoptera litura (Lepidoptera: Noctuidae) and its impact on physiological and biochemical activities. Scientific Reports, 12 (1): 16775 (1-10).
  • Vivekanandhan, P., K. Swathy & M. S. Shivakumar, 2022b. Identification of insecticidal molecule aucubin from Metarhizium anisopliae ethyl acetate crude extract against disease mosquito vector. International Journal of Tropical Insect Science, 42 (5): 3303-3318.
  • Vizcaíno, J. A., L. Sanz, A. Basilio, F. Vicente, S. Gutiérrez, M. R. Hermosa & E. Monte, 2005. Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycological Research, 109 (12): 1397-1406.
  • Wahengbam, J., L. S. Bhushan, J. B. Patil & J. Pathma, 2021. "Insecticides Derived from Natural Products: Diversity and Potential Applications, 403-437". In: Current Trends in Microbial Biotechnology for Sustainable Agriculture (Eds, A. N. Yadav, J. Singh, C. Singh & N. Yadav) Environmental and Microbial Biotechnology. Springer, Singapore. 571 pp.
  • Wang, H., H. Peng, W. Li, P. Cheng & M. Gong, 2021. The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12 (1): 705343 (1-11).
  • Wang, Y., Q. Fan, D. Wang, W. Q. Zou, D. X. Tang, P. Hongthong & H. Yu, 2022. Species diversity and virulence potential of the Beauveria bassiana complex and Beauveria scarabaeidicola complex. Frontiers in Microbiology, 4 (13): 841604 (1-15).
  • Yaman, M. & R. Radek, 2008. Pathogens and parasites of adults of the great spruce bark beetle, Dendroctonus micans (Kugelann) (Coleoptera: Curculionidae, Scolytinae) from Turkey. Journal of Pest Science, 81 (2): 91-97.
  • Yaman, M., Ö. Ertürk & İ. Aslan, 2010. Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiologica, 55 (1): 35-38.
  • Yanar O., E. F. Topkara, F. Şahin, Y. Yanar, D. Yanar D & Y. Terzi, 2023. Efficacy of Beauveria bassiana and Metarhizium brunneum isolates against the pine processionary moth, Thaumetopoea wilkinsoni Tams, 1926 (Lepidoptera: Notodontidae). Egyptian Journal of Biological Pest Control, 33 (1): 32 (1-7).
  • Yin, M., D. Xiao, C. Wang, L. Zhang, B. Dun & Q. Yue, 2022. The regulation of BbLaeA on the production of beauvericin and bassiatin in Beauveria bassiana. World Journal of Microbiology and Biotechnology, 38 (1): 1-10.
  • Yılmaz, H., K. Sezen, H. Kati & Z. Demirbag, 2006.The first study on the bacterial flora of the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biologia Bratislava, 61 (6): 679-686.
  • Zibaee, A., A. Bandani, R. Talaei-Hassanlouei & D. Malagoli, 2011. Cellular immune reactions of the sunn pest, eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. Journal of Insect Science, 11 (138): 1-16.
There are 99 citations in total.

Details

Primary Language English
Subjects Entomology, Plant Protection (Other), Forest Entomology and Forest Protection
Journal Section Articles
Authors

Seda Biryol 0000-0003-0881-5004

Publication Date September 30, 2025
Submission Date April 27, 2025
Acceptance Date September 16, 2025
Published in Issue Year 2025 Volume: 49 Issue: 3

Cite

APA Biryol, S. (2025). Pathogenicity of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and crude secondary metabolites against Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae). Turkish Journal of Entomology, 49(3), 349-364. https://doi.org/10.16970/entoted.1684139
AMA Biryol S. Pathogenicity of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and crude secondary metabolites against Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae). TED. September 2025;49(3):349-364. doi:10.16970/entoted.1684139
Chicago Biryol, Seda. “Pathogenicity of Beauveria Bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and Crude Secondary Metabolites Against Dendroctonus Micans (Kugelann,1974) (Coleoptera: Curculionidae)”. Turkish Journal of Entomology 49, no. 3 (September 2025): 349-64. https://doi.org/10.16970/entoted.1684139.
EndNote Biryol S (September 1, 2025) Pathogenicity of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and crude secondary metabolites against Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae). Turkish Journal of Entomology 49 3 349–364.
IEEE S. Biryol, “Pathogenicity of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and crude secondary metabolites against Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae)”, TED, vol. 49, no. 3, pp. 349–364, 2025, doi: 10.16970/entoted.1684139.
ISNAD Biryol, Seda. “Pathogenicity of Beauveria Bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and Crude Secondary Metabolites Against Dendroctonus Micans (Kugelann,1974) (Coleoptera: Curculionidae)”. Turkish Journal of Entomology 49/3 (September2025), 349-364. https://doi.org/10.16970/entoted.1684139.
JAMA Biryol S. Pathogenicity of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and crude secondary metabolites against Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae). TED. 2025;49:349–364.
MLA Biryol, Seda. “Pathogenicity of Beauveria Bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and Crude Secondary Metabolites Against Dendroctonus Micans (Kugelann,1974) (Coleoptera: Curculionidae)”. Turkish Journal of Entomology, vol. 49, no. 3, 2025, pp. 349-64, doi:10.16970/entoted.1684139.
Vancouver Biryol S. Pathogenicity of Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and crude secondary metabolites against Dendroctonus micans (Kugelann,1974) (Coleoptera: Curculionidae). TED. 2025;49(3):349-64.