Research Article
BibTex RIS Cite

Yeni Zelanda Beyaz Tavşanının Gastrointestinal Sistemindeki Şeker Kalıntılarının Lektin Bazlı Histokimyasal Analizi

Year 2025, Volume: 22 Issue: 2, 65 - 72, 08.08.2025
https://doi.org/10.32707/ercivet.1619736

Abstract

Memelilerin gastrointestinal sistemi hem fiziksel hem de işlevsel olarak türler arası değişkenlik gösterir. Gastrointestinal sistemdeki çeşitlilik, omurgalı hayvanlar arasında benzersiz mimari ve işlevsel özellikleri yansıtır. Lektin histokimyası, lektinleri kullanarak polisakkaritler, glikoproteinler ve glikolipidlerdeki glikozidik bağlantıları tanımlayan ve bunlara bağlanan bir yöntemdir. Bu özel bağlanma, terminal şekerleri belirleyerek karmaşık yapıların tanımlanmasını sağlar ve böylece hücrelerdeki fizyolojik veya patolojik değişiklikleri, hücreler arası ilişkileri ve hücre içi taşıma mekanizmalarını açıklar. Mevcut çalışma, lektin histokimyasını kullanarak Yeni Zelanda Beyaz tavşanının mideden rektuma kadar uzanan gastrointestinal sistemi boyunca glikanların dağılımını ve yoğunluğunu tanımlamayı ve göstermeyi amaçlamaktadır. Bouin fiksasyonlu sıçan dokularının parafin kesitleri 5 μm kalınlığında alındı ve lektin histokimyasal yöntemi kullanılarak GalNAc (HPA), Gal (PNA), GlcNAc (WGA) ve mannoz ve/veya glikoza (Con A) özgü lektinlerin bağlanması açısından incelendi. Midedeki ve hem ince hem de kalın bağırsaklardaki lektin bağlanma desenleri, karbonhidratların çeşitli bir bileşimini gösteren değişiklikler gösterdi. Veriler, musin glikozilasyonunun çeşitli anatomik konumlarda farklılık gösterdiğini ve muhtemelen yerel fizyolojik gereksinimlere göre uyarlanmış bir yanıt mekanizmasını temsil ettiğini göstermektedir.

References

  • Akimoto Y, Kawakami H. Histochemical staining using lectin probes. Hirabayashi J. (ed.). In: Lectins Methods and Protocols. UK: Humana Press, 2014; pp. 53-163.
  • Arab MR, Rojhan AR, Jahantigh M, Mohammadi M. Lectin histochemical study of GalNac and GlcNac containing glycoconjugates in colon adenocarcinoma. Anatomical Sci 2013; 10(4): 29-33.
  • Bansil R, Turner BS. Mucin structure, aggregation, physiological functions, and biomedical applications. Curr Opin Colloid 2006; 11(2-3): 164-70.
  • Boonzaier J, Van der Merwe, E, Bennett NC, Kotze SH. A comparative histochemical study of the distribution of mucins in the gastrointestinal tracts of three insectivorous mammals. Acta Histochem 2013; 115(6): 549-56.
  • Brooks SA. Lectins as versatile tools to explore cellular glycosylation. Eur J Histochem 2024; 68(1): 3959.
  • Caspe SG, Konrad JL, Moore DP, Sala JM, Della-Rosa P, Ortega-Mora LM, Bacigalupe DR, Venturini MC, Campero CM, Barbeito CG. Infection with different Neospora caninum strains causes differences in the glycosylation pattern in the uteri and placentae of Neospora caninum-infected heifers. J Comp Pathol 2024; 210(4): 29-37.
  • Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015; 3(1-2): e982426-3.
  • Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147(2): 119-147.
  • Çınar K, Öztop M, Özkarasu B. Glycoconjugate composition of ovine parotid glands elucidated by lectins. J Morphol Sci 2016; 33(1):8-13.
  • De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. Plant Sci 2021; 313.111096.
  • Enomoto T, Okada H, Tomita H, Linuma K, Nakane K, Tobisawa Y, Hara A, Koie T. Glycocalyx analysis of bladder cancer: three-dimensional images in electron microscopy and vicia villosa lectin as a marker for invasiveness in frozen sections. Front Cell Dev Biol 2024; 10(11): 1-12.
  • Fayed MH, Elnasharty M, Shoaib M. Localization of sugar residues in the stomach of three species of monkeys (Tupaiidae glis, Nycticebus cocang, and Callithrix jacchus) by lectin histochemistry. Int J Morphol 2010; 28(1): 111-20.
  • Galotta, JM, Marquez SG, Zanuzzi CN, Gimeno EJ, Portiansky EL, Barbeito CG. Lectin binding pattern of intestinal goblet cells in horse, pig, and rabbit. A Biol J 2009; 1(1): 49-60.
  • Gomez-Santos L, Alonso E, Diaz-Flores L, Madrid JF, Saez FJ. Characterization by lectin histochemistry of two subpopulations of parietal cells in the rat gastric glands. J Histochem Cytochem 2017; 65(5): 1-12.
  • Ghasempour S, Freeman SA. The glycocalyx and immune evasion in cancer. The FEBS J 2023; 290(1): 55-65. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 2010; 12(5): 319-30.
  • Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17(10): 597-617.
  • Machado-Santos C, Pelli-Martins AA, Abidu-Figueiredo M, de Brito-Gitirana L. Histochemical and immunohistochemical analysis of the stomach of Rhinella icterica (Anura, Bufonidae). J Histol 2014; 2014(1): 1-8.
  • Manning JC, Syrek K, Kaltner H, Andre S, Sinowatz F, Gabius HJ. Glycomic profiling of developmental changes in bovine testis by lectin histochemistry and further analysis of the most prominent alteration on the level of the glycoproteome by lectin blotting and lectin affinity chromatography. Histol Histopathol 2004;19:1043-60.
  • Moghaddam FY, Darvish J, Shahri NM, Abdulamir AS, Daud SK. Lectin histochemistry assay in colon tissues for inter-species characterization. AJBB 2009; 5(1): 7-13.
  • Morosi LG, Cutine AM, Cagnoni AJ, Manselle-Cocco MN, Croci DO, Merlo JP, Morales RM, May M, Perez-Saez JM, Girotti MR, Mendez-Huergo SP, Pucci B, Gil AH, Huernos SP, Docena GH, Sambuelli AM, Toscano MA, Rabinovich GA, Marino KV. Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits. Sci Adv 2021; 18(7): eabf8630.
  • Oglesbee BL, Lord B. Gastrointestinal Diseases of Rabbits. Quesenberry KE, Orcutt CJ, Mans C. In: Ferrets, Rabbits and Rodents. St. Luis, Missouri. Elsevier, 2020; pp. 174-87.
  • Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nephrol 2019; 15(6): 346-66.
  • Robbe C, Capon C, Coddeville B, Michalski JC. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 2004; 1(384): 307-16.
  • Schumacher U, Duku M, Katoh M, Jorns J, Krause WL. Histochemical similarities of mucins produced by Brunner’s glands and pyloric glands: A comparative study. Anat Rec a Discov Mol Cell Evol Biol 2004; 278(2): 540-50.
  • Scillitani G, Mentino D. Comparative glycopattern analysis of mucins in the Brunner’s glands of the guinea pig and the house mouse (Rodentia). Acta Histochem 2015; 117(7): 612-23.
  • Sharma R, Schumacher U. Carbohydrate expression in the intestinal mucosa. Adv Anat Embryol Cell Biol 2001; 160(II-IX): 1-91.
  • Strobel S, Encarnaçao JA, Becker NI, Trenczek TE. Histological and histochemical analysis of the gastrointestinal tract of the common pipistrelle bat (Pipistrellus pipistrellus). Euro J Histochem 2015; 59(2): 2477.
  • Sugahara D, Kobayashi Y, Akimoto Y, Kawakami H. Mouse intestinal niche cells express a distinct α1,2-fucosylated glycan recognized by a lectin from Burkholderia cenocepacia. Glycobiol 2017; 27(3): 246-53.
  • Tano de la Hoz MF, Flamini MA, Diaz AO. Comparative analysis of the morphology, ultrastructure, and glycosylation pattern of the jejunum and ileum of the wild rodent lagostomus maximus. Anat Rec 2016; 299(5): 630-42.
  • Tano de la Hoz MF, Flamini MA, Zanuzzi CN, Diaz AO. The colonic groove of the plains viscacha (Lagostomus maximus): Histochemical evidence of an abrupt change in the glycosylation pattern of goblet cells. J Morphol 2017; 278(12): 1606-18.
  • Treuting PM, Arends MJ, Dintzis SM. Upper Gastrointestinal tract. Treuting PM, Dintzis SM, Montine KS. (eds.). In: Comparative Anatomy and Histology a Mouse, Rat, and Human Atlas.United States: Academic Press 2018; pp. 191-211.
  • Verhelst X, Dias AM, Colombel JF, Vermeire S, Vlierberghe HV, Callewaert N, Pinho SS. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterol 2020; 158(1): 95-110.
  • Zanuzzi CN, Babeito CG, Ortiz ML, Lozza FA, Fontana PA, Portiansky EL, Gimeno EJ. Glycoconjugate histochemistry in the small and large intestine of normal and Solanum glaucophyllum-intoxicated rabbits. Res Vet Sci 2010; 89(2): 214-22.

Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit

Year 2025, Volume: 22 Issue: 2, 65 - 72, 08.08.2025
https://doi.org/10.32707/ercivet.1619736

Abstract

The gastrointestinal system of mammals exhibits interspecific variability both physically and functionally. The diversity in the gastrointestinal system reflects unique and functional traits among vertebrate animals. Lectin histochemistry is a method that uses lectins to identify and attach to glycosidic linkages in polysaccharides, glycoproteins, and glycolipids. This particular binding enables the identification of complex structures by determining terminal sugars, hence elucidating physiological or pathological alterations in cells, intercellular relationships, and intracellular transport mechanisms. The present study aimed to identify and illustrate the distribution and density of glycans throughout the gastrointestinal system of the New Zealand White rabbit, spanning from the stomach to the rectum, utilizing lectin histochemistry. Paraffin sections of Bouin-fixed rat tissues were taken 5-μm thick and were examined for the binding of lectins specific to GalNAc (HPA), Gal (PNA), GlcNAc (WGA), and mannose and/or glucose (Con A) using the lectin histochemical method. The lectin binding patterns in the stomach both the small and large intestines exhibited alterations, signifying a diverse composition of carbohydrates. The data indicate that mucin glycosylation differs across various anatomical locations and likely represents a responsive mechanism tailored to local physiological requirements.

Ethical Statement

Permission was obtained from The Institutional Animal Ethical Committee of Süleyman Demirel University (Isparta, Turkey) approved the study. (Authorization reference number: SDU-HÜDAL B.30.2.SDÜ.0.05.06.00-186 ).

Supporting Institution

-

Thanks

-

References

  • Akimoto Y, Kawakami H. Histochemical staining using lectin probes. Hirabayashi J. (ed.). In: Lectins Methods and Protocols. UK: Humana Press, 2014; pp. 53-163.
  • Arab MR, Rojhan AR, Jahantigh M, Mohammadi M. Lectin histochemical study of GalNac and GlcNac containing glycoconjugates in colon adenocarcinoma. Anatomical Sci 2013; 10(4): 29-33.
  • Bansil R, Turner BS. Mucin structure, aggregation, physiological functions, and biomedical applications. Curr Opin Colloid 2006; 11(2-3): 164-70.
  • Boonzaier J, Van der Merwe, E, Bennett NC, Kotze SH. A comparative histochemical study of the distribution of mucins in the gastrointestinal tracts of three insectivorous mammals. Acta Histochem 2013; 115(6): 549-56.
  • Brooks SA. Lectins as versatile tools to explore cellular glycosylation. Eur J Histochem 2024; 68(1): 3959.
  • Caspe SG, Konrad JL, Moore DP, Sala JM, Della-Rosa P, Ortega-Mora LM, Bacigalupe DR, Venturini MC, Campero CM, Barbeito CG. Infection with different Neospora caninum strains causes differences in the glycosylation pattern in the uteri and placentae of Neospora caninum-infected heifers. J Comp Pathol 2024; 210(4): 29-37.
  • Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015; 3(1-2): e982426-3.
  • Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147(2): 119-147.
  • Çınar K, Öztop M, Özkarasu B. Glycoconjugate composition of ovine parotid glands elucidated by lectins. J Morphol Sci 2016; 33(1):8-13.
  • De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. Plant Sci 2021; 313.111096.
  • Enomoto T, Okada H, Tomita H, Linuma K, Nakane K, Tobisawa Y, Hara A, Koie T. Glycocalyx analysis of bladder cancer: three-dimensional images in electron microscopy and vicia villosa lectin as a marker for invasiveness in frozen sections. Front Cell Dev Biol 2024; 10(11): 1-12.
  • Fayed MH, Elnasharty M, Shoaib M. Localization of sugar residues in the stomach of three species of monkeys (Tupaiidae glis, Nycticebus cocang, and Callithrix jacchus) by lectin histochemistry. Int J Morphol 2010; 28(1): 111-20.
  • Galotta, JM, Marquez SG, Zanuzzi CN, Gimeno EJ, Portiansky EL, Barbeito CG. Lectin binding pattern of intestinal goblet cells in horse, pig, and rabbit. A Biol J 2009; 1(1): 49-60.
  • Gomez-Santos L, Alonso E, Diaz-Flores L, Madrid JF, Saez FJ. Characterization by lectin histochemistry of two subpopulations of parietal cells in the rat gastric glands. J Histochem Cytochem 2017; 65(5): 1-12.
  • Ghasempour S, Freeman SA. The glycocalyx and immune evasion in cancer. The FEBS J 2023; 290(1): 55-65. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 2010; 12(5): 319-30.
  • Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17(10): 597-617.
  • Machado-Santos C, Pelli-Martins AA, Abidu-Figueiredo M, de Brito-Gitirana L. Histochemical and immunohistochemical analysis of the stomach of Rhinella icterica (Anura, Bufonidae). J Histol 2014; 2014(1): 1-8.
  • Manning JC, Syrek K, Kaltner H, Andre S, Sinowatz F, Gabius HJ. Glycomic profiling of developmental changes in bovine testis by lectin histochemistry and further analysis of the most prominent alteration on the level of the glycoproteome by lectin blotting and lectin affinity chromatography. Histol Histopathol 2004;19:1043-60.
  • Moghaddam FY, Darvish J, Shahri NM, Abdulamir AS, Daud SK. Lectin histochemistry assay in colon tissues for inter-species characterization. AJBB 2009; 5(1): 7-13.
  • Morosi LG, Cutine AM, Cagnoni AJ, Manselle-Cocco MN, Croci DO, Merlo JP, Morales RM, May M, Perez-Saez JM, Girotti MR, Mendez-Huergo SP, Pucci B, Gil AH, Huernos SP, Docena GH, Sambuelli AM, Toscano MA, Rabinovich GA, Marino KV. Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits. Sci Adv 2021; 18(7): eabf8630.
  • Oglesbee BL, Lord B. Gastrointestinal Diseases of Rabbits. Quesenberry KE, Orcutt CJ, Mans C. In: Ferrets, Rabbits and Rodents. St. Luis, Missouri. Elsevier, 2020; pp. 174-87.
  • Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nephrol 2019; 15(6): 346-66.
  • Robbe C, Capon C, Coddeville B, Michalski JC. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 2004; 1(384): 307-16.
  • Schumacher U, Duku M, Katoh M, Jorns J, Krause WL. Histochemical similarities of mucins produced by Brunner’s glands and pyloric glands: A comparative study. Anat Rec a Discov Mol Cell Evol Biol 2004; 278(2): 540-50.
  • Scillitani G, Mentino D. Comparative glycopattern analysis of mucins in the Brunner’s glands of the guinea pig and the house mouse (Rodentia). Acta Histochem 2015; 117(7): 612-23.
  • Sharma R, Schumacher U. Carbohydrate expression in the intestinal mucosa. Adv Anat Embryol Cell Biol 2001; 160(II-IX): 1-91.
  • Strobel S, Encarnaçao JA, Becker NI, Trenczek TE. Histological and histochemical analysis of the gastrointestinal tract of the common pipistrelle bat (Pipistrellus pipistrellus). Euro J Histochem 2015; 59(2): 2477.
  • Sugahara D, Kobayashi Y, Akimoto Y, Kawakami H. Mouse intestinal niche cells express a distinct α1,2-fucosylated glycan recognized by a lectin from Burkholderia cenocepacia. Glycobiol 2017; 27(3): 246-53.
  • Tano de la Hoz MF, Flamini MA, Diaz AO. Comparative analysis of the morphology, ultrastructure, and glycosylation pattern of the jejunum and ileum of the wild rodent lagostomus maximus. Anat Rec 2016; 299(5): 630-42.
  • Tano de la Hoz MF, Flamini MA, Zanuzzi CN, Diaz AO. The colonic groove of the plains viscacha (Lagostomus maximus): Histochemical evidence of an abrupt change in the glycosylation pattern of goblet cells. J Morphol 2017; 278(12): 1606-18.
  • Treuting PM, Arends MJ, Dintzis SM. Upper Gastrointestinal tract. Treuting PM, Dintzis SM, Montine KS. (eds.). In: Comparative Anatomy and Histology a Mouse, Rat, and Human Atlas.United States: Academic Press 2018; pp. 191-211.
  • Verhelst X, Dias AM, Colombel JF, Vermeire S, Vlierberghe HV, Callewaert N, Pinho SS. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterol 2020; 158(1): 95-110.
  • Zanuzzi CN, Babeito CG, Ortiz ML, Lozza FA, Fontana PA, Portiansky EL, Gimeno EJ. Glycoconjugate histochemistry in the small and large intestine of normal and Solanum glaucophyllum-intoxicated rabbits. Res Vet Sci 2010; 89(2): 214-22.
There are 33 citations in total.

Details

Primary Language English
Subjects Veterinary Histology and Embryology
Journal Section Articles
Authors

Seval Türk 0000-0002-0850-4671

Mustafa Öztop 0000-0002-2923-9280

Early Pub Date August 7, 2025
Publication Date August 8, 2025
Submission Date January 14, 2025
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 22 Issue: 2

Cite

APA Türk, S., & Öztop, M. (2025). Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 22(2), 65-72. https://doi.org/10.32707/ercivet.1619736
AMA Türk S, Öztop M. Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit. Erciyes Üniv Vet Fak Derg. August 2025;22(2):65-72. doi:10.32707/ercivet.1619736
Chicago Türk, Seval, and Mustafa Öztop. “Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 22, no. 2 (August 2025): 65-72. https://doi.org/10.32707/ercivet.1619736.
EndNote Türk S, Öztop M (August 1, 2025) Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 22 2 65–72.
IEEE S. Türk and M. Öztop, “Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit”, Erciyes Üniv Vet Fak Derg, vol. 22, no. 2, pp. 65–72, 2025, doi: 10.32707/ercivet.1619736.
ISNAD Türk, Seval - Öztop, Mustafa. “Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 22/2 (August 2025), 65-72. https://doi.org/10.32707/ercivet.1619736.
JAMA Türk S, Öztop M. Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit. Erciyes Üniv Vet Fak Derg. 2025;22:65–72.
MLA Türk, Seval and Mustafa Öztop. “Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 22, no. 2, 2025, pp. 65-72, doi:10.32707/ercivet.1619736.
Vancouver Türk S, Öztop M. Lectin-Based Histochemical Analysis of Sugar Residues in the Gastrointestinal Tract of New Zealand White Rabbit. Erciyes Üniv Vet Fak Derg. 2025;22(2):65-72.