Research Article
BibTex RIS Cite

Entomopathogenic effects of different endophytic bacteria on Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae)

Year 2025, Volume: 49 Issue: 3, 257 - 268, 30.09.2025
https://doi.org/10.16970/entoted.1696225

Abstract

This study was conducted in 2024-2025 in the laboratories of Ege University, Faculty of Agriculture, Department of Plant Protection. Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae) is an important pest in Türkiye and causes extensive economic losses in many cultivated crops. During our field observations, some blackening and dead individuals were observed in Leptinotarsa decemlineata (Say, 1824) (Coleoptera: Chrysomelidae) larvae. As a result of the isolations made from blackened larvae and plant samples, 6 different bacterial isolates were obtained. Pseudomonas fluorescens Migula (Pseudomonadales: Pseudomonadaceae) strain 184, whose entomopathogenic effect was proven in our previous studies and molecular diagnosis and sequence analysis were performed, was also used in these tests. As a result of two seperated experiments, it was observed that endophytic bacteria isolates caused 20 to 93% mortality compared to untreated negative control. As a result of conventional and molecular identification and sequence analysis, the bacterial isolates with the highest entomopathogenic effect against S. littoralis larvae were isolates 441 and 442, which were definitively identified as Serratia marcescens J. and Enterobacter cloacae M. (Enterobacterales: Enterobacteriaceae), respectively. This study revealed that these bacteria may have potential for biological control against S. littoralis.

Supporting Institution

TUBITAK- Project number 224O324

Project Number

TUBITAK- Project number 224O324

Thanks

This study was conducted with the financial support provided by TUBITAK (Project number 224O324).

References

  • Abo-Elghar, G. E., Z. A. Elbermawy, A. Yousef & H. Abd-Elhady. 2005. Monitoring and characterization of insecticide resistance in the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 8 (4): 397-410.
  • Ahmed, M. A., S. A. Temerak, F. K. Abdel-Galil & S. H. Manna, 2016. Susceptibility of field and laboratory strains of Cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) to spinosad pesticide under laboratory conditions. Plant Protection Science, 52 (2): 128-133.
  • Altıkat, A., T. Turan, F. E. Torun & Z. Bingül, 2009. Türkiye'de pestisit kullanımı ve çevreye olan etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40 (2): 87-92 (in Turkish with abstract in English).
  • Baker, B. P., T. A. Green & A. J. Loker, 2020. Biological control and integrated pest management in organic and conventional systems. Biological Control, 140 (2020): 104095 (1-9).
  • CABI, 2022. Spodoptera littoralis. In: Invasive Species Compendium. (Web page: https://doi.org/10.1079/cabicompendium.51070) (Date accessed: September 2022).
  • Chernin, L., Z. Ismailov, S. Haran & I. Chet, 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Applied and Environmental Microbiology, 61 (5): 1720-1726.
  • Clapham, W. B. Jr, 1980. Egyptian cotton leafworm: Integrated control and the agricultural production system. Agriculture and Environment, 5 (3): 201-211.
  • de Maagd, R. A., A. Bravo, C. Berry, N. Crickmore & H. E. Schnepf, 2003. Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annual Review of Genetics, 37 (1): 409-433.
  • Deka, B., C. Baruah & A. Babu, 2021. Entomopathogenic microorganisms: their role in insect pest management. Egyptian Journal of Biological Pest Control, 31 (1): 1-10.
  • Doğan, C., G. Güney, K. K. Güzel, A. Can, D. D. Hegedus & U. Toprak, 2021. What You eat matters: nutrient inputs alter the metabolism and neuropeptide expression in egyptian cotton leaf worm, Spodoptera littoralis (Lepidoptera: Noctuidae). Frontiers in Physiology, 12: 773688 (1-14).
  • EFSA PLH Panel (EFSA Panel on Plant Health), 2015. Scientific opinion on the pest categorisation of Spodoptera littoralis. EFSA Journal, 13 (1): 3987 (1-26).
  • EPPO, 2015. PM 7/124 (1) Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. EPPO Bulletin, 45: 410-444.
  • EPPO, 2022. Spodoptera littoralis. EPPO Datasheets on Pests Recommended for Regulation. (Web page: https://gd.eppo.int) (Date accessed: February 2025).
  • Feldhaar, H., 2011. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36 (5): 533-543.
  • Fouad, E. A., F. S. Ahmed & M. A. M. Moustafa, 2022. Monitoring and biochemical impact of insecticides resistance on field populations of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Polish Journal of Entomology, 91 (3): 109-118.
  • Gangwar, P., M. Trivedi & R. K. Tiwari, 2021. “Entomopathogenic Bacteria, 25-48”. In: Microbial Approaches for insect Pest Management (Ed. Omkar). Springer, Singapore, 446 pp.
  • Gaugler, R., E. Lewis & R. J. Stuart, 1997. Ecology in the service of biological control: the case of entomopathogenic nematodes. Oecologia, 109: 483-489.
  • Hadim, N. & M. O. Gürkan, 2007. “Pamuk yaprak kurdu (Spodoptera littoralis Boisd.) (Lepidoptera: Noctuidae)'nda sentetik pyretroitlere karşı ortaya çıkan direncin biyokimyasal mekanizmaları, 60”. In: Türkiye II. Bitki Koruma Kongresi (27-29 Ağustos 2007) Bildirileri, Isparta, 342 pp (in Turkish).
  • Hafez, S. S. M., A. EL-Malla, R. E. Ali & M. K. El-Hadek, 2018. Resistance monitoring in cotton leafworm Spodoptera littoralis to certain bioinsecticides during ten cotton seasons in eight governorates on Egypt. Journal of Biological Chemistry, 35: 590-594.
  • Hallmann, J., G. Berg & B. Schulz, 2006. “Isolation Procedures for Endophytic Microorganisms”. In: Microbial Root Endophytes (Eds. B. J. E. Schulz, C. J. C. Boyle & T N. Sieber). Springer, Berlin, Heidelberg, 367 pp.
  • Hamid, R., M. A. Khan, M. Ahmad, M. M. Ahmad, M. Z. Abdin, J. Musarrat & S. Javed, 2013. Chitinases: An update. Journal of Pharmacy and Bioallied Sciences, 5 (1): 21-29.
  • Hassan, K. A., A. Johnson & B. T. Shaffer, 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environmental Microbiology, 12 (4): 899-915.
  • Huang, R. & H. Chen, 2018. Evaluation of inactivating Salmonella on iceberg lettuce shreds with washing process in combination with pulsed light, ultrasound and chlorine. International Journal of Food Microbiology, 285: 144-151.
  • Kaya, H. K. & F. E. Vega, 2012. Insect Pathology, 2nd ed. Elsevier Academic Press, San Diego, CA, USA, 490 pp.
  • Khabbaz, S. E., L. Zhang, L. A. Caceres, M. Sumarah, A. Wang & P. A. Abbasi, 2015. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Annals of Applied Biology, 166 (3): 456-471.
  • Kshetri, L., F. Naseem & P. Pandey, 2019. “Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant, 123-142”. In: Plant Growth Promoting Rhizobacteria for Sustainable Stress Management (Ed. R. Sayyed), Springer, Singapore, 419 pp.
  • Kulkova, I., B. Wróbel & J. Dobrzyński, 2024. Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Frontiers in Microbiology, 15: 1-10.
  • Kwenti, T. E., 2017. “Biological Control of Parasites,1-15”. In: Natural Remedies in the Fight Against Parasites (Eds. H.F.F. Khater, M. Govindarajan & G. Benelli). InTech Open, 248 pp.
  • Lamelas, A., M. J. Gosalbes & A. Manzano-Marín, 2011. Serratia symbiotica from the aphid Cinara cedri: A missing link from facultative to obligate insect endosymbiont. PLoS Genetics, 7 (11): e1002357 (1-11).
  • Liao, C., R. Huang, Y. Yang, Y. Huang, K. Zhang, L. Ma, T. Li, L. Wang, H. Zhang & B. Li, 2023. Effects of insecticidal proteins of Enterobacter cloacae NK on cellular immunity of Galleria mellonella larvae. Frontiers in Microbiology, 14: 1154811 (1-9).
  • Morris, O. N, 1972. Susceptibility of some forest insects to mixture of commercial Bacillus thuringiensis and chemical insecticides and sensitivity of the pathogen to insecticide. The Canadian Entomologist, 104 (9): 1419-1425.
  • Mota-Sanchez, D. & J. C. Wise, 2021. The Arthropod pesticide resistance database, Michigan State University. (Web page: https://www.pesticideresistance.org/display.php?page=speciesandarId=536) (Date accessed: February 2025).
  • Musser, F. R., J. P. Nyrop & A. M. Shelton, 2006. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. Journal of Economic Entomology, 99 (5): 1538-1549.
  • Niu, H., B. Liu, Y. Li & H. Guo, 2015. Identification of a bacterium isolated from the diseased brown planthopper and determination of its insecticidal activity. Biocontrol Science and Technology, 26 (2): 217-226.
  • Nollet, L. M. & S. Mir (Eds.), 2023. Biopesticides Handbook. CRC Press, 350 pp.
  • OECD/FAO, 2022. OECD-FAO Agricultural Outlook 2022-2031. (Web page: https://doi.org/10.1787/f1b0b29c-en) (Date accessed: January 2025).
  • Otsu, Y., H. Matsuda, H. Mori, T. Ueki, K. Nakajiama, M. Fujiwara, N. Matsumoto, K. Azuma, T. Kakutani, Y. Nonomura, T. Sakuratani, Y. Shinogi, S. Tosa, S. Mayama & H. Toyoda, 2004. Stable phylloplane colonization by entamopathogenic bacteria Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetle Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 14 (5): 427-439.
  • Özsarı, P., M. Akbaba, H. Özaktan & Y. Karsavuran, 2017. Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)'nın biyolojik mücadelesinde bakteriyel endofitlerin kullanılması. Türkiye Biyolojik Mücadele Dergisi, 8 (2): 107-124 (in Turkish with abstract in English).
  • Pineda-Castellanos, M., Z. Rodríguez-Segura, F. Villalobos, L. Hernández, L. Lina & M. Nunez-Valdez, 2015. Pathogenicity of isolates of Serratia marcescens towards larvae of the scarab Phyllophaga blanchardi (Coleoptera). Pathogens, 4 (2): 210-228.
  • Rae, R., M. Riebesell & I. Dinkelacker, 2008. Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. Journal of Experimental Biology, 211 (12): 1927-1936.
  • Ruffner, B., M. Péchy-Tarr & F. Ryffel, 2013. Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15 (3): 751-763.
  • Sankari Meena, K., M. Annamalai, S. R. Prabhukarthikeyan, U. Keerthana, M. K. Yadav, P. C. Rath, M. Jena & P. Prajna, 2019. “Agriculture Application of Pseudomonas: A View on the Relative Antagonistic Potential Against Pests and Diseases, 45-68”. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (Eds.A. Kumar & V. Meena), Springer, Singapore, 314 pp.
  • Santos, K. B., P. M. Neves & A. M. Meneguim, 2005. Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotropical Entomology, 34 (6): 903-910.
  • Saravanakumar, D., N. Lavanya, B. Muthumeena, T. Raguchander, S. Suresh & R. Samiyappan, 2008. Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. Journal of Applied Entomology, 132 (6): 469-479.
  • Schneider, L., M. Rebetez & S. Rasmann, 2022. The effect of climate change on invasive crop pests across biomes. Current Opinion in Insect Science, 50: 100895 (1-5).
  • Seleena, P., H. L. Lee & Y. F. Chiang, 1999. Compatibility of Bacillus thuringiensis serovar israelensis and chemical insecticides for the control of Aedes mosquitos. Journal of Vector Ecology, 24 (2): 216-23.
  • Sezen, K., M. Yaman & Z. Demirbag, 2001. Insecticidal potential of Serratia marcescenes Bn10. Biologia, 56 (3): 333-336.
  • Sparks, T. C., A. J. Crossthwaite, R. Nauen, S. Banba, D. Cordova, F. Earley & F. J. Wessels, 2020. Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification-A tool for tolerance management. Pesticide Biochemistry and Physiology, 167 (2020): 104587 (1-10).
  • Steinhaus, E. A, 1956. Living insecticides. Scientific American, 195 (2): 96-106.
  • Suprapta, D. N., N. I. Maulina & K. Khalimi, 2014. Effectiveness of Enterobacter cloacae to promote the growth and increase the yield of rice. Journal of Biology, Agriculture and Healthcare, 4 (1): 1-8.
  • Tang, C., F. Sun & T. Zhao, 2003. Construction of ice nucleation active Enterobacter cloacae for control of insect pests. Chinese Science Bulletin, 48 (2): 175-180.
  • Tanzini, M., S. Alves, A. Setten & N. Augusto, 2001. Compatibilidad de agent estensoactivos com Beauveria bassiana y Metarhizium anisopliae. Manejo Integrado de Plagas, 59: 15-18.
  • Vega, F. E. & H. K. Kaya, 2012. Insect Pathology, 2nd ed. Elsevier, London, UK, 504 pp.
  • Vodovar, N., D. Vallenet & S. Cruveiller, 2006. Caomplete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24 (6): 673-679.
  • Wang, K., P. Yan, L. Cao, Q. Ding, C. Shao & T. Zhao, 2013. Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin. BioMed Research International, 2013: 397142 (1-7).
  • Waterhouse, D. F. & K. R. Norris, 1987. Biological Control: Pacific Prospects. Inkata Press, Melbourne, 454 pp.
  • Yıldırım, E. M. & H. Başpınar, 2008. Aydın ili çilek alanlarında saptanan Noctuidae (Lepidoptera) familyası türleri, yayılışı, zararı ve popülasyon dalgalanmaları üzerinde çalışmalar. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 5 (2): 115-121 (in Turkish with abstract in English).
  • Zeng, T., X. Bai, Y.-L. Liu, J.-F. Li, Y.-Y. Lu & Y.-X. Qi, 2020. Intestinal responses of the oriental fruit fly Bactrocera dorsalis (Hendel) after ingestion of an entomopathogenic bacterium strain. Pest Management Science, 76 (2): 653-664.

Farklı endofitik bakterilerin Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae) üzerindeki entomopatojenik etkileri

Year 2025, Volume: 49 Issue: 3, 257 - 268, 30.09.2025
https://doi.org/10.16970/entoted.1696225

Abstract

Bu çalışma 2024-2025 yıllarında Ege Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü laboratuvarlarında yürütülmüştür. Türkiye'de önemli bir tarım zararlısı olarak bilinen Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae), tarımsal ürünlere ciddi zararlar vermektedir. Saha gözlemlerimiz sırasında Leptinotarsa decemlineata (Say, 1824) (Coleoptera: Chrysomelidae) larvalarında bazı kararmalar ve ölü bireyler gözlemlenmiştir. Siyahlaşmış larva ve bitki örneklerinden yapılan izolasyonlar sonucunda 6 farklı bakteri izolatı elde edilmiştir. Daha önceki çalışmalarımızda entomopatojenik etkisi kanıtlanmış, moleküler tanı ve sekans analizi yapılmış olan Pseudomonas fluorescens Migula (Pseudomonadales: Pseudomonadaceae) 184 izolatı da bu testlerde kullanılmıştır. Elde edilen bakteri izolatlarının sağlıklı S. littoralis 2. dönem larvalarına karşı entomopatojenik etkilerini değerlendirmek için petri deneyleri gerçekleştirilmiştir. İki ayrı deneme sonucunda, endofitik bakteri izolatlarının uygulama görmemiş negatif kontrole kıyasla %20-93 oranında ölüme neden olduğu gözlemlenmiştir. Konvansiyonel ve moleküler tanılama ve sekans analizi sonucunda, S. littoralis larvalarına karşı en yüksek entomopatojenik etkiye sahip bakteri izolatları 441 ve 442 nolu izolatlar olmuştur ve bu izolatların sırasıyla Serratia marcescens J. ve Enterobacter cloacae M. (Enterobacterales: Enterobacteriaceae) olarak kesin tanısı yapılmıştır. Bu çalışma, söz konusu bakterilerin S. littoralis'e karşı biyolojik kontrol potansiyeli olabileceğini ortaya koymuştur.

Supporting Institution

TUBITAK- Project number 224O324

Project Number

TUBITAK- Project number 224O324

Thanks

This study was conducted with the financial support provided by TUBITAK (Project number 224O324).

References

  • Abo-Elghar, G. E., Z. A. Elbermawy, A. Yousef & H. Abd-Elhady. 2005. Monitoring and characterization of insecticide resistance in the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 8 (4): 397-410.
  • Ahmed, M. A., S. A. Temerak, F. K. Abdel-Galil & S. H. Manna, 2016. Susceptibility of field and laboratory strains of Cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) to spinosad pesticide under laboratory conditions. Plant Protection Science, 52 (2): 128-133.
  • Altıkat, A., T. Turan, F. E. Torun & Z. Bingül, 2009. Türkiye'de pestisit kullanımı ve çevreye olan etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40 (2): 87-92 (in Turkish with abstract in English).
  • Baker, B. P., T. A. Green & A. J. Loker, 2020. Biological control and integrated pest management in organic and conventional systems. Biological Control, 140 (2020): 104095 (1-9).
  • CABI, 2022. Spodoptera littoralis. In: Invasive Species Compendium. (Web page: https://doi.org/10.1079/cabicompendium.51070) (Date accessed: September 2022).
  • Chernin, L., Z. Ismailov, S. Haran & I. Chet, 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Applied and Environmental Microbiology, 61 (5): 1720-1726.
  • Clapham, W. B. Jr, 1980. Egyptian cotton leafworm: Integrated control and the agricultural production system. Agriculture and Environment, 5 (3): 201-211.
  • de Maagd, R. A., A. Bravo, C. Berry, N. Crickmore & H. E. Schnepf, 2003. Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annual Review of Genetics, 37 (1): 409-433.
  • Deka, B., C. Baruah & A. Babu, 2021. Entomopathogenic microorganisms: their role in insect pest management. Egyptian Journal of Biological Pest Control, 31 (1): 1-10.
  • Doğan, C., G. Güney, K. K. Güzel, A. Can, D. D. Hegedus & U. Toprak, 2021. What You eat matters: nutrient inputs alter the metabolism and neuropeptide expression in egyptian cotton leaf worm, Spodoptera littoralis (Lepidoptera: Noctuidae). Frontiers in Physiology, 12: 773688 (1-14).
  • EFSA PLH Panel (EFSA Panel on Plant Health), 2015. Scientific opinion on the pest categorisation of Spodoptera littoralis. EFSA Journal, 13 (1): 3987 (1-26).
  • EPPO, 2015. PM 7/124 (1) Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. EPPO Bulletin, 45: 410-444.
  • EPPO, 2022. Spodoptera littoralis. EPPO Datasheets on Pests Recommended for Regulation. (Web page: https://gd.eppo.int) (Date accessed: February 2025).
  • Feldhaar, H., 2011. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36 (5): 533-543.
  • Fouad, E. A., F. S. Ahmed & M. A. M. Moustafa, 2022. Monitoring and biochemical impact of insecticides resistance on field populations of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Polish Journal of Entomology, 91 (3): 109-118.
  • Gangwar, P., M. Trivedi & R. K. Tiwari, 2021. “Entomopathogenic Bacteria, 25-48”. In: Microbial Approaches for insect Pest Management (Ed. Omkar). Springer, Singapore, 446 pp.
  • Gaugler, R., E. Lewis & R. J. Stuart, 1997. Ecology in the service of biological control: the case of entomopathogenic nematodes. Oecologia, 109: 483-489.
  • Hadim, N. & M. O. Gürkan, 2007. “Pamuk yaprak kurdu (Spodoptera littoralis Boisd.) (Lepidoptera: Noctuidae)'nda sentetik pyretroitlere karşı ortaya çıkan direncin biyokimyasal mekanizmaları, 60”. In: Türkiye II. Bitki Koruma Kongresi (27-29 Ağustos 2007) Bildirileri, Isparta, 342 pp (in Turkish).
  • Hafez, S. S. M., A. EL-Malla, R. E. Ali & M. K. El-Hadek, 2018. Resistance monitoring in cotton leafworm Spodoptera littoralis to certain bioinsecticides during ten cotton seasons in eight governorates on Egypt. Journal of Biological Chemistry, 35: 590-594.
  • Hallmann, J., G. Berg & B. Schulz, 2006. “Isolation Procedures for Endophytic Microorganisms”. In: Microbial Root Endophytes (Eds. B. J. E. Schulz, C. J. C. Boyle & T N. Sieber). Springer, Berlin, Heidelberg, 367 pp.
  • Hamid, R., M. A. Khan, M. Ahmad, M. M. Ahmad, M. Z. Abdin, J. Musarrat & S. Javed, 2013. Chitinases: An update. Journal of Pharmacy and Bioallied Sciences, 5 (1): 21-29.
  • Hassan, K. A., A. Johnson & B. T. Shaffer, 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environmental Microbiology, 12 (4): 899-915.
  • Huang, R. & H. Chen, 2018. Evaluation of inactivating Salmonella on iceberg lettuce shreds with washing process in combination with pulsed light, ultrasound and chlorine. International Journal of Food Microbiology, 285: 144-151.
  • Kaya, H. K. & F. E. Vega, 2012. Insect Pathology, 2nd ed. Elsevier Academic Press, San Diego, CA, USA, 490 pp.
  • Khabbaz, S. E., L. Zhang, L. A. Caceres, M. Sumarah, A. Wang & P. A. Abbasi, 2015. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Annals of Applied Biology, 166 (3): 456-471.
  • Kshetri, L., F. Naseem & P. Pandey, 2019. “Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant, 123-142”. In: Plant Growth Promoting Rhizobacteria for Sustainable Stress Management (Ed. R. Sayyed), Springer, Singapore, 419 pp.
  • Kulkova, I., B. Wróbel & J. Dobrzyński, 2024. Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Frontiers in Microbiology, 15: 1-10.
  • Kwenti, T. E., 2017. “Biological Control of Parasites,1-15”. In: Natural Remedies in the Fight Against Parasites (Eds. H.F.F. Khater, M. Govindarajan & G. Benelli). InTech Open, 248 pp.
  • Lamelas, A., M. J. Gosalbes & A. Manzano-Marín, 2011. Serratia symbiotica from the aphid Cinara cedri: A missing link from facultative to obligate insect endosymbiont. PLoS Genetics, 7 (11): e1002357 (1-11).
  • Liao, C., R. Huang, Y. Yang, Y. Huang, K. Zhang, L. Ma, T. Li, L. Wang, H. Zhang & B. Li, 2023. Effects of insecticidal proteins of Enterobacter cloacae NK on cellular immunity of Galleria mellonella larvae. Frontiers in Microbiology, 14: 1154811 (1-9).
  • Morris, O. N, 1972. Susceptibility of some forest insects to mixture of commercial Bacillus thuringiensis and chemical insecticides and sensitivity of the pathogen to insecticide. The Canadian Entomologist, 104 (9): 1419-1425.
  • Mota-Sanchez, D. & J. C. Wise, 2021. The Arthropod pesticide resistance database, Michigan State University. (Web page: https://www.pesticideresistance.org/display.php?page=speciesandarId=536) (Date accessed: February 2025).
  • Musser, F. R., J. P. Nyrop & A. M. Shelton, 2006. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. Journal of Economic Entomology, 99 (5): 1538-1549.
  • Niu, H., B. Liu, Y. Li & H. Guo, 2015. Identification of a bacterium isolated from the diseased brown planthopper and determination of its insecticidal activity. Biocontrol Science and Technology, 26 (2): 217-226.
  • Nollet, L. M. & S. Mir (Eds.), 2023. Biopesticides Handbook. CRC Press, 350 pp.
  • OECD/FAO, 2022. OECD-FAO Agricultural Outlook 2022-2031. (Web page: https://doi.org/10.1787/f1b0b29c-en) (Date accessed: January 2025).
  • Otsu, Y., H. Matsuda, H. Mori, T. Ueki, K. Nakajiama, M. Fujiwara, N. Matsumoto, K. Azuma, T. Kakutani, Y. Nonomura, T. Sakuratani, Y. Shinogi, S. Tosa, S. Mayama & H. Toyoda, 2004. Stable phylloplane colonization by entamopathogenic bacteria Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetle Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 14 (5): 427-439.
  • Özsarı, P., M. Akbaba, H. Özaktan & Y. Karsavuran, 2017. Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)'nın biyolojik mücadelesinde bakteriyel endofitlerin kullanılması. Türkiye Biyolojik Mücadele Dergisi, 8 (2): 107-124 (in Turkish with abstract in English).
  • Pineda-Castellanos, M., Z. Rodríguez-Segura, F. Villalobos, L. Hernández, L. Lina & M. Nunez-Valdez, 2015. Pathogenicity of isolates of Serratia marcescens towards larvae of the scarab Phyllophaga blanchardi (Coleoptera). Pathogens, 4 (2): 210-228.
  • Rae, R., M. Riebesell & I. Dinkelacker, 2008. Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. Journal of Experimental Biology, 211 (12): 1927-1936.
  • Ruffner, B., M. Péchy-Tarr & F. Ryffel, 2013. Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15 (3): 751-763.
  • Sankari Meena, K., M. Annamalai, S. R. Prabhukarthikeyan, U. Keerthana, M. K. Yadav, P. C. Rath, M. Jena & P. Prajna, 2019. “Agriculture Application of Pseudomonas: A View on the Relative Antagonistic Potential Against Pests and Diseases, 45-68”. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (Eds.A. Kumar & V. Meena), Springer, Singapore, 314 pp.
  • Santos, K. B., P. M. Neves & A. M. Meneguim, 2005. Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotropical Entomology, 34 (6): 903-910.
  • Saravanakumar, D., N. Lavanya, B. Muthumeena, T. Raguchander, S. Suresh & R. Samiyappan, 2008. Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. Journal of Applied Entomology, 132 (6): 469-479.
  • Schneider, L., M. Rebetez & S. Rasmann, 2022. The effect of climate change on invasive crop pests across biomes. Current Opinion in Insect Science, 50: 100895 (1-5).
  • Seleena, P., H. L. Lee & Y. F. Chiang, 1999. Compatibility of Bacillus thuringiensis serovar israelensis and chemical insecticides for the control of Aedes mosquitos. Journal of Vector Ecology, 24 (2): 216-23.
  • Sezen, K., M. Yaman & Z. Demirbag, 2001. Insecticidal potential of Serratia marcescenes Bn10. Biologia, 56 (3): 333-336.
  • Sparks, T. C., A. J. Crossthwaite, R. Nauen, S. Banba, D. Cordova, F. Earley & F. J. Wessels, 2020. Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification-A tool for tolerance management. Pesticide Biochemistry and Physiology, 167 (2020): 104587 (1-10).
  • Steinhaus, E. A, 1956. Living insecticides. Scientific American, 195 (2): 96-106.
  • Suprapta, D. N., N. I. Maulina & K. Khalimi, 2014. Effectiveness of Enterobacter cloacae to promote the growth and increase the yield of rice. Journal of Biology, Agriculture and Healthcare, 4 (1): 1-8.
  • Tang, C., F. Sun & T. Zhao, 2003. Construction of ice nucleation active Enterobacter cloacae for control of insect pests. Chinese Science Bulletin, 48 (2): 175-180.
  • Tanzini, M., S. Alves, A. Setten & N. Augusto, 2001. Compatibilidad de agent estensoactivos com Beauveria bassiana y Metarhizium anisopliae. Manejo Integrado de Plagas, 59: 15-18.
  • Vega, F. E. & H. K. Kaya, 2012. Insect Pathology, 2nd ed. Elsevier, London, UK, 504 pp.
  • Vodovar, N., D. Vallenet & S. Cruveiller, 2006. Caomplete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24 (6): 673-679.
  • Wang, K., P. Yan, L. Cao, Q. Ding, C. Shao & T. Zhao, 2013. Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin. BioMed Research International, 2013: 397142 (1-7).
  • Waterhouse, D. F. & K. R. Norris, 1987. Biological Control: Pacific Prospects. Inkata Press, Melbourne, 454 pp.
  • Yıldırım, E. M. & H. Başpınar, 2008. Aydın ili çilek alanlarında saptanan Noctuidae (Lepidoptera) familyası türleri, yayılışı, zararı ve popülasyon dalgalanmaları üzerinde çalışmalar. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 5 (2): 115-121 (in Turkish with abstract in English).
  • Zeng, T., X. Bai, Y.-L. Liu, J.-F. Li, Y.-Y. Lu & Y.-X. Qi, 2020. Intestinal responses of the oriental fruit fly Bactrocera dorsalis (Hendel) after ingestion of an entomopathogenic bacterium strain. Pest Management Science, 76 (2): 653-664.
There are 58 citations in total.

Details

Primary Language English
Subjects Plant Protection (Other)
Journal Section Articles
Authors

Pınar Özsarı 0000-0003-3663-8519

Hatice Özaktan 0000-0001-9971-6508

Utku Şanver 0000-0001-5373-2924

Project Number TUBITAK- Project number 224O324
Publication Date September 30, 2025
Submission Date May 9, 2025
Acceptance Date July 22, 2025
Published in Issue Year 2025 Volume: 49 Issue: 3

Cite

APA Özsarı, P., Özaktan, H., & Şanver, U. (2025). Entomopathogenic effects of different endophytic bacteria on Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae). Turkish Journal of Entomology, 49(3), 257-268. https://doi.org/10.16970/entoted.1696225
AMA Özsarı P, Özaktan H, Şanver U. Entomopathogenic effects of different endophytic bacteria on Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae). TED. September 2025;49(3):257-268. doi:10.16970/entoted.1696225
Chicago Özsarı, Pınar, Hatice Özaktan, and Utku Şanver. “Entomopathogenic Effects of Different Endophytic Bacteria on Spodoptera Littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae)”. Turkish Journal of Entomology 49, no. 3 (September 2025): 257-68. https://doi.org/10.16970/entoted.1696225.
EndNote Özsarı P, Özaktan H, Şanver U (September 1, 2025) Entomopathogenic effects of different endophytic bacteria on Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae). Turkish Journal of Entomology 49 3 257–268.
IEEE P. Özsarı, H. Özaktan, and U. Şanver, “Entomopathogenic effects of different endophytic bacteria on Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae)”, TED, vol. 49, no. 3, pp. 257–268, 2025, doi: 10.16970/entoted.1696225.
ISNAD Özsarı, Pınar et al. “Entomopathogenic Effects of Different Endophytic Bacteria on Spodoptera Littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae)”. Turkish Journal of Entomology 49/3 (September2025), 257-268. https://doi.org/10.16970/entoted.1696225.
JAMA Özsarı P, Özaktan H, Şanver U. Entomopathogenic effects of different endophytic bacteria on Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae). TED. 2025;49:257–268.
MLA Özsarı, Pınar et al. “Entomopathogenic Effects of Different Endophytic Bacteria on Spodoptera Littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae)”. Turkish Journal of Entomology, vol. 49, no. 3, 2025, pp. 257-68, doi:10.16970/entoted.1696225.
Vancouver Özsarı P, Özaktan H, Şanver U. Entomopathogenic effects of different endophytic bacteria on Spodoptera littoralis (Boisduval, 1833) (Lepidoptera: Noctuidae). TED. 2025;49(3):257-68.