Research Article
BibTex RIS Cite

Ramalina fraxinea Bazlı Ag NP'lerin Boyutunun Antimikrobiyal Aktiviteler Üzerindeki Etkisinin Değerlendirilmesi

Year 2023, Volume: 20 Issue: 1, 1 - 7, 03.04.2023
https://doi.org/10.32707/ercivet.1258973

Abstract

Bu çalışmada ilk kez Ramalina fraxinea özütü ile farklı konsantrasyonlarda AgNO3 reaksiyonu sonucunda elde edilen farklı boyutlara sahip Ag NP’lerin karakterizasyonları değerlendirilmiştir. Bu amaçla NP’lerin UV-Vis. analizi ile karakteristik ışık emme noktaları, zeta testi ile yüzey yükleri DLS analizi ile hidrodinamik çapları, SEM analizi ile NP’le- rin morfoloji ve çapları tespit edilmiştir. Ag NP’lerin kristal yapıları XRD haritası ile doğrulanmıştır. Ag NP’nin sentezinde aktif olarak rol oynayan R. fraxinea özütünün fonksiyonel grupları FT-IR analizi ile elde edilen pikler ile ortaya konmuş- tur. Yapılan karakterizasyon testleri sonucunda Ag NP’nin sentezinde kullanılan Ag NO3 konsantrasyonunun artışı ile birlikte (10-3 M-5*10-2 M) AgNP’lerin ortalama çapı 14 nm’den 48 nm’ye artış göstermiştir. Staphylococcus aureus, Esc- herichia coli ve Candida albicans suşlarına karşı Ag NP’lerin antimikrobiyal etkinliği NP’lerin boyutuna bağlı olarak de- ğerlendirilmiştir. Küçük boyuta sahip Ag NP’lerin çalışılan suşlara karşı antimikrobiyal etkisi büyük boyuta sahip AgNP’lere göre oldukça etkiliydi. Sonuç olarak R. fraxinea özütü ile biyolojik olarak ucuz etkili ve çevre dostu yöntemle farklı boyutlarda sentezlenen AgNP’lerin boyuta bağlı olarak antimikrobiyal aktivite sergilediği görülmektedir. Çalışma verilerinin nanoteknoloji ve biyomedikal alan çalışmaları için yol gösterici olacağı düşünülmektedir.

References

  • Ahmed S, Saifullah Ahmad M, Swami B L, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indicaaqueous leaf extract. J Radiat Res App. Sci2016; 9(1): 1-7.
  • Awwad AM, Salem NM. Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechno 2012; 2(4): 125-8.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng 2009; 339(1-3): 134-9.
  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 2008; 43: 1164-70.
  • Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019; 124; 148-54.
  • Ceylan R, Demirbas A, Ocsoy I, Aktümsek A. Green synthesis of silver nanoparticles using aqueous extracts of three Sideritis species from Turkey and evaluations bioactivity potentials. Sustain Chem Pharm 2021; 21:100426.
  • Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its anti-bacterial activity. Mater Sci Eng C2016; 58: 36-43.
  • Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng 2010; 364(1-3): 34-41.
  • Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S, Cevik O. Green synthesis of silver nanoparticles via Cynara scolymus Leaf Extracts: the characterization, anticancer potential with photo- dynamic therapy in MCF7 cells. PloS One 2019:14 (6); e0216496.
  • Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Jose-Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003; 19: 1357-61.
  • Gardea-Torresdey JL, Parsons JG, Dokken K, Peral- ta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2002; 2: 397-401.
  • Irtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem 2019; 9:1-9.
  • Koca FD, Ünal G, Halici MG. Lichen based synthesis of zinc oxide nanoparticles and evaluation of its neurotoxic effects on human neuroblastoma cells. J Nano Res 2019; 59: 15-24.
  • Kosanić M, Ranković B, Vukojević J. Antioxidant properties of some lichen species. J Food Sci Technol 2011; 48: 584-90.
  • Manojlović N, Ranković B, Kosanić M, Vasiljević P, Stanojković T. Chemical composition of three parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 2012; 19(13): 1166-72.
  • Mehta BK, Chhajlani M, Shrivastava BD. Green synthesis of silver nanoparticles and their characterization by XRD. J Phys Conf Ser 2017; 836: 1-4.
  • Ocsoy I, Gulbakan B, Chen T, Zhu G, Chen Z, Sari M M, Peng L, Xiong X, Fang X, Tan W. DNA-guided metal-nanoparticle formation on graphene oxide surface. Adv Mater 2013; 25: 2319-25.
  • Özen T, Kinalioğlu K. Determination of antioxidant activity of various extracts of Parmelia saxatilis. Biologia 2008; 63(2): 211-6.
  • Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haemato- cephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem 2017; 10(2): 253-61.
  • Rao B, Ren-Cheng T. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci Na- nosci Nanotechnol 2017; 8: 015014.
  • Rao YS, Kotakadi VS, Prasad TNVKV, Reddy AV, Gopal DS. Green synthesis and spectral characterization of silver nanoparticles from lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 2013; 103; 156-9.
  • Roy P, Das B, Mohanty A, Mohapatra, S. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Na- nosci 2017; 7: 843-50.
  • Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Envi- ron Sci Pollut Res 2015; 22(6): 4122-43.
  • Santiago KKA, Borricano JNC, Canal JN, Marcelo DMA, Perez MCP, Dela Cruz TEE. Antibacterial activities of fruticose lichens collected from selected sites in Luzon Island, Philippines. Philipp Sci Lett 2010; 3: 18-29.
  • Sesal C, Çobanoğlu G, Karaltı İ, Açıkgöz B. In vitro antimicrobial potentials of four Ramalina lichen species from Turkey. Curr Res Environ Appl 2016; 6 (3): 202-9.
  • Shahverdi AR, Minaian S, Shahverdi HR, Fakhimi A, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: A novel biological approach. Process Biochem 2007; 42: 919-23.
  • Shukla V, Joshi GP, Rawat MSM. Lichens as a potential natural source of bioactive compounds: A review. Phytochem Rev 2010;9: 303-14.
  • Singh H, Du J, Singh P, Yi TH. Role of green silver nanoparticles synthesized from Symphytum officinale leaf extract in protection against uvb induced photoaging. J Nanostructure Chem 2018; 8(3): 359- 68.
  • Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 2009; 32: 79-84.
  • Sougandhi PR, Ramanaiah S. Green synthesis and spectral characterization of silver nanoparticles from Psidium guajava leaf extract. Inorg Nano-Met Chem 2020; 50: 1290-4.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Na- chane, RP, Balsubramanya RH. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 2006; 53: 55-9.
  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 2007; 61: 1413-18.

Evaluation of the Effect of the Size of Ramalina fraxinea Based Ag NPs on the Antimicrobial Activity

Year 2023, Volume: 20 Issue: 1, 1 - 7, 03.04.2023
https://doi.org/10.32707/ercivet.1258973

Abstract

For the first time in this study, the effect of nanoparticles (NP) sizes on the antimicrobial activity of Ag NPs of different sizes obtained by the reaction of Ramalina fraxinea(R. fraxinea) extract and silver nitrate (AgNO3) at different concentrations was evaluated. For this purpose, characteristic light absorption points, and charge of the surface were determined by ultraviolet-visible spectroscopy (UV-Vis), and zeta potential, hydrodynamic diameters by dynamic light scattering (DLS) analysis, morphology, and diameters of NPs were determined by scanning electron microscope (SEM) analysis. The crystal structures of Ag NPs were confirmed by the X-ray diffraction (XRD) analysis map. The functional groups of the R. fraxinea extract, which plays an active role in the synthesis of Ag NP, were revealed by the peaks obtained by Fourier transform infrared spectroscopy (FT-IR) analysis. As a result of the characterization tests, the average diameter of Ag NPs increased from 14 nm to 48 nm with the increase in Ag NO3 concentration used in the synthesis of Ag NP (from 10-3 M to 5*10-2 M). The antimicrobial activity of Ag NPs against Staphylococcus aureus, Escherichia coli, and Candida albicans strains was evaluated depending on the size of the NPs. The antimicrobial effect of small-sized Ag NPs against the studied strains was quite effective compared to large-sized Ag NPs. As a result, it is seen that Ag NPs synthesized by using R. fraxinea extract in different sizes with a biologically inexpensive and eco friendly method exhibit antimicrobial activity depending on the size. It is thought that the study data will be a guide for nanotechnology and biomedical field studies.

References

  • Ahmed S, Saifullah Ahmad M, Swami B L, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indicaaqueous leaf extract. J Radiat Res App. Sci2016; 9(1): 1-7.
  • Awwad AM, Salem NM. Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechno 2012; 2(4): 125-8.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng 2009; 339(1-3): 134-9.
  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 2008; 43: 1164-70.
  • Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019; 124; 148-54.
  • Ceylan R, Demirbas A, Ocsoy I, Aktümsek A. Green synthesis of silver nanoparticles using aqueous extracts of three Sideritis species from Turkey and evaluations bioactivity potentials. Sustain Chem Pharm 2021; 21:100426.
  • Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its anti-bacterial activity. Mater Sci Eng C2016; 58: 36-43.
  • Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng 2010; 364(1-3): 34-41.
  • Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S, Cevik O. Green synthesis of silver nanoparticles via Cynara scolymus Leaf Extracts: the characterization, anticancer potential with photo- dynamic therapy in MCF7 cells. PloS One 2019:14 (6); e0216496.
  • Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Jose-Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003; 19: 1357-61.
  • Gardea-Torresdey JL, Parsons JG, Dokken K, Peral- ta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2002; 2: 397-401.
  • Irtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem 2019; 9:1-9.
  • Koca FD, Ünal G, Halici MG. Lichen based synthesis of zinc oxide nanoparticles and evaluation of its neurotoxic effects on human neuroblastoma cells. J Nano Res 2019; 59: 15-24.
  • Kosanić M, Ranković B, Vukojević J. Antioxidant properties of some lichen species. J Food Sci Technol 2011; 48: 584-90.
  • Manojlović N, Ranković B, Kosanić M, Vasiljević P, Stanojković T. Chemical composition of three parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 2012; 19(13): 1166-72.
  • Mehta BK, Chhajlani M, Shrivastava BD. Green synthesis of silver nanoparticles and their characterization by XRD. J Phys Conf Ser 2017; 836: 1-4.
  • Ocsoy I, Gulbakan B, Chen T, Zhu G, Chen Z, Sari M M, Peng L, Xiong X, Fang X, Tan W. DNA-guided metal-nanoparticle formation on graphene oxide surface. Adv Mater 2013; 25: 2319-25.
  • Özen T, Kinalioğlu K. Determination of antioxidant activity of various extracts of Parmelia saxatilis. Biologia 2008; 63(2): 211-6.
  • Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haemato- cephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem 2017; 10(2): 253-61.
  • Rao B, Ren-Cheng T. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci Na- nosci Nanotechnol 2017; 8: 015014.
  • Rao YS, Kotakadi VS, Prasad TNVKV, Reddy AV, Gopal DS. Green synthesis and spectral characterization of silver nanoparticles from lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 2013; 103; 156-9.
  • Roy P, Das B, Mohanty A, Mohapatra, S. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Na- nosci 2017; 7: 843-50.
  • Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Envi- ron Sci Pollut Res 2015; 22(6): 4122-43.
  • Santiago KKA, Borricano JNC, Canal JN, Marcelo DMA, Perez MCP, Dela Cruz TEE. Antibacterial activities of fruticose lichens collected from selected sites in Luzon Island, Philippines. Philipp Sci Lett 2010; 3: 18-29.
  • Sesal C, Çobanoğlu G, Karaltı İ, Açıkgöz B. In vitro antimicrobial potentials of four Ramalina lichen species from Turkey. Curr Res Environ Appl 2016; 6 (3): 202-9.
  • Shahverdi AR, Minaian S, Shahverdi HR, Fakhimi A, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: A novel biological approach. Process Biochem 2007; 42: 919-23.
  • Shukla V, Joshi GP, Rawat MSM. Lichens as a potential natural source of bioactive compounds: A review. Phytochem Rev 2010;9: 303-14.
  • Singh H, Du J, Singh P, Yi TH. Role of green silver nanoparticles synthesized from Symphytum officinale leaf extract in protection against uvb induced photoaging. J Nanostructure Chem 2018; 8(3): 359- 68.
  • Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 2009; 32: 79-84.
  • Sougandhi PR, Ramanaiah S. Green synthesis and spectral characterization of silver nanoparticles from Psidium guajava leaf extract. Inorg Nano-Met Chem 2020; 50: 1290-4.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Na- chane, RP, Balsubramanya RH. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 2006; 53: 55-9.
  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 2007; 61: 1413-18.
There are 32 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Almustafa Mahdi Saleh Alfawadı This is me 0000-0001-9365-537X

Mehmet Gökhan Halıcı This is me 0000-0003-4797-1157

Fatih Dogan Koca This is me 0000-0001-9774-3019

Publication Date April 3, 2023
Submission Date June 15, 2022
Acceptance Date October 5, 2022
Published in Issue Year 2023 Volume: 20 Issue: 1

Cite

APA Alfawadı, A. M. S., Halıcı, M. G., & Koca, F. D. (2023). Evaluation of the Effect of the Size of Ramalina fraxinea Based Ag NPs on the Antimicrobial Activity. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 20(1), 1-7. https://doi.org/10.32707/ercivet.1258973
AMA Alfawadı AMS, Halıcı MG, Koca FD. Evaluation of the Effect of the Size of Ramalina fraxinea Based Ag NPs on the Antimicrobial Activity. Erciyes Üniv Vet Fak Derg. April 2023;20(1):1-7. doi:10.32707/ercivet.1258973
Chicago Alfawadı, Almustafa Mahdi Saleh, Mehmet Gökhan Halıcı, and Fatih Dogan Koca. “Evaluation of the Effect of the Size of Ramalina Fraxinea Based Ag NPs on the Antimicrobial Activity”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20, no. 1 (April 2023): 1-7. https://doi.org/10.32707/ercivet.1258973.
EndNote Alfawadı AMS, Halıcı MG, Koca FD (April 1, 2023) Evaluation of the Effect of the Size of Ramalina fraxinea Based Ag NPs on the Antimicrobial Activity. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20 1 1–7.
IEEE A. M. S. Alfawadı, M. G. Halıcı, and F. D. Koca, “Evaluation of the Effect of the Size of Ramalina fraxinea Based Ag NPs on the Antimicrobial Activity”, Erciyes Üniv Vet Fak Derg, vol. 20, no. 1, pp. 1–7, 2023, doi: 10.32707/ercivet.1258973.
ISNAD Alfawadı, Almustafa Mahdi Saleh et al. “Evaluation of the Effect of the Size of Ramalina Fraxinea Based Ag NPs on the Antimicrobial Activity”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20/1 (April 2023), 1-7. https://doi.org/10.32707/ercivet.1258973.
JAMA Alfawadı AMS, Halıcı MG, Koca FD. Evaluation of the Effect of the Size of Ramalina fraxinea Based Ag NPs on the Antimicrobial Activity. Erciyes Üniv Vet Fak Derg. 2023;20:1–7.
MLA Alfawadı, Almustafa Mahdi Saleh et al. “Evaluation of the Effect of the Size of Ramalina Fraxinea Based Ag NPs on the Antimicrobial Activity”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 20, no. 1, 2023, pp. 1-7, doi:10.32707/ercivet.1258973.
Vancouver Alfawadı AMS, Halıcı MG, Koca FD. Evaluation of the Effect of the Size of Ramalina fraxinea Based Ag NPs on the Antimicrobial Activity. Erciyes Üniv Vet Fak Derg. 2023;20(1):1-7.