Research Article
BibTex RIS Cite

Türk KOBİ'lerinde Teknoloji Benimsemesi İçin Nedensel Merkezli Derin Öğrenme-DEMATEL Çerçevesi

Year 2025, Volume: 10 Issue: 4, 1446 - 1470, 31.12.2025
https://doi.org/10.30784/epfad.1723677

Abstract

Bu çalışma, Türk KOBİ’lerinin karşılaştığı çeşitli operasyonel kısıtları daha doğru biçimde teşhis etmek ve ele almak amacıyla derin öğrenme, Karar Verme Deneme ve Değerlendirme Laboratuvarı ve ajan tabanlı modellemeyi bir araya getiren yenilikçi bir metodolojik çerçeve sunmaktadır. Geleneksel ve statik analizlerden farklı olarak, önerilen yaklaşım önce faktör analizi ve derin sinir ağı kullanarak en kritik performans belirleyicilerini ortaya çıkarır. Ardından DEMATEL, bu belirleyicilerin üretim, pazarlama ve pazar araştırması gibi diğer alanlar üzerindeki yönlü nedensel etkilerini göstererek net etkileyici faktörleri net etkilenenlerden ayırır. Son aşamada ABM, farklı kaynak donanımlarına ve stratejik davranışlara sahip KOBİ’ler arasındaki dinamik etkileşimleri çeşitli senaryolar altında simüle eder. Bu çalışma, önceliklendirmeyi, nedensel haritalamayı ve dinamikleri tek ve şeffaf bir süreç içinde birleştirir ve senaryo temelli SWOT aracılığıyla stratejileri sentezler. Bu entegre süreç, genel performansı artırmaya yönelik yüksek etkili kaldıraç noktalarını ortaya çıkararak teknoloji ve finans alanındaki hedefli müdahalelerin diğer sorun alanlarında da geniş çaplı iyileşmelere yol açabileceğini göstermektedir. Gelişmiş makine öğrenimini sistematik nedensel analiz ve zamansal simülasyonla birleştiren bu çerçeve, stratejik karar verme için daha kapsamlı ve veri odaklı bir temel sunmakta; politika yapıcılar ve yöneticilere KOBİ rekabetçiliğini ve dayanıklılığını güçlendirmeye yönelik daha derin içgörüler sağlamaktadır.

References

  • Bastos, X.S., Ferreira, F.A.F., Kannan, D., Ferreira, N.C.M.Q.F. and Banaitienė, N. (2023). A CM-DEMATEL assessment of SME competitiveness factors. CIRP Journal of Manufacturing Science and Technology, 46, 74–88. https://doi.org/10.1016/j.cirpj.2023.06.015
  • Ben Mekki, A., Tounsi, J. and Ben Said, L. (2020). Modeling an agent-based cooperative dynamic behavior in an uncertain context of SME’s sustainable supply chain. In S. Krichen, H. Ben-Romdhane and S. Sidhom (Eds.), 2020 international multi-conference on organization of knowledge and advanced technologies (pp. 1–7). https://doi.org/10.1109/OCTA49274.2020.9151848
  • Bin, M., Hui, G., Qifeng, W. and Ke, Y. (2021). A systematic review of factors influencing digital transformation of SMEs. Turkish Journal of Computer and Mathematics Education, 12(11), 1673–1686. https://doi.org/10.17762/turcomat.v12i11.6102
  • Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99 (Suppl_ 3), 7280–7287. https://doi.org/10.1073/pnas.082080899
  • Bruce, E., Shurong, Z., Ying, D., Yaqi, M., Amoah, J. and Egala, S.B. (2023). The effect of digital marketing adoption on SMEs sustainable growth: Empirical evidence from Ghana. Sustainability, 15(6), 4760. https://doi.org/10.3390/su15064760
  • Cornelisse, M. and van Klink, A. (2024). Strategic foresight and barriers: The application of scenario planning in SMEs. Journal of Futures Studies, 29(2), 35–43. Retrieved from https://jfsdigital.org/
  • Dakare, O.A., Adebiyi, S.O. and Amole, B.B. (2019). Exploring resources and capabilities factors among entrepreneurial ventures using DEMATEL approach. International Journal of Management, Economics and Social Sciences, 8(1), 20–39. https://doi.org/10.32327/IJMESS/8.1.2019.3
  • Epstein, J.M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton, NJ: Princeton University Press.
  • Foli, S., Durst, S. and Temel, S. (2024). The link between supply chain risk management and innovation performance in SMEs in turbulent times. Journal of Entrepreneurship in Emerging Economies, 16(3), 626-648. https://doi.org/10.1108/JEEE-10-2021-0405
  • Gabus, A. and Fontela, E. (1972). World problems: An invitation to further thought within the framework of DEMATEL (Battelle Geneva Research Center Report No. 1). Retrieved From: https://www.scienceopen.com/book?vid=f6e5887c-7f0c-4303-8379-58fe891eeb03
  • Gabus, A. and Fontela, E. (1976). The DEMATEL observer (Battelle Geneva Research Center Report No. 2). Retrieved from:https://www.scirp.org/reference/referencespapers?referenceid=1847241
  • Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.
  • Kaplancalı, U.T. and Akyol, M. (2021). Analysis of cloud computing usage on performance: The case of Turkish SMEs. Proceedings, 74(1), 11. https://doi.org/10.3390/proceedings2021074011
  • Keay, J. (2016). Europe rises to Turkey’s SME Challenges. Retrieved from https://gfmag.com/features/europe-rises-turkeys-sme-challenges/
  • Koumas, M., Dossou, P.-E. and Didier, J.-Y. (2021). Digital transformation of small and medium sized enterprises production manufacturing. Journal of Software Engineering and Applications, 14(12), 607–630. https://doi.org/10.4236/jsea.2021.1412036
  • LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Macal, C.M. and North, M.J. (2010). Tutorial on agent-based modeling and simulation. Journal of Simulation, 4(3), 151–162. https://doi.org/10.1057/jos.2010.3
  • Nooshabadi, J.E. and Özşahin, M. (2019). Major motives and barriers of internationalization for Turkish furniture SMEs. In C. Zehir and E. Erzengin (Eds.), Leadership, technology, innovation and business management (pp. 228-244). https://doi.org/10.15405/epsbs.2019.12.03.20
  • OECD. (2020). Coronavirus (COVID-19): SME policy responses. Retrieved from https://www.oecd.org/en/publications/coronavirus-covid-19-sme-policy-responses_04440101-en.html
  • Parast, M.M. and Subramanian, N. (2021). An examination of the effect of supply chain disruption risk drivers on organizational performance: Evidence from Chinese supply chains. Supply Chain Management: An International Journal, 26(4), 548-562. https://doi.org/10.1108/SCM-07-2020-0313
  • Safari, A. and Saleh, A.S. (2020). Key determinants of SMEs’ export performance: A resource-based view and contingency theory approach using potential mediators. Journal of Business & Industrial Marketing, 35(4), 635-654. https://doi.org/10.1108/JBIM-11-2018-0324
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
  • Tzeng, G.H. and Huang, J.J. (2011). Multiple attribute decision making: Methods and applications. Routledge: CRC Press.
  • Wang, J. (2021). A management model of small‐and medium‐sized enterprises based on deep learning algorithm. Scientific Programming, 2021(1), 5996597. https://doi.org/10.1155/2021/5996597
  • World Economic Forum. (2022). Sustainability meets growth: A roadmap for SMEs and mid-sized manufacturers. Retrieved from https://reports.weforum.org/docs/WEF_Sustainability_Meets_Growth_2025.pdf
  • Zamani, S.Z. (2022). Small and Medium Enterprises (SMEs) facing an evolving technological era: A systematic literature review on the adoption of technologies in SMEs. European Journal of Innovation Management, 25(6), 735-757. https://doi.org/10.1108/EJIM-07-2021-0360

Causality-Centred Deep Learning–DEMATEL Framework for Technology Adoption in Turkish SMEs

Year 2025, Volume: 10 Issue: 4, 1446 - 1470, 31.12.2025
https://doi.org/10.30784/epfad.1723677

Abstract

This study advances an innovative methodological framework that unites deep learning, Decision-Making Trial and Evaluation Laboratory (DEMATEL), and agent-based modeling (ABM) to more accurately diagnose and address the diverse operational constraints confronting Turkish SMEs. Unlike conventional, static analyses, the proposed approach first employs factor analysis and a deep neural network to pinpoint the most pivotal performance drivers. Next, DEMATEL reveals how these drivers exert causally directed influences on other domains, such as production, marketing, and market research, thereby distinguishing net “influencer” factors from net “receivers.” Finally, ABM simulates the dynamic interplay among SMEs, each featuring unique resource endowments and strategic behaviors, under varying economic and policy scenarios. We combine prioritization (DL+SHAP), causal mapping, and dynamics into a single, transparent pipeline, and synthesize strategies via scenario-based SWOT. This integrated process uncovers high-impact levers for enhancing overall performance, demonstrating that targeted interventions in technology and finance can yield widespread improvements in other challenge areas. By converging advanced machine learning with systematic causal analysis and temporal simulation, the framework furnishes a more comprehensive, data-driven basis for strategic decision-making, offering policymakers and managers deeper insights into fostering SME competitiveness and resilience.

References

  • Bastos, X.S., Ferreira, F.A.F., Kannan, D., Ferreira, N.C.M.Q.F. and Banaitienė, N. (2023). A CM-DEMATEL assessment of SME competitiveness factors. CIRP Journal of Manufacturing Science and Technology, 46, 74–88. https://doi.org/10.1016/j.cirpj.2023.06.015
  • Ben Mekki, A., Tounsi, J. and Ben Said, L. (2020). Modeling an agent-based cooperative dynamic behavior in an uncertain context of SME’s sustainable supply chain. In S. Krichen, H. Ben-Romdhane and S. Sidhom (Eds.), 2020 international multi-conference on organization of knowledge and advanced technologies (pp. 1–7). https://doi.org/10.1109/OCTA49274.2020.9151848
  • Bin, M., Hui, G., Qifeng, W. and Ke, Y. (2021). A systematic review of factors influencing digital transformation of SMEs. Turkish Journal of Computer and Mathematics Education, 12(11), 1673–1686. https://doi.org/10.17762/turcomat.v12i11.6102
  • Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99 (Suppl_ 3), 7280–7287. https://doi.org/10.1073/pnas.082080899
  • Bruce, E., Shurong, Z., Ying, D., Yaqi, M., Amoah, J. and Egala, S.B. (2023). The effect of digital marketing adoption on SMEs sustainable growth: Empirical evidence from Ghana. Sustainability, 15(6), 4760. https://doi.org/10.3390/su15064760
  • Cornelisse, M. and van Klink, A. (2024). Strategic foresight and barriers: The application of scenario planning in SMEs. Journal of Futures Studies, 29(2), 35–43. Retrieved from https://jfsdigital.org/
  • Dakare, O.A., Adebiyi, S.O. and Amole, B.B. (2019). Exploring resources and capabilities factors among entrepreneurial ventures using DEMATEL approach. International Journal of Management, Economics and Social Sciences, 8(1), 20–39. https://doi.org/10.32327/IJMESS/8.1.2019.3
  • Epstein, J.M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton, NJ: Princeton University Press.
  • Foli, S., Durst, S. and Temel, S. (2024). The link between supply chain risk management and innovation performance in SMEs in turbulent times. Journal of Entrepreneurship in Emerging Economies, 16(3), 626-648. https://doi.org/10.1108/JEEE-10-2021-0405
  • Gabus, A. and Fontela, E. (1972). World problems: An invitation to further thought within the framework of DEMATEL (Battelle Geneva Research Center Report No. 1). Retrieved From: https://www.scienceopen.com/book?vid=f6e5887c-7f0c-4303-8379-58fe891eeb03
  • Gabus, A. and Fontela, E. (1976). The DEMATEL observer (Battelle Geneva Research Center Report No. 2). Retrieved from:https://www.scirp.org/reference/referencespapers?referenceid=1847241
  • Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.
  • Kaplancalı, U.T. and Akyol, M. (2021). Analysis of cloud computing usage on performance: The case of Turkish SMEs. Proceedings, 74(1), 11. https://doi.org/10.3390/proceedings2021074011
  • Keay, J. (2016). Europe rises to Turkey’s SME Challenges. Retrieved from https://gfmag.com/features/europe-rises-turkeys-sme-challenges/
  • Koumas, M., Dossou, P.-E. and Didier, J.-Y. (2021). Digital transformation of small and medium sized enterprises production manufacturing. Journal of Software Engineering and Applications, 14(12), 607–630. https://doi.org/10.4236/jsea.2021.1412036
  • LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Macal, C.M. and North, M.J. (2010). Tutorial on agent-based modeling and simulation. Journal of Simulation, 4(3), 151–162. https://doi.org/10.1057/jos.2010.3
  • Nooshabadi, J.E. and Özşahin, M. (2019). Major motives and barriers of internationalization for Turkish furniture SMEs. In C. Zehir and E. Erzengin (Eds.), Leadership, technology, innovation and business management (pp. 228-244). https://doi.org/10.15405/epsbs.2019.12.03.20
  • OECD. (2020). Coronavirus (COVID-19): SME policy responses. Retrieved from https://www.oecd.org/en/publications/coronavirus-covid-19-sme-policy-responses_04440101-en.html
  • Parast, M.M. and Subramanian, N. (2021). An examination of the effect of supply chain disruption risk drivers on organizational performance: Evidence from Chinese supply chains. Supply Chain Management: An International Journal, 26(4), 548-562. https://doi.org/10.1108/SCM-07-2020-0313
  • Safari, A. and Saleh, A.S. (2020). Key determinants of SMEs’ export performance: A resource-based view and contingency theory approach using potential mediators. Journal of Business & Industrial Marketing, 35(4), 635-654. https://doi.org/10.1108/JBIM-11-2018-0324
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
  • Tzeng, G.H. and Huang, J.J. (2011). Multiple attribute decision making: Methods and applications. Routledge: CRC Press.
  • Wang, J. (2021). A management model of small‐and medium‐sized enterprises based on deep learning algorithm. Scientific Programming, 2021(1), 5996597. https://doi.org/10.1155/2021/5996597
  • World Economic Forum. (2022). Sustainability meets growth: A roadmap for SMEs and mid-sized manufacturers. Retrieved from https://reports.weforum.org/docs/WEF_Sustainability_Meets_Growth_2025.pdf
  • Zamani, S.Z. (2022). Small and Medium Enterprises (SMEs) facing an evolving technological era: A systematic literature review on the adoption of technologies in SMEs. European Journal of Innovation Management, 25(6), 735-757. https://doi.org/10.1108/EJIM-07-2021-0360
There are 26 citations in total.

Details

Primary Language English
Subjects Econometric and Statistical Methods
Journal Section Research Article
Authors

Mehmet Akif Yerlikaya 0000-0003-3084-0257

Serkan Dilek 0000-0002-0393-4509

Zekeriya Yerlikaya 0000-0003-3659-2100

Submission Date June 20, 2025
Acceptance Date November 17, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 10 Issue: 4

Cite

APA Yerlikaya, M. A., Dilek, S., & Yerlikaya, Z. (2025). Causality-Centred Deep Learning–DEMATEL Framework for Technology Adoption in Turkish SMEs. Ekonomi Politika Ve Finans Araştırmaları Dergisi, 10(4), 1446-1470. https://doi.org/10.30784/epfad.1723677