Research Article
BibTex RIS Cite

Kültürü Yapılan Deniz Balıklarında Karaciğer Yağlanması ve Bakteriyel Koenfeksiyon

Year 2022, Volume: 19 Issue: 1, 1 - 10, 01.04.2022
https://doi.org/10.32707/ercivet.1085205

Abstract

Bu çalışmada rutin mikrobiyolojik, hematolojik, makroskopik ve histopatolojik incelemeler için 400-450 gr ağırlığında çipura ve levrek balıkları örneklenmiştir. Örnekler morfolojik olarak sağlıklı görünen ancak artan yem dönüşüm oranı, hasat sırasında şoklanma (soğuk şoku) sorunu gösteren ve hareketlerde yavaşlık gibi semptom gösteren balıklardan örnekler alınmıştır. Gram boyama, hareketlilik, oksidaz-katalaz aktivitesi ve O/F fermentasyonu gibi rutin bakteriyolojik analizler ve API test kitleri kullanılarak temel mikrobiyolojik analizlerle bakterilerin mikrobiyolojik teşhisleri yapılmıştır. Ön teşhisi yapılan türler16S rRNA gen bölgesi sekans analizi ile tür bazında identifiye edilmiştir. Serum biyokimyasal ve hematolojik değerleri, Vetscan® VS2 cihazı ve kan yayma frotileri kullanılarak analiz edilmiştir. Hastalıktan etkilenen iç organların incelenmesi için rutin histopatolojik incelemeler yapılmıştır. Hepatik yağ birikimi ve nekroz görünen en belirgin bulgulardan olmuştur ve karaciğer enzimlerinde önemli değişikliklerin karaciğer hasarıyla ilişkili olduğu tespit edilmiştir. Etkilenen balıklardan çoklu organ yetmezliği ve hematolojik bozukluklar nedeniyle başta Vibrio alginolyticus olmak üzere Alteromonas ve Pseudoalteromonas türleri izole edilmiş ve hastalık belirtileri gösteren balıkların bakteriyel koenfeksiyon taşıdığı tespit edilmiştir.

References

  • Austin B, Newaj-Fyzul A, eds. Diagnosis and control of diseases of fish and shellfish. First Edititon. Hoboken, USA: John Wiley & Sons; 2017; pp. 5-14.
  • Balebona MC, Zorrilla I, Moriñigo MA, Borrego JJ. Survey of bacterial pathologies affecting farmed gilt-head sea bream (Sparus aurata L.) in southwestern Spain from 1990 to 1996. Aquaculture 1998; 166(1-2): 19-35.
  • Carli A, Pane L, Casareto L, Bertone S, Pruzzo C. Occurrence of Vibrio alginolyticus in Ligurian coast rock pools (Tyrrhenian Sea, Italy) and its association with the copepod Tigriopus fulvus (Fisher 1860). Appl Environ Microbiol 1993; 59(6): 1960.
  • CLISI. Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; Second informational supplement, CLSI Document VET03/VET04-S2, Clin Lab Stand Institute, Wayne, USA 2014.
  • CLSI. Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; second informational supplement. Clin Lab Stand Institute, PA, USA 2014.
  • De Francesco M, Parisi G, Médale F, Lupi P, Kaushik SJ, Poli BM. Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture 2004; 236(1-4): 413-29.
  • Duman M, Saticioglu IB, Ozdemir B, Altun S. Determination of opportunistic pathogens and antimicrobial resistance characterization isolated from Rainbow Trout in Turkey. J Res Vet Med 2020; 39(2): 82-92.
  • Duman M, Saticioglu IB, Suzer B, Altun S. Practices for drawing blood samples from teleost fish. N Am J Aquac 2019; 81(2): 119-25.
  • Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, Busca K, Egan F, Muller N, Whooley J, McGinnity P. Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep 2020; 10(1): 1-6.
  • Esteban MÁ, Muñoz J, Meseguer J. Blood cells of sea bass (Dicentrarchus labrax L.). Flow cytometric and microscopic studies. Anat Rec 2000; 258(1): 80-9.
  • Fánge R. Fish blood cells. Hoar WS. Randall DJ. Farrell AP, eds. In Fish Physiology Volume XII, Part B, The Cardiovascular System. New York: Academic Press, 1992; pp. 1-54.
  • Farmer III JJ, Michael J, Brenner FW, Cameron DN, Birkhead KM. Vibrio. In: Bergey's Manual of Systematics of Archaea and Bacteria. Hoboken, USA: John Wiley & Sons Inc, 2015; pp. 1-79.
  • Fazio F, Ferrantelli V, Piccione G, Saoca C, Levanti M, Mucciardi M. Biochemical and hematological parameters in European sea bass (Dicentrarchus labrax Linnaeus, 1758) and Gilthead sea bream (Sparus aurata Linnaeus, 1758) in relation to temperature. Veterinarskiarhiv 2018; 88(3): 397-411.
  • Fazio F, Filiciotto F, Marafioti S, Di Stefano V, Assenza A, Placenti F, Buscaino G, Piccione G, Mazzola S. Automatic analysis to assess haematological parameters in farmed gilthead sea bream (Sparus aurata Linnaeus, 1758). Mar Freshw Behav Physiol 2012; 45(1): 63-73.
  • Garrity G. Bergey's Manual of Systematic Bacteriology. Brenner Don J, Krieg Noel R, Staley James R. eds. Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria. Second Edition. Verlag US: Springer, 2007; pp.491-520
  • Geay F, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu CL, Mazurais D. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC genomics 2011; 12(1): 1-8.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35(6): 1547.
  • Mgbenka BO, Oluah NS, Umeike L. Haematology and erythropoietic response in the catfish, Clarias albopunctatus (Lamonte and Nichole 1927), Exposed to Sublethal Concentrations of Gammalin 20 (Lindane). Bio-Research 2003; 1(2): 61-8.
  • Monge-Ortiz R, Martínez-Llorens S, Márquez L, Moyano FJ, Jover-Cerdá M, Tomás-Vidal A. Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Arch Anim Nutr 2016; 70(2): 155-72.
  • Palleroni NJ, Pseudomonas. In: Bergey’s manual of systematics of archaea and bacteria. North Wiley & Sons Inc, 2015; pp. 1-40.
  • Passantino L, Altamura M, Cianciotta A, Jirillo F, Ribaud MR, Jirillo E, Passantino GF. Maturation of fish erythrocytes coincides with changes in their morphology, enhanced ability to interact with Candida albicans and release of cytokine‐like factors active upon autologous macrophages. Immunopharmacol Immunotoxicol 2004; 26(4): 573-85.
  • Peres H, Santos S, Oliva‐Teles A. Selected plasma biochemistry parameters in gilthead seabream (Sparus aurata) juveniles. J. Appl. Ichthyol 2013; 29(3): 630-6.
  • Peres H, Santos S, Oliva-Teles A. Blood chemistry profile as indicator of nutritional status in European seabass (Dicentrarchus labrax). Fish Physiol Biochem 2014; 40(5): 1339-47.
  • Pujalte MJ, Sitjà-Bobadilla A, Macián MC, Álvarez-Pellitero P, Garay E. Occurrence and virulence of Pseudoalteromonas spp. in cultured gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Molecular and phenotypic characterization of P. undina strain U58. Aquaculture 2007; 271(1-4): 47-53.
  • Roberts RJ. In: Fish Pathology. The nutritional pathology of teleosts. Fish pathology. Third Edition. Hoboken, NJ: Wiley-Blackwell, 2001; pp. 347-66.
  • Roncarati A, Melotti P, Dees A, Mordenti O, Angellotti L. Welfare status of cultured seabass (Dicentrarchus labrax L.) and seabream (Sparus aurata L.) assessed by blood parameters and tissue characteristics. J Appl Ichthyol 2006; 22(3): 225-34.
  • Shah SL, Altindağ A. Alterations in the immunological parameters of Tench (Tincatinca L. 1758) after acute and chronic exposure to lethal and sublethal treatments with mercury, cadmium and lead. Turkish J Vet Anim Sci 2005; 29(5): 1163-8.
  • Skovhus TL, Holmström C, Kjelleberg S, Dahllöf I. Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples. FEMS Microbiol Ecol 2007; 61(2): 348-61.
  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10(3): 512-26.
  • Watabe S, Kamal M, Hashimoto K. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. J Food Sci 1991; 56(1): 151-3.
  • Weisman JL, Miller DL. Lipoid liver disease and steatitis in a captive sapphire damsel, Pomacentruspavo. Acta Ichthyol Piscat 2006; 2(36): 99-104.
  • Yan J, Wu YH, Meng FX, Wang CS, Xiong SL, Zhang XY, Zhang YZ, Xu XW, Zhang DM. Pseudoalteromonas gelatinilytica sp. nov., isolated from surface seawater. Int J Syst Evol 2016; 66(9): 3538-45.
  • Yildiz HY. Reference biochemical values for three cultured Sparid fish: striped sea bream, Lithognathus mormyrus; common dentex, Dentex dentex; and gilthead sea bream, Sparus aurata. Comp Clin Path 2009; 18(1): 23-7.
  • Zhenyu D. Causes of fatty liver in farmed fish: a review and new perspectives. J Fish of China 2014; 9: 53.

Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish

Year 2022, Volume: 19 Issue: 1, 1 - 10, 01.04.2022
https://doi.org/10.32707/ercivet.1085205

Abstract

In the present study, we sampled sea bream and sea bass, weighing 400-450g, for routine microbiological, hematological, macroscopical and histopathological examinations. Samples were taken from seemingly healthy fish, which displayed increased feed conversion rates, signs of cold shock and slow movement. Routine bacteriological analyses included basic microbiological analyses for oxidase and catalase activity, Gram staining and O/F fermentation using API test kits. Furthermore, 16S rRNA gene sequencing was performed for identification. Serum biochemical and hematological values were determined using a Vetscan®VS2 analyzer and blood smears. Internal organs were examined by routine histopathological techniques. Hepatic fat accumulation and necrosis were noted, and liver damage was observed to be associated with significant alterations in liver enzymes. Due to multi-organ dysfunction and serious hematological disorders, primarily Vibrio alginolyticus also Alteromonas and Pseudoalteromonas species were isolated from the affected fish and co-infections were detected.

References

  • Austin B, Newaj-Fyzul A, eds. Diagnosis and control of diseases of fish and shellfish. First Edititon. Hoboken, USA: John Wiley & Sons; 2017; pp. 5-14.
  • Balebona MC, Zorrilla I, Moriñigo MA, Borrego JJ. Survey of bacterial pathologies affecting farmed gilt-head sea bream (Sparus aurata L.) in southwestern Spain from 1990 to 1996. Aquaculture 1998; 166(1-2): 19-35.
  • Carli A, Pane L, Casareto L, Bertone S, Pruzzo C. Occurrence of Vibrio alginolyticus in Ligurian coast rock pools (Tyrrhenian Sea, Italy) and its association with the copepod Tigriopus fulvus (Fisher 1860). Appl Environ Microbiol 1993; 59(6): 1960.
  • CLISI. Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; Second informational supplement, CLSI Document VET03/VET04-S2, Clin Lab Stand Institute, Wayne, USA 2014.
  • CLSI. Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals; second informational supplement. Clin Lab Stand Institute, PA, USA 2014.
  • De Francesco M, Parisi G, Médale F, Lupi P, Kaushik SJ, Poli BM. Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture 2004; 236(1-4): 413-29.
  • Duman M, Saticioglu IB, Ozdemir B, Altun S. Determination of opportunistic pathogens and antimicrobial resistance characterization isolated from Rainbow Trout in Turkey. J Res Vet Med 2020; 39(2): 82-92.
  • Duman M, Saticioglu IB, Suzer B, Altun S. Practices for drawing blood samples from teleost fish. N Am J Aquac 2019; 81(2): 119-25.
  • Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, Busca K, Egan F, Muller N, Whooley J, McGinnity P. Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep 2020; 10(1): 1-6.
  • Esteban MÁ, Muñoz J, Meseguer J. Blood cells of sea bass (Dicentrarchus labrax L.). Flow cytometric and microscopic studies. Anat Rec 2000; 258(1): 80-9.
  • Fánge R. Fish blood cells. Hoar WS. Randall DJ. Farrell AP, eds. In Fish Physiology Volume XII, Part B, The Cardiovascular System. New York: Academic Press, 1992; pp. 1-54.
  • Farmer III JJ, Michael J, Brenner FW, Cameron DN, Birkhead KM. Vibrio. In: Bergey's Manual of Systematics of Archaea and Bacteria. Hoboken, USA: John Wiley & Sons Inc, 2015; pp. 1-79.
  • Fazio F, Ferrantelli V, Piccione G, Saoca C, Levanti M, Mucciardi M. Biochemical and hematological parameters in European sea bass (Dicentrarchus labrax Linnaeus, 1758) and Gilthead sea bream (Sparus aurata Linnaeus, 1758) in relation to temperature. Veterinarskiarhiv 2018; 88(3): 397-411.
  • Fazio F, Filiciotto F, Marafioti S, Di Stefano V, Assenza A, Placenti F, Buscaino G, Piccione G, Mazzola S. Automatic analysis to assess haematological parameters in farmed gilthead sea bream (Sparus aurata Linnaeus, 1758). Mar Freshw Behav Physiol 2012; 45(1): 63-73.
  • Garrity G. Bergey's Manual of Systematic Bacteriology. Brenner Don J, Krieg Noel R, Staley James R. eds. Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria. Second Edition. Verlag US: Springer, 2007; pp.491-520
  • Geay F, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu CL, Mazurais D. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC genomics 2011; 12(1): 1-8.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35(6): 1547.
  • Mgbenka BO, Oluah NS, Umeike L. Haematology and erythropoietic response in the catfish, Clarias albopunctatus (Lamonte and Nichole 1927), Exposed to Sublethal Concentrations of Gammalin 20 (Lindane). Bio-Research 2003; 1(2): 61-8.
  • Monge-Ortiz R, Martínez-Llorens S, Márquez L, Moyano FJ, Jover-Cerdá M, Tomás-Vidal A. Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Arch Anim Nutr 2016; 70(2): 155-72.
  • Palleroni NJ, Pseudomonas. In: Bergey’s manual of systematics of archaea and bacteria. North Wiley & Sons Inc, 2015; pp. 1-40.
  • Passantino L, Altamura M, Cianciotta A, Jirillo F, Ribaud MR, Jirillo E, Passantino GF. Maturation of fish erythrocytes coincides with changes in their morphology, enhanced ability to interact with Candida albicans and release of cytokine‐like factors active upon autologous macrophages. Immunopharmacol Immunotoxicol 2004; 26(4): 573-85.
  • Peres H, Santos S, Oliva‐Teles A. Selected plasma biochemistry parameters in gilthead seabream (Sparus aurata) juveniles. J. Appl. Ichthyol 2013; 29(3): 630-6.
  • Peres H, Santos S, Oliva-Teles A. Blood chemistry profile as indicator of nutritional status in European seabass (Dicentrarchus labrax). Fish Physiol Biochem 2014; 40(5): 1339-47.
  • Pujalte MJ, Sitjà-Bobadilla A, Macián MC, Álvarez-Pellitero P, Garay E. Occurrence and virulence of Pseudoalteromonas spp. in cultured gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Molecular and phenotypic characterization of P. undina strain U58. Aquaculture 2007; 271(1-4): 47-53.
  • Roberts RJ. In: Fish Pathology. The nutritional pathology of teleosts. Fish pathology. Third Edition. Hoboken, NJ: Wiley-Blackwell, 2001; pp. 347-66.
  • Roncarati A, Melotti P, Dees A, Mordenti O, Angellotti L. Welfare status of cultured seabass (Dicentrarchus labrax L.) and seabream (Sparus aurata L.) assessed by blood parameters and tissue characteristics. J Appl Ichthyol 2006; 22(3): 225-34.
  • Shah SL, Altindağ A. Alterations in the immunological parameters of Tench (Tincatinca L. 1758) after acute and chronic exposure to lethal and sublethal treatments with mercury, cadmium and lead. Turkish J Vet Anim Sci 2005; 29(5): 1163-8.
  • Skovhus TL, Holmström C, Kjelleberg S, Dahllöf I. Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples. FEMS Microbiol Ecol 2007; 61(2): 348-61.
  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10(3): 512-26.
  • Watabe S, Kamal M, Hashimoto K. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. J Food Sci 1991; 56(1): 151-3.
  • Weisman JL, Miller DL. Lipoid liver disease and steatitis in a captive sapphire damsel, Pomacentruspavo. Acta Ichthyol Piscat 2006; 2(36): 99-104.
  • Yan J, Wu YH, Meng FX, Wang CS, Xiong SL, Zhang XY, Zhang YZ, Xu XW, Zhang DM. Pseudoalteromonas gelatinilytica sp. nov., isolated from surface seawater. Int J Syst Evol 2016; 66(9): 3538-45.
  • Yildiz HY. Reference biochemical values for three cultured Sparid fish: striped sea bream, Lithognathus mormyrus; common dentex, Dentex dentex; and gilthead sea bream, Sparus aurata. Comp Clin Path 2009; 18(1): 23-7.
  • Zhenyu D. Causes of fatty liver in farmed fish: a review and new perspectives. J Fish of China 2014; 9: 53.
There are 34 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Muhammed Duman This is me 0000-0001-7707-2705

Soner Altun This is me 0000-0001-9096-875X

Burak Ozdemır This is me 0000-0001-7714-9880

Izzet Burcin Satıcıoglu This is me

Publication Date April 1, 2022
Submission Date June 9, 2021
Acceptance Date August 26, 2021
Published in Issue Year 2022 Volume: 19 Issue: 1

Cite

APA Duman, M., Altun, S., Ozdemır, B., Satıcıoglu, I. B. (2022). Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 19(1), 1-10. https://doi.org/10.32707/ercivet.1085205
AMA Duman M, Altun S, Ozdemır B, Satıcıoglu IB. Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish. Erciyes Üniv Vet Fak Derg. April 2022;19(1):1-10. doi:10.32707/ercivet.1085205
Chicago Duman, Muhammed, Soner Altun, Burak Ozdemır, and Izzet Burcin Satıcıoglu. “Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 19, no. 1 (April 2022): 1-10. https://doi.org/10.32707/ercivet.1085205.
EndNote Duman M, Altun S, Ozdemır B, Satıcıoglu IB (April 1, 2022) Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 19 1 1–10.
IEEE M. Duman, S. Altun, B. Ozdemır, and I. B. Satıcıoglu, “Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish”, Erciyes Üniv Vet Fak Derg, vol. 19, no. 1, pp. 1–10, 2022, doi: 10.32707/ercivet.1085205.
ISNAD Duman, Muhammed et al. “Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 19/1 (April 2022), 1-10. https://doi.org/10.32707/ercivet.1085205.
JAMA Duman M, Altun S, Ozdemır B, Satıcıoglu IB. Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish. Erciyes Üniv Vet Fak Derg. 2022;19:1–10.
MLA Duman, Muhammed et al. “Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 19, no. 1, 2022, pp. 1-10, doi:10.32707/ercivet.1085205.
Vancouver Duman M, Altun S, Ozdemır B, Satıcıoglu IB. Fatty Liver Disease and Bacterial Co-Infection in Cultured Marine Fish. Erciyes Üniv Vet Fak Derg. 2022;19(1):1-10.