Research Article
BibTex RIS Cite

Yüksek Düzeyde Konsantre Yem ve Kuru Kaba Yem İçeren Besi Sığırı Rasyonlarında DL-Malik Asitin Besi Performansı ve Rumen Parametreleri Üzerine Etkinliği

Year 2023, Volume: 20 Issue: 3, 169 - 177, 04.12.2023
https://doi.org/10.32707/ercivet.1389149

Abstract

Bu çalışmada, yüksek konsantre yem ve kuru kaba yem (yonca otu ve buğday samanı) içeren besi sığırı rasyonla-
rına DL-malik asit ilavesinin besi performansı, karkas özellikleri ve rumen parametreleri üzerine etkilerinin belirlenmesi
amaçlanmıştır. Bu çalışmada 14-16 aylık yaştaki 47 erkek besi sığırı (19 Simental, 28 Limousine) kullanıldı. Sığır ırkları
iki gruba ayrıldı (0 ve 30 g/gün DL-malik asit). Kontrol ve DL-malik asit gruplarının canlı ağırlıkları, günlük canlı ağırlık
artışları ve karkas ağırlıkları arasındaki farklılık Simmental ırkında önemli (P<0.05), Limousine ırkında ise önemsiz
bulundu. Besi sığırlarının vücut ölçüleri (cidago yüksekliği, göğüs çevresi, sağrı yüksekliği, vücut uzunluğu) malik asit
takviyesi ile değişmedi (P>0.05). Malik asit ilavesi rumen sıvısındaki asetik, bütirik, propiyonik ve toplam uçucu yağ
asitlerinin (TVFA) molaritelerini ve asetik asit/propiyonik asit oranını arttırdı (P<0.05). Malik asit ilavesinin rumen sıvı-
sındaki silliatalı protozoa (Entodinium, Diplodinium, Isotricha ve Dasytricha) sayısı ve toplam bakteri sayısı üzerinde
önemli bir etkisi olmadı (P>0.05). Sonuç olarak, besi sığırı rasyonlarına DL-malik asit takviyesinin besi performansı
açısından sığır ırklarına göre farklılık gösterdiği ve Simental ırkında besiye olumlu etkisinin olduğu belirlendi. Ayrıca
rumende lif ve karbonhidrat fermentasyon etkinliğinin göstergesi olan TVFA ile asetik, propiyonik ve bütirik asitlerdeki
artış dikkate alındığında, malik asidin rumende yem sindirimine etkisinin olumlu olduğu söylenebilir.

References

  • Alferez JCM. Production and intake response of dairy cows fed for levels of malic acid. M.S. thesis, Utah State Univ, Graduate Theses and Dissertations 1978; Logan, Utah.
  • AOAC. Association of Official Analytical Chemists Official Methods of Analysis. Seventeenth Edition, Second Revision. Gaithersburg, MD, USA, 2003.
  • Brown JE, Brown CJ, Butts WT. Evaluating relationship among immature measures of size, shape and performance on beef bulls. I. Principle component as measure of size and shape in young Hereford and Angus bulls. J Anim Sci 1973; 36: 1010-20.
  • Canibe N. Engberg RM. Jensen BB. An overview of the effect of organic acids on gut flora and gut health. J Anim Sci 2001; 79: 2123-33.
  • Carro MD, Ranilla MJ, Giraldez FJ, Mantecon AR. Effects of malate on diet digestibility. microbial protein synthesis. plasma metabolites. And performance of growing lambs fed a high-concentrate diet. J Anim Sci 2006; 84: 405-10.
  • Carro MD, Ranilla MJ. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. British J Nutr 2003; 89: 181-8.
  • Castillo C, Benedito JL, Mendez J, Pereira V, Lopez Alonso M, Miranda M, Hernandez J. Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol 2004; 115: 101-16.
  • Cong W, Qiang L, Qun D, Xiao-min Y, Dongchang HE, Kuan-hu D. Effects of malic acid supplementation on rumen fermentation, nutrient digestion and metabolism in Simmental steer. Acta Prataculturae Sin 2009; 18: 224-31.
  • Dehority BA. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl Environ Microbiol 1984; 48: 182-5.
  • Dibner JJ, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res 2002; 11: 453-63.
  • Dittoe DK, Ricke SC, Kiess AS. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front Vet Sci 2018; 5: 216.
  • Ersahince AC, Kara K. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J Anim Feed Sci 2017; 26: 213-25.
  • Foley PA, Kenny DA, Callani JJ, Boland TM, O’Mara FP. Effect of DL-malic acid supplementation on feed intake. methane emission and rumen fermentation in beef cattle. J Anim Sci 2009; 87: 1048-57.
  • Goering HK, Van Soest PJ. Forage fiber analysis. Agriculture Handbook 1970; Washington D.C., 829-35.
  • Hackett H, Kreider DL, Hardesty D, Hornsby P. Effects of malic acid supplementation in postpartum cows. J Anim Sci 1995; 73: 254.
  • Kara K. In vitro methane production and quality of corn silage treated with maleic acid. Ital J Anim Sci 2015; 14: 3994.
  • Kara K, Aktug, Cagri A, Guclu BK, Baytok E. Effect of formic acid on in vitro ruminal fermentation and methane emission. Turk J Food Agric Sci2015; 3: 856-60.
  • Kara K, Özkaya S, Erbas S, Baytok E. Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. J App Anim Res 2017; 46: 178-83.
  • Kung L, Huber JT, Krummmrey JD, Allison L, Cook RM. Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility and nitrogen utilization. J Dairy Sci 1982; 65: 1170-4.
  • Martin S, Marshall NS, Nisbet DJ, Hill GM, Williams SE. Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. J Anim Sci 1999; 77: 1008-15.
  • Martin SA. Manipulation of ruminal fermentation with organic acids: A review. J Anim Sci 1998; 76: 3123-32.
  • Mirza MW, Rehman ZU, Mukhtar N. Use of organic acids as potential feed additives in poultry production. J World's Poult Res 2016; 6(3): 105-16.
  • Mohammed N, Lila ZA, Ajisaka N, Hara K, Mikuni K, Hara K, Kanda S, Itabashi H. Inhibition of ruminal microbial methane production by β‐cyclodextrin iodopropane, malate and their combination in vitro. J Anim Physiol Anim Nutr 2004; 88:188-95.
  • Montano MF, Chai W, Zinn-Ware TE, Zinn RA. Influence of malic acid supplementation on ruminal pH. lactic acid utilization. and digestive function in steers fed high-concentrate finishing diets. J Anim Sci 1999; 77: 780-4.
  • Nisbet DJ, Martin SA. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl Environ Microbiol 1990; 56(11): 3515.
  • NRC. National Research Council, Nutrient requirements of beef cattle. Seven Edition. Washington DC: National Academy Press, 1996.
  • Ogimoto I. Atlas of rumen microbiology. Japan Scien-tific Societies Press, VIII, 231, Tokyo.1981.
  • Ricke SC. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 2003; 82: 632-9.
  • Rossi CAS, Vandoni S. Malate supplementation to beef cattle: effects on growth performance and rumen fermentation products. Ital J Anim Sci 2009; 8: 543-5
  • Sahoo A, Jena B. Organic acids as rumen modifiers. Int J Sci Res2014; 3: 2262-6.
  • Seanson DV, Stullcup OT. Growth response and serum constituents of Holstein bulls fed malic acid. Nutr Rep Inter1984; 30: 1261-7.
  • Sniffen CJ, Ballard CS, Carter MP, Cotanch KW, Dann HM, Grant RJ, Mandebvu P, Suekawa M, Martin SA. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim Feed Sci Technol 2006; 127: 13-31.
  • Stullcup OT. Influence of addition of DL-malic acid to diets of lactating dairy cows. J Dairy Sci 1979; 62: 225-6.
  • Süer INE, Kocabağlı N. Effects of yeast (Saccharomyces cerevisiae) or malic acid salts on fattening performance of lambs fed a high concentrate diet. Int J Vet Anim Res 2018; 1: 1-4.
  • Toprak MN, Yılmaz A. The effects of malic acid and its salts on rumen fermentation. lactation and fattening performance of cattle. Sci Pap 2014; 4: 197-202.
  • Wang C, Qiang L, Yang W, Dong Q, Yang XM, He DC, Dong KH, Huang YX. Effects of malic acid on feed intake, milk yield, milk components and metabolites in early lactation Holstein dairy cows. Livest Sci 2009; 124; 182-8.
  • Yıldız G. The effects of different rations on some rumen metabolites and rumen protozoa of sheep. Ankara Univ Vet Fak Derg 2001; 48:153-8.

The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage

Year 2023, Volume: 20 Issue: 3, 169 - 177, 04.12.2023
https://doi.org/10.32707/ercivet.1389149

Abstract

This study aimed to determine the effects of DL-malic acid supplementation in beef cattle rations containing
high concentrated feed and dry forage (alfalfa hay and wheat straw) on fattening performance, carcass traits and ru-
men parameters. In present study, 47 male beef cattle (19 Simmental, 28 Limousine) at the age of 14-16 months were
used. Cattle breeds were divided into two groups (0 and 30 g/day of DL-malic acid). In the present study, the differ-
ences in live weights, daily live weight gains and carcass weights of the control and DL-malic acid groups were found
to be significant in Simmental breed (P<0.05), but insignificant in Limousine breed. The beef cattle body measurements
(withers height, chest girth, rump height, body length) did not change with malic acid supplementation (P>0.05).The
malic acid addition increased the molarities of acetic, butyric, propionic and total volatile fatty acids (TVFA) and acetic
acid/ propionic acid ratio in the rumen fluid (P<0.05).The addition of malic acid had no significant effect on the number
of ciliated protozoa (Entodinium, Diplodinium, Isotricha and Dasytricha) and total bacteria count in the rumen fluid
(P>0.05). As a result, DL-malic acid supplementation to beef cattle ration varied with cattle breeds in terms of fattening
performance, while such supplementations had positive effect on fattening in Simmental breed. Besides, the increase
in TVFA and acetic, propionic and butyric acids, which are indicators of fiber and carbohydrate fermentation efficiency
in the rumen, shows that malic acid has a positive effect on feed digestion in the rumen.

References

  • Alferez JCM. Production and intake response of dairy cows fed for levels of malic acid. M.S. thesis, Utah State Univ, Graduate Theses and Dissertations 1978; Logan, Utah.
  • AOAC. Association of Official Analytical Chemists Official Methods of Analysis. Seventeenth Edition, Second Revision. Gaithersburg, MD, USA, 2003.
  • Brown JE, Brown CJ, Butts WT. Evaluating relationship among immature measures of size, shape and performance on beef bulls. I. Principle component as measure of size and shape in young Hereford and Angus bulls. J Anim Sci 1973; 36: 1010-20.
  • Canibe N. Engberg RM. Jensen BB. An overview of the effect of organic acids on gut flora and gut health. J Anim Sci 2001; 79: 2123-33.
  • Carro MD, Ranilla MJ, Giraldez FJ, Mantecon AR. Effects of malate on diet digestibility. microbial protein synthesis. plasma metabolites. And performance of growing lambs fed a high-concentrate diet. J Anim Sci 2006; 84: 405-10.
  • Carro MD, Ranilla MJ. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. British J Nutr 2003; 89: 181-8.
  • Castillo C, Benedito JL, Mendez J, Pereira V, Lopez Alonso M, Miranda M, Hernandez J. Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol 2004; 115: 101-16.
  • Cong W, Qiang L, Qun D, Xiao-min Y, Dongchang HE, Kuan-hu D. Effects of malic acid supplementation on rumen fermentation, nutrient digestion and metabolism in Simmental steer. Acta Prataculturae Sin 2009; 18: 224-31.
  • Dehority BA. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl Environ Microbiol 1984; 48: 182-5.
  • Dibner JJ, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res 2002; 11: 453-63.
  • Dittoe DK, Ricke SC, Kiess AS. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front Vet Sci 2018; 5: 216.
  • Ersahince AC, Kara K. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J Anim Feed Sci 2017; 26: 213-25.
  • Foley PA, Kenny DA, Callani JJ, Boland TM, O’Mara FP. Effect of DL-malic acid supplementation on feed intake. methane emission and rumen fermentation in beef cattle. J Anim Sci 2009; 87: 1048-57.
  • Goering HK, Van Soest PJ. Forage fiber analysis. Agriculture Handbook 1970; Washington D.C., 829-35.
  • Hackett H, Kreider DL, Hardesty D, Hornsby P. Effects of malic acid supplementation in postpartum cows. J Anim Sci 1995; 73: 254.
  • Kara K. In vitro methane production and quality of corn silage treated with maleic acid. Ital J Anim Sci 2015; 14: 3994.
  • Kara K, Aktug, Cagri A, Guclu BK, Baytok E. Effect of formic acid on in vitro ruminal fermentation and methane emission. Turk J Food Agric Sci2015; 3: 856-60.
  • Kara K, Özkaya S, Erbas S, Baytok E. Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. J App Anim Res 2017; 46: 178-83.
  • Kung L, Huber JT, Krummmrey JD, Allison L, Cook RM. Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility and nitrogen utilization. J Dairy Sci 1982; 65: 1170-4.
  • Martin S, Marshall NS, Nisbet DJ, Hill GM, Williams SE. Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. J Anim Sci 1999; 77: 1008-15.
  • Martin SA. Manipulation of ruminal fermentation with organic acids: A review. J Anim Sci 1998; 76: 3123-32.
  • Mirza MW, Rehman ZU, Mukhtar N. Use of organic acids as potential feed additives in poultry production. J World's Poult Res 2016; 6(3): 105-16.
  • Mohammed N, Lila ZA, Ajisaka N, Hara K, Mikuni K, Hara K, Kanda S, Itabashi H. Inhibition of ruminal microbial methane production by β‐cyclodextrin iodopropane, malate and their combination in vitro. J Anim Physiol Anim Nutr 2004; 88:188-95.
  • Montano MF, Chai W, Zinn-Ware TE, Zinn RA. Influence of malic acid supplementation on ruminal pH. lactic acid utilization. and digestive function in steers fed high-concentrate finishing diets. J Anim Sci 1999; 77: 780-4.
  • Nisbet DJ, Martin SA. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl Environ Microbiol 1990; 56(11): 3515.
  • NRC. National Research Council, Nutrient requirements of beef cattle. Seven Edition. Washington DC: National Academy Press, 1996.
  • Ogimoto I. Atlas of rumen microbiology. Japan Scien-tific Societies Press, VIII, 231, Tokyo.1981.
  • Ricke SC. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 2003; 82: 632-9.
  • Rossi CAS, Vandoni S. Malate supplementation to beef cattle: effects on growth performance and rumen fermentation products. Ital J Anim Sci 2009; 8: 543-5
  • Sahoo A, Jena B. Organic acids as rumen modifiers. Int J Sci Res2014; 3: 2262-6.
  • Seanson DV, Stullcup OT. Growth response and serum constituents of Holstein bulls fed malic acid. Nutr Rep Inter1984; 30: 1261-7.
  • Sniffen CJ, Ballard CS, Carter MP, Cotanch KW, Dann HM, Grant RJ, Mandebvu P, Suekawa M, Martin SA. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim Feed Sci Technol 2006; 127: 13-31.
  • Stullcup OT. Influence of addition of DL-malic acid to diets of lactating dairy cows. J Dairy Sci 1979; 62: 225-6.
  • Süer INE, Kocabağlı N. Effects of yeast (Saccharomyces cerevisiae) or malic acid salts on fattening performance of lambs fed a high concentrate diet. Int J Vet Anim Res 2018; 1: 1-4.
  • Toprak MN, Yılmaz A. The effects of malic acid and its salts on rumen fermentation. lactation and fattening performance of cattle. Sci Pap 2014; 4: 197-202.
  • Wang C, Qiang L, Yang W, Dong Q, Yang XM, He DC, Dong KH, Huang YX. Effects of malic acid on feed intake, milk yield, milk components and metabolites in early lactation Holstein dairy cows. Livest Sci 2009; 124; 182-8.
  • Yıldız G. The effects of different rations on some rumen metabolites and rumen protozoa of sheep. Ankara Univ Vet Fak Derg 2001; 48:153-8.
There are 37 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Articles
Authors

Osman Kıyıcı This is me 0000-0002-0317-5231

Berrin Kocaoğlu Güçlü 0000-0003-0341-4594

Kanber Kara 0000-0001-9867-1344

Serkan Özkaya 0000-0003-3389-0188

Jale Metin Kıyıcı 0000-0002-5030-5748

Publication Date December 4, 2023
Submission Date December 12, 2022
Acceptance Date May 29, 2023
Published in Issue Year 2023 Volume: 20 Issue: 3

Cite

APA Kıyıcı, O., Kocaoğlu Güçlü, B., Kara, K., Özkaya, S., et al. (2023). The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 20(3), 169-177. https://doi.org/10.32707/ercivet.1389149
AMA Kıyıcı O, Kocaoğlu Güçlü B, Kara K, Özkaya S, Metin Kıyıcı J. The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage. Erciyes Üniv Vet Fak Derg. December 2023;20(3):169-177. doi:10.32707/ercivet.1389149
Chicago Kıyıcı, Osman, Berrin Kocaoğlu Güçlü, Kanber Kara, Serkan Özkaya, and Jale Metin Kıyıcı. “The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20, no. 3 (December 2023): 169-77. https://doi.org/10.32707/ercivet.1389149.
EndNote Kıyıcı O, Kocaoğlu Güçlü B, Kara K, Özkaya S, Metin Kıyıcı J (December 1, 2023) The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20 3 169–177.
IEEE O. Kıyıcı, B. Kocaoğlu Güçlü, K. Kara, S. Özkaya, and J. Metin Kıyıcı, “The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage”, Erciyes Üniv Vet Fak Derg, vol. 20, no. 3, pp. 169–177, 2023, doi: 10.32707/ercivet.1389149.
ISNAD Kıyıcı, Osman et al. “The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20/3 (December 2023), 169-177. https://doi.org/10.32707/ercivet.1389149.
JAMA Kıyıcı O, Kocaoğlu Güçlü B, Kara K, Özkaya S, Metin Kıyıcı J. The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage. Erciyes Üniv Vet Fak Derg. 2023;20:169–177.
MLA Kıyıcı, Osman et al. “The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 20, no. 3, 2023, pp. 169-77, doi:10.32707/ercivet.1389149.
Vancouver Kıyıcı O, Kocaoğlu Güçlü B, Kara K, Özkaya S, Metin Kıyıcı J. The Effectiveness of DL-Malic Acid on Fattening Performance and Rumen Parameters in Beef Cattle Rations Containing High Concentrated Feed and Dry Forage. Erciyes Üniv Vet Fak Derg. 2023;20(3):169-77.