Research Article
BibTex RIS Cite

Sığırlarda Yüksek Düzeyde Kullanılan Farklı Nişasta Kaynaklarının Ruminal Fermentasyon Özellikleri ve Bazı Kan Parametreleri Üzerine Etkileri

Year 2024, Volume: 21 Issue: 2, 99 - 109, 02.08.2024
https://doi.org/10.32707/ercivet.1515414

Abstract

Sunulan çalışmada, farklı nişasta kaynaklarının sığırlarda ruminal fermantasyon ve in situ sindirilebilirlik özellikleri ile bazı kan parametreleri üzerine etkilerinin belirlenmesi amaçlanmıştır. Araştırmada benzer enerji, protein ve nişasta içeriklerine sahip üç farklı karma rasyon hazırlanmış ve bunlar denemenin gruplarını oluşturmuştur. Karma rasyonların ana nişasta kaynakları sırasıyla arpa, buğday ve mısır tanesi kökenlidir. Çalışma, 3 x 3 Latin kare deneme tasarımında, rumen kanüllü, laktasyonda olmayan 3 Holştayn dişi sığır kullanılarak ardışık iki deneme halinde gerçekleştirilmiştir. Bu karma rasyonlarla ad libitum besleme yapılmış ve ardından hayvanların besin alımları, ruminal fermantasyon (pH, ase-tik, propiyonik, bütirik ve laktik asitler), bazı serum (üre, glikoz, toplam protein, albümin, trigliserit), kan gazı (pH, pCO2, pO2, HCO3-, Na+, K+, Ca++, Cl-, anyon gap, laktat) parametreleri. Ayrıca nişasta kaynağı yemlerin kuru madde ve nişas-ta sindirilebilirliği de incelenmiştir. Farklı karma yemlerle beslenen sığırların nötral-deterjan lif (NDF) alımı (P<0.05) dışındaki diğer besin madde tüketimi parametreleri benzer bulunmuştur (P>0.05). Ruminal fermantasyon, serum ve kan gazı parametreleri deneme grupları arasında değişim göstermemiştir (P>0.05). Sonuç olarak deneme rasyonları-nın içerik farklılığından dolayı deneklerin rumen sıvısı, serum ve kan gazı parametre değerlerinde ciddi bir değişiklik olmadığı belirlenmiştir. Diğer yandan, arpa ve buğdayın kuru madde ve nişasta sindirilebilirliğinin tahıl taneleri arasında önemli derecede farklı olduğu, mısırın rumen kuru madde ve nişasta sindirilebilirliğinin daha yavaş, istikrarlı ve kade-meli bir artış gösterdiği belirlenmiştir.

References

  • Abdela N. Sub-acute ruminal acidosis (sara) and its consequence in dairy cattle: a review of past and recent research at global prospective. Achieve-ments Life Sci 2016; 10(2): 187-96.
  • Allen MS, Piantoni P. Carbohydrate nutrition: Manag-ing energy intake and partitioning through lactation. Van Saun RJ. eds. In: Veterinary Clinics of North America: Food Animal Practice. New York: Elsevier Inc., 2014; pp. 577-97.
  • AOAC. Official methods of analysis of the association of official analytical chemists. Eighteenth Edition. Gaithersburg MD: Association of Official Analytical Chemists, 2006.
  • Boerman JP, Potts SB, VandeHaar MJ, Allen MS, Lock AL. Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle. J Dairy Sci 2015; 98(7): 4698-706.
  • Cabrita ARJ, Vale JMP, Bessa RJB, Dewhurst RJ, Fonseca AJM. Effects of dietary starch source and buffers on milk responses and rumen fatty acid biohydrogenation in dairy cows fed maize silage-based diets. Anim Feed Sci Tech 2009; 152 (3-4): 267-77.
  • Chibisa GE, Gorka P, Penner GB, Berthiaume R, Mutsvangwa T. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows. J Dairy Sci 2015; 98(4): 2627-40.
  • Danscher AM, Li S, Andersen PH, Khafipour E, Kris-tensen NB, Plaizier JC. Indicators of induced sub-acute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet Scand 2015; 57(1): 1-14.
  • Ferraretto LF. Impact of starch content and digestibil-ity in dairy cattle diets. Twenty-Eighth Annual Flori-da Ruminant Nutrition Symposium. February, 6-8, 2017; Florida-USA.
  • Fuentes C, Kang I, Lee J, Song D, Sjöö M, Choi J, Lee S, Nilsson L. Fractionation and characteriza-tion of starch granules using field-flow fractionation (FFF) and differential scanning calorimetry (DSC). Anal Bioanal Chem 2019; 411(16): 3665-74.
  • Giuberti G, Gallo A, Masoero F, Ferraretto LF, Hoff-man PC, Shaver RD. Factors affecting starch utilization in large animal food production system: A review. Starch-Stärke 2014; 66(1-2): 72-90.
  • Gomez LM, Posada SL, Olivera M. Starch in rumi-nant diets: A review. Rev Colomb Cienc Pec 2016; 29(2): 77-90.
  • Hassan MAS, Karsli MA. The effect of Saccharomy-ces cerevisiae as a probiotic on the nutrient degradability of some commonly feedstuffs used in Tur-key. Turk J Vet Anim Sci 2023; 47(3): 255-69.
  • Huntington GB, Harmon DL, Richards CJ. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J Anim Sci 2006; 84: 14-24.
  • ISO. International Organization for Standardization. ISO 10520:1997 Native starch. Determination of starch content. Ewers polarimetric method. https://www.iso.org/standard/18589.html; Accessed Date: 24.09.2023.
  • Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 2009; 92(3): 1060-70.
  • Khorasani GR, Okine EK, Kennelly JJ. Effects of substituting barley grain with corn on ruminal fermentation characteristics, milk yield and milk composition of Holstein cows. J Dairy Sci 2001; 84(12): 2760-9.
  • Krause MK, Otzel GR. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim Feed Sci Tech 2006; 126(3-4): 215-36.
  • Mills JAN, France J, Dijkstra J. A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 1. Dietary starch characterization and ruminal starch digestion. J Anim Feed Sci 1999; 8(3): 291-340.
  • Monteils V, Jurjanz S, Blanchart G, Laurent F. Kinetics of ruminal degradation of wheat and potato starches in total mixed rations. J Anim Sci 2002; 80(1): 235-41.
  • Morgante M, Gianesella M, Casella S, Ravarotto L, Stelletta C, Giudice E. Blood gas analyses, ruminal and blood pH, urine and faecal pH in dairy cows during subacute ruminal acidosis. Comp Clin Pathol 2009; 18(3): 229-32.
  • Mosavi GHR, Fatahnia F, Mehrabi AA, Mirzaei Alamouti HR, Darmani Kohi H. Effect of dietary starch source on milk production and composition of lactating Holstein cows. S Afr J Anim Sci 2012; 42(3): 201-9.
  • NRC (National Research Council). Nutrient Requirements of Dairy Cattle. Seventh Revised Edition. Washington DC: National Academy Press, 2001.
  • Oetzel GR. Monitoring and testing dairy herds for metabolic disease. Vet Clin North Am Food Anim Pract 2004; 20(3): 651-74.
  • Overton TR, Cameron MR, Elliott JP, Clark JH, Nel-son DR. Ruminal fermentation and passage of nutrients to the duodenum of lactating cows fed mix-tures of corn and barley. J Dairy Sci 1995, 78(9): 1981-98.
  • Plaizier JC, Krause DO, Gozho GN, McBride BW. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 2008; 176(1): 21-31.
  • Qi X, Tester RF. Effect of native starch granule size on susceptibility to amylase hydrolysis. Starch-Stärke 2016; 68(9-10): 807-10.
  • Silveira C, Oba M, Beauchemin KA, Helm J. Effect of grains differing in expected ruminal fermentability on the productivity of lactating dairy cows. J Dairy Sci 2007; 90(6): 2852-9.
  • Singh J, Colussi R, McCarthy OJ, Kaur L. Potato starch and its modification. Singh J, Kaur L eds. In: Advances in Potato Chemistry and Technology. London: Academic Press, 2016; pp. 195-247.
  • Theurer CB. Grain processing effects on starch utilization by ruminants. J Anim Sci 1986; 63(5): 1649-62.
  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci 1991; 74(10): 3583-97.
  • Wang M, Jiang J, Tan ZL, Tang SX, Sun ZH, Han XF. In situ ruminal crude protein and starch degradation of three classes of feedstuffs in goats. J Appl Anim Res 2009; 36(1): 23-8.
  • Tjardes K, Buskırk D, Allen M, Ames N, Bourquın L, Rust S. Brown midrib-3 corn silage improves diges-tion but not performance of growing beef steers. J Anim Sci 2000; 78(11): 2957-65.
  • Zhao C, Liu G, Li X, Guan Y, Wang Y, Yuan X, Sun G, Wang Z, Li X. Inflammatory mechanism of Rumenitis in dairy cows with subacute ruminal acido-sis. BMC Vet Res 2018; 14(1): 1-8.

Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters

Year 2024, Volume: 21 Issue: 2, 99 - 109, 02.08.2024
https://doi.org/10.32707/ercivet.1515414

Abstract

In this study, it was aimed to determine the effects of different starch sources on ruminal fermentation and in situ digestibility characteristics and some blood parameters in cows. In the study, three different total mixed rations (TMR) with similar energy, protein and starch contents were prepared and these TMR’s formed the groups of the ex-periment. The main starch sources of the TMR’s were from the barley, wheat, and corn grains, respectively. The study was carried out as two consecutive trails using 3 non-lactating Holstein female cattle with rumen cannulate within a 3 × 3 Latin square trial design. These TMRs were fed at ad libitum and then nutrient intakes, ruminal fermentation (pH, acetic, propionic, butyric, and lactic acids), some serum (urea, glucose, total protein, albumin, triglyceride) and blood gas parameters (pH, pCO2, pO2, HCO3-, Na+, K+, Ca++, Cl-, anion gap, lactate) were determined. Also, in situ dry matter and starch degradability were carried out in these animals. Nutrient intakes of cows fed different TMRs were similar (P>0.05), except neutral detergent fiber (NDF) intake (P<0.05). Both ruminal fermentation, serum and blood gas pa-rameters did not change among treatment groups (P>0.05). As a result, it was determined that there were no serious changes in the ruminal fluid, serum, and blood gas parameter values of the subjects due to the content difference of the trial TMR’s. On the other hand, it was determined that in situ dry matter (DM) and starch degradability of barley and wheat were significantly different among cereal grains, ruminal DM and starch degradability of corn followed a slower, stable, and gradual increase.

References

  • Abdela N. Sub-acute ruminal acidosis (sara) and its consequence in dairy cattle: a review of past and recent research at global prospective. Achieve-ments Life Sci 2016; 10(2): 187-96.
  • Allen MS, Piantoni P. Carbohydrate nutrition: Manag-ing energy intake and partitioning through lactation. Van Saun RJ. eds. In: Veterinary Clinics of North America: Food Animal Practice. New York: Elsevier Inc., 2014; pp. 577-97.
  • AOAC. Official methods of analysis of the association of official analytical chemists. Eighteenth Edition. Gaithersburg MD: Association of Official Analytical Chemists, 2006.
  • Boerman JP, Potts SB, VandeHaar MJ, Allen MS, Lock AL. Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle. J Dairy Sci 2015; 98(7): 4698-706.
  • Cabrita ARJ, Vale JMP, Bessa RJB, Dewhurst RJ, Fonseca AJM. Effects of dietary starch source and buffers on milk responses and rumen fatty acid biohydrogenation in dairy cows fed maize silage-based diets. Anim Feed Sci Tech 2009; 152 (3-4): 267-77.
  • Chibisa GE, Gorka P, Penner GB, Berthiaume R, Mutsvangwa T. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows. J Dairy Sci 2015; 98(4): 2627-40.
  • Danscher AM, Li S, Andersen PH, Khafipour E, Kris-tensen NB, Plaizier JC. Indicators of induced sub-acute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet Scand 2015; 57(1): 1-14.
  • Ferraretto LF. Impact of starch content and digestibil-ity in dairy cattle diets. Twenty-Eighth Annual Flori-da Ruminant Nutrition Symposium. February, 6-8, 2017; Florida-USA.
  • Fuentes C, Kang I, Lee J, Song D, Sjöö M, Choi J, Lee S, Nilsson L. Fractionation and characteriza-tion of starch granules using field-flow fractionation (FFF) and differential scanning calorimetry (DSC). Anal Bioanal Chem 2019; 411(16): 3665-74.
  • Giuberti G, Gallo A, Masoero F, Ferraretto LF, Hoff-man PC, Shaver RD. Factors affecting starch utilization in large animal food production system: A review. Starch-Stärke 2014; 66(1-2): 72-90.
  • Gomez LM, Posada SL, Olivera M. Starch in rumi-nant diets: A review. Rev Colomb Cienc Pec 2016; 29(2): 77-90.
  • Hassan MAS, Karsli MA. The effect of Saccharomy-ces cerevisiae as a probiotic on the nutrient degradability of some commonly feedstuffs used in Tur-key. Turk J Vet Anim Sci 2023; 47(3): 255-69.
  • Huntington GB, Harmon DL, Richards CJ. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J Anim Sci 2006; 84: 14-24.
  • ISO. International Organization for Standardization. ISO 10520:1997 Native starch. Determination of starch content. Ewers polarimetric method. https://www.iso.org/standard/18589.html; Accessed Date: 24.09.2023.
  • Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 2009; 92(3): 1060-70.
  • Khorasani GR, Okine EK, Kennelly JJ. Effects of substituting barley grain with corn on ruminal fermentation characteristics, milk yield and milk composition of Holstein cows. J Dairy Sci 2001; 84(12): 2760-9.
  • Krause MK, Otzel GR. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim Feed Sci Tech 2006; 126(3-4): 215-36.
  • Mills JAN, France J, Dijkstra J. A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 1. Dietary starch characterization and ruminal starch digestion. J Anim Feed Sci 1999; 8(3): 291-340.
  • Monteils V, Jurjanz S, Blanchart G, Laurent F. Kinetics of ruminal degradation of wheat and potato starches in total mixed rations. J Anim Sci 2002; 80(1): 235-41.
  • Morgante M, Gianesella M, Casella S, Ravarotto L, Stelletta C, Giudice E. Blood gas analyses, ruminal and blood pH, urine and faecal pH in dairy cows during subacute ruminal acidosis. Comp Clin Pathol 2009; 18(3): 229-32.
  • Mosavi GHR, Fatahnia F, Mehrabi AA, Mirzaei Alamouti HR, Darmani Kohi H. Effect of dietary starch source on milk production and composition of lactating Holstein cows. S Afr J Anim Sci 2012; 42(3): 201-9.
  • NRC (National Research Council). Nutrient Requirements of Dairy Cattle. Seventh Revised Edition. Washington DC: National Academy Press, 2001.
  • Oetzel GR. Monitoring and testing dairy herds for metabolic disease. Vet Clin North Am Food Anim Pract 2004; 20(3): 651-74.
  • Overton TR, Cameron MR, Elliott JP, Clark JH, Nel-son DR. Ruminal fermentation and passage of nutrients to the duodenum of lactating cows fed mix-tures of corn and barley. J Dairy Sci 1995, 78(9): 1981-98.
  • Plaizier JC, Krause DO, Gozho GN, McBride BW. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 2008; 176(1): 21-31.
  • Qi X, Tester RF. Effect of native starch granule size on susceptibility to amylase hydrolysis. Starch-Stärke 2016; 68(9-10): 807-10.
  • Silveira C, Oba M, Beauchemin KA, Helm J. Effect of grains differing in expected ruminal fermentability on the productivity of lactating dairy cows. J Dairy Sci 2007; 90(6): 2852-9.
  • Singh J, Colussi R, McCarthy OJ, Kaur L. Potato starch and its modification. Singh J, Kaur L eds. In: Advances in Potato Chemistry and Technology. London: Academic Press, 2016; pp. 195-247.
  • Theurer CB. Grain processing effects on starch utilization by ruminants. J Anim Sci 1986; 63(5): 1649-62.
  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci 1991; 74(10): 3583-97.
  • Wang M, Jiang J, Tan ZL, Tang SX, Sun ZH, Han XF. In situ ruminal crude protein and starch degradation of three classes of feedstuffs in goats. J Appl Anim Res 2009; 36(1): 23-8.
  • Tjardes K, Buskırk D, Allen M, Ames N, Bourquın L, Rust S. Brown midrib-3 corn silage improves diges-tion but not performance of growing beef steers. J Anim Sci 2000; 78(11): 2957-65.
  • Zhao C, Liu G, Li X, Guan Y, Wang Y, Yuan X, Sun G, Wang Z, Li X. Inflammatory mechanism of Rumenitis in dairy cows with subacute ruminal acido-sis. BMC Vet Res 2018; 14(1): 1-8.
There are 33 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Articles
Authors

Mehmet Demirci 0000-0002-0199-4559

Mehmet Akif Karslı 0000-0002-3081-9450

Hasan Hüseyin Şenyüz 0000-0002-3695-1794

Arzu Erol Tunç 0000-0001-6283-3591

Publication Date August 2, 2024
Submission Date September 25, 2023
Acceptance Date March 13, 2024
Published in Issue Year 2024 Volume: 21 Issue: 2

Cite

APA Demirci, M., Karslı, M. A., Şenyüz, H. H., Erol Tunç, A. (2024). Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 21(2), 99-109. https://doi.org/10.32707/ercivet.1515414
AMA Demirci M, Karslı MA, Şenyüz HH, Erol Tunç A. Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters. Erciyes Üniv Vet Fak Derg. August 2024;21(2):99-109. doi:10.32707/ercivet.1515414
Chicago Demirci, Mehmet, Mehmet Akif Karslı, Hasan Hüseyin Şenyüz, and Arzu Erol Tunç. “Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 21, no. 2 (August 2024): 99-109. https://doi.org/10.32707/ercivet.1515414.
EndNote Demirci M, Karslı MA, Şenyüz HH, Erol Tunç A (August 1, 2024) Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 21 2 99–109.
IEEE M. Demirci, M. A. Karslı, H. H. Şenyüz, and A. Erol Tunç, “Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters”, Erciyes Üniv Vet Fak Derg, vol. 21, no. 2, pp. 99–109, 2024, doi: 10.32707/ercivet.1515414.
ISNAD Demirci, Mehmet et al. “Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 21/2 (August 2024), 99-109. https://doi.org/10.32707/ercivet.1515414.
JAMA Demirci M, Karslı MA, Şenyüz HH, Erol Tunç A. Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters. Erciyes Üniv Vet Fak Derg. 2024;21:99–109.
MLA Demirci, Mehmet et al. “Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 21, no. 2, 2024, pp. 99-109, doi:10.32707/ercivet.1515414.
Vancouver Demirci M, Karslı MA, Şenyüz HH, Erol Tunç A. Effects of Different Starch Sources Used at High Levels in Cattle on Ruminal Fermentation Properties and Some Blood Parameters. Erciyes Üniv Vet Fak Derg. 2024;21(2):99-109.