BibTex RIS Kaynak Göster

Meme kanseri görüntülemesinde mikrodalganın yeri

Yıl 2014, Cilt: 30 Sayı: 4, 257 - 263, 01.08.2014

Öz

2009 yılı sağlık istatistiklerine göre Türkiye’de kanser hastalığı, ölüm nedenleri arasında kalp ve damar hastalıklarının arkasından ikinci sırada yer almaktadır. Erkeklerde akciğer kanseri ve kadınlarda ise meme kanseri, sırasıyla, %69.2 ve %40.7 görülme sıklığı oranı ile ilk sırada yer almaktadır. Kötü huylu hücrelerin kontrolsüz bir şekilde çoğalarak başka dokulara yayılabilmesi, kanser tespitinin erken evrede yapılmasının önemini göstermektedir. Meme kanseri, görüntülemesi diğer kanser türlerine göre nispeten daha kolay bir kanser türüdür. Meme kanserinin tespit ve görüntülemesinde kullanılan birincil yöntem X-ray mamografidir. Ancak görüntüleme sırasında memenin sıkıştırılması ve düşük güçlü de olsa düşük güçlü de olsa iyonize edici olan X ışınının kullanılması, X-ray mamografinin en önemli dezavantajlarıdır. Bu dezavantajlar, manyetik rezonans görüntüleme (MRG) ve ultrason görüntüleme (USG) gibi yöntemlerin geliştirilmesinde ve meme kanseri görüntülemede kullanılmasında önemli etken olmuştur. Bu yöntemlerin sahip olduğu pahalılık ve kanserli dokular için düşük belirginlik gibi olumsuzluklar, araştırmacıları nispeten yeni bir yöntem olan mikrodalga tabanlı görüntüleme tekniğine yöneltmiştir. İyonize etmeyen mikrodalga frekanslarında çalışan mikrodalga görüntüleme, kanserli ve normal dokuların dielektrik özellikleri arasındaki karşıtlığı kullanarak görüntüleme yapmaktadır. Mikrodalga görüntüleme, mevcut bilinen X-ray mamografinin ve diğer yöntemlerin dezavantajlarını aşabilecek bir potansiyele sahiptir. Bu çalışmada, henüz ar-ge safhasında olan mikrodalga görüntüleme yöntemleri incelenmiş ve karşılaştırmalı bilgiler verilmiştir.

Kaynakça

  • Zhang, D., Mase, A., “Ultrashort-Pulse Radar System for Breast Cancer Detection Experiment: Imaging in Frequency Band”, Microwave Conference Proceedings (CJMW), Hangzhou, 1-3, 2011.
  • Delbary, F., Brignone, M., Bozza, G., Aramini, R., Piana, M., A Visualization Method for Breast Cancer Detection by using Microwaves, SIAM J. Appl. Math., 70, 2509-2533, 2010.
  • El-Shenawee, M., Electromagnetic Imaging for Breast Cancer Research, Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, 55-58, 2011.
  • Meaney, P., Fanning, M. W., Zhou, T., Golnabi, A., Geimer, S. D., Paulsen, K. D., Clinical Microwave Breast Imaging-2D Electromagnetics in Advanced Applications, Torino, 881- 884, 2009.
  • Fear, C., Hagness, S. C., Meaney, P. M., et al., Enhancing Breast Tumor Detection with Near Field Imaging, IEEE Microwave Magazine, 3, 48-56, 2002.
  • Zhurbenko, V., Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection, Advances in Electrical and Computer Engineering, 11, 91-96, 2011.
  • Mouty, S., Bocquet, B., Ringot, R., Rocourt, N., Devos, P., Microwave Radiometric Imaging for the Characterization of Breast Tumor, Eur. Phys., 10, 73-78, 2000.
  • Carr, K. L., Cevasco P., Dunlea, P., Shaeffer, J., Radiometric Sensing: An Adjuvant to Mammography to Determine Breast Biopsy, Microwave Symposium Digest, Boston, 929-932, 2000.
  • Iudicello, S., Bardati, F., Functional Imaging of Compressed Breast Computational Electromagnetics Society, 24, 2009. Radiometry, The Applied
  • Semenov, S. Y., Svenson, R.H., Bulyshev, A.E., et al., Three-dimensional Experimental Imaging of Animals, IEEE Trans. on Biomed. Eng., 49, 55–63, 2002. Tomography: Initial
  • Semenov, S. Y., Bulyshev, A.E., et al., Microwave- Tomographic Imaging of the High Dielectric-Contrast Objects using Different Image-Reconstruction Approaches, IEEE Trans. on Microw. Theor. and Tech., 53, 2284-2294, 2005. 21. Bindu, G., et al.,
  • Two-dimensional Microwave
  • Tomographic Imaging of Low-Water-Content Tissues,
  • Microwave and Opt. Tech. Letters, 46, 599–601, 2005.
  • Bindu, G., Lonappan, A., Thomas, V., Aanandan, C. K., Mathew, K. T., Active Microwave Imaging for Breast Cancer Detection, Progress in Electromagnetics Research, 58, 149-169, 2006.
  • Bindu, G., Mathew, K. T., Characterization of Benign and Malignant Breast Tissues using 2-D Microwave Tomographic Technology Letters, 49, 2340–2345, 2007. Microwave and Optical
  • Rubæk, T., Zhurbenko, V., Prototype of Microwave Imaging ANTEM/URSI, Banff, 42-46, 2009. Breast-Cancer Screening,
  • Rubæk, T., Zhurbenko, V., Phantom Measurements with a Microwave Imaging System for Breast-Cancer Screening, EuCAP’09, European Conf. on Ant. and Prop., Berlin, 2950-2954, 2009.
  • Semenov, S. Y., et al., Three-dimensional Microwave Tomography: Experimental Prototype of the System and Vector Born Reconstruction Method, IEEE Trans. on Biomed. Engineering, 46, 937–946, 1999.
  • Meaney, P. M., Fanning, M. W., Li, D., Poplack, S. P., Paulsen, K. D., A Clinical Prototype for Active Microwave Imaging of the Breast, IEEE Trans. on Microw. Theory and Tech., 48, 1841–1853, 2000.
  • Meaney, P. M., Paulsen, K. D., Hartov, A., Crane, R. K., An Active Microwave Imaging System for Reconstruction of 2-D Electrical Property Distributions, IEEE Trans. on Biomed. Engineering, 42, 1017–1026, 1995.
  • Li, D., Meaney, P. M., Paulsen, K.D., Conformal Imaging with a Non-contacting Microwave Antenna Array”, Microwave Symposium Digest, Phoenix, 563-566, 2001.
  • Li, D., et al., Parallel-Detection Microwave Spectroscopy System for Breast Imaging, Review of Scientific Instruments, 75, 2305–2313, 2004.
  • Paulsen, K. D., Meaney, P. M., Gilman, L. C., Alternative Breast Imaging. Four Model-Based Approaches, Springer Science + Business Media Inc., Boston, 2005.
  • Gunnarsson, T., et al., Quantitative Imaging Using a 2.45 GHz Planar Camera, 5th World Congress on Industrial Process Tomography, Bergen, 2007.
  • Pastorino, M., Recent Inversion Procedures for Microwave Imaging in Biomedical, Subsurface Detection and Measurement, 36, 257–269, 2004. Evaluation Applications,
  • Bolomey, J. C., Gardiol, F. E., Engineering Applications of the Modulated Scatterer Technique, Artech House Publishers, Boston, 2001.
  • Ramahi, O. M., Kermani, M. H., Transmission Line Resonators for Breast Tumor Detection, Antennas and Propagation Society International Symposium, 803-806, 2005.
  • Sill, J.M., Williams, T.C., Fear, E.C., Frayne, R., Okoniewski, M., Realistic Breast Models for Second Generation Tissue Sensing Adaptive Radar System, EuCAP’07, 2nd Europ. Conf. on Ant. and Prop., Edinburgh, 1-4, 2007.
  • Kosmas, P., Rappaport, C. M., Time Reversal with the FDTD Method for Microwave Breast Cancer Detection, IEEE Trans. on Microwave Theory and Techniques, 53, 2317–2323, 2005.
  • Nilavalan, R., Craddock, I. J., Preece, A., Leendertz, J., Benjamin, R., Breast Cancer Tumour Detection Using Microwave Radar Techniques, URSI’04, Int. Symp. on Electromagnetic Theory, 117–119, 2004.
  • Craddock, J., Klemm, M., Preece, A., Leendertz, J., Benjamin, R., Evaluation of a Hemi-spherical Wideband Antenna Electromagnetic Theory Symposium, Ottawa, 2007.
  • Jean, B. R., Trumbo, M. L., Marks, R. J., A New Modality for Microwave Tomographic Imaging: Transit Time Tomography, International Journal of Tomography & Simulation, 11, 2009.
  • Khor, W. C., Bialkowski, M. E., Abbosh, A., Seman, N., Crozier, S., An Ultra-Wideband Microwave Imaging System for Breast Cancer Detection, IEICE Trans. Commun., E90, 2376–2381, 2007.
  • Wang, H., Bialkowski, M. E., Liu, F., Crozier, S., “FDTD Investigations into UWB Radar Technique of Breast Tumor Detection and Location”, Auswireless’06, 2006.
  • Li, X., Hagness, S. C., Van Veen, B. D., van der Weide, D., Experimental Investigation of Microwave Imaging via Space-time Beamforming for Breast Cancer Detection, IEEE Microwave Symposium Digest, Philadelphia, 379- 382, 2003.
  • Li, X., Davis, S. K., Hagness, S. C., van der Weide, D. W., Van Veen, B. D., Microwave Imaging via Space– Time Beamforming: Experimental Investigation of Tumor Detection in Multilayer Breast Phantoms, IEEE Trans. on Microwave Theory and Techniques, 52, 1856–1865, 2004.
  • Miyakawa, M., Ikarashi, H., Ishii, N., Bertero, M., Visualization of the Breast Tumor by the Integrated use of CP-MCT and Chirp Pulse Microwave Breast Radar”, Microwave Conference, 1043–1046, 2005.
  • Sabouni, A., Flores-Tapia, D., Noghanian, S., Thomas, G., Pistorius, S., Hybrid Microwave Tomography Technique for Breast Cancer Imaging, Engineering in Medicine and Biology Society, New York, 4273–4276, 2006.
  • Wu, X., Romahi, O. M., Near-field Scanning Microwave Microscopy for Detection of Subsurface Biological Anomalies, International Symposium, 2444-2447, 2004. and Antennas Propagation Society
  • Guo, B., et al., Multifrequency Microwave Induced Thermal Acoustic Imaging for Breast Cancer Detection, IEEE Trans. on Biom. Engineering, 54, 2000–2010, 2007.
  • Kruger, R.A., et al., Thermoacoustic CT, IEEE Microwave Symposium Digest, Boston, 933-936, 2000.
  • Ku, G., Wanga, L. V., Scanning Microwave Induced Thermoacoustic Tomography: Signal, Resolution, and Contrast, Medical Physics, 28, 4–10, 2001.
  • Jiang, H., Li, C., Pearlstone, D., Fajardo, L. L., Ultrasound-guided Microwave Imaging of Breast Cancer: Tissue Phantom and Pilot Clinical Experiments, Medical Physics, 32, 2528-2535, 2005.

The state of microwave in breast cancer imaging

Yıl 2014, Cilt: 30 Sayı: 4, 257 - 263, 01.08.2014

Öz

According to health statistics in Turkey in 2009, cancer is the second in the causes of death ranks after cardiovascular diseases. Lung cancer incidence in men and breast cancer incidence in women ranks first with rates 69.2% and 40.7%, respectively. Reproducing of the malignant cells in an uncontrolled way and spreading to the other tissues show the importance of early stage cancer detection. Breast cancer imaging is relatively easier compared to other types of cancer. The primary method used for detection and imaging of breast cancer is X-ray mammography. However, the compression of the breast during imaging and use of the low-power, albeit low, ionizing X-ray are the most important disadvantages of X-ray mammography. These disadvantages became key factors for the development of the methods such as magnetic resonance imaging (MRI) and ultrasound imaging (USG) in breast cancer imaging. Due to low specificity for cancerous tissue and expensiveness of MRI and USG, researchers have led to develop microwave-based imaging techniques which is a relatively new method. Microwave imaging working on non-ionized microwave frequencies uses the contrast between the dielectric properties of cancerous and normal tissues for imaging. Microwave imaging, have the potential to overcome the some drawbacks of the well-known X-ray mammography and other existing known methods. In this study, microwave imaging techniques that currently at the stage of R&D are examined and comparative information is given.

Kaynakça

  • Zhang, D., Mase, A., “Ultrashort-Pulse Radar System for Breast Cancer Detection Experiment: Imaging in Frequency Band”, Microwave Conference Proceedings (CJMW), Hangzhou, 1-3, 2011.
  • Delbary, F., Brignone, M., Bozza, G., Aramini, R., Piana, M., A Visualization Method for Breast Cancer Detection by using Microwaves, SIAM J. Appl. Math., 70, 2509-2533, 2010.
  • El-Shenawee, M., Electromagnetic Imaging for Breast Cancer Research, Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, 55-58, 2011.
  • Meaney, P., Fanning, M. W., Zhou, T., Golnabi, A., Geimer, S. D., Paulsen, K. D., Clinical Microwave Breast Imaging-2D Electromagnetics in Advanced Applications, Torino, 881- 884, 2009.
  • Fear, C., Hagness, S. C., Meaney, P. M., et al., Enhancing Breast Tumor Detection with Near Field Imaging, IEEE Microwave Magazine, 3, 48-56, 2002.
  • Zhurbenko, V., Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection, Advances in Electrical and Computer Engineering, 11, 91-96, 2011.
  • Mouty, S., Bocquet, B., Ringot, R., Rocourt, N., Devos, P., Microwave Radiometric Imaging for the Characterization of Breast Tumor, Eur. Phys., 10, 73-78, 2000.
  • Carr, K. L., Cevasco P., Dunlea, P., Shaeffer, J., Radiometric Sensing: An Adjuvant to Mammography to Determine Breast Biopsy, Microwave Symposium Digest, Boston, 929-932, 2000.
  • Iudicello, S., Bardati, F., Functional Imaging of Compressed Breast Computational Electromagnetics Society, 24, 2009. Radiometry, The Applied
  • Semenov, S. Y., Svenson, R.H., Bulyshev, A.E., et al., Three-dimensional Experimental Imaging of Animals, IEEE Trans. on Biomed. Eng., 49, 55–63, 2002. Tomography: Initial
  • Semenov, S. Y., Bulyshev, A.E., et al., Microwave- Tomographic Imaging of the High Dielectric-Contrast Objects using Different Image-Reconstruction Approaches, IEEE Trans. on Microw. Theor. and Tech., 53, 2284-2294, 2005. 21. Bindu, G., et al.,
  • Two-dimensional Microwave
  • Tomographic Imaging of Low-Water-Content Tissues,
  • Microwave and Opt. Tech. Letters, 46, 599–601, 2005.
  • Bindu, G., Lonappan, A., Thomas, V., Aanandan, C. K., Mathew, K. T., Active Microwave Imaging for Breast Cancer Detection, Progress in Electromagnetics Research, 58, 149-169, 2006.
  • Bindu, G., Mathew, K. T., Characterization of Benign and Malignant Breast Tissues using 2-D Microwave Tomographic Technology Letters, 49, 2340–2345, 2007. Microwave and Optical
  • Rubæk, T., Zhurbenko, V., Prototype of Microwave Imaging ANTEM/URSI, Banff, 42-46, 2009. Breast-Cancer Screening,
  • Rubæk, T., Zhurbenko, V., Phantom Measurements with a Microwave Imaging System for Breast-Cancer Screening, EuCAP’09, European Conf. on Ant. and Prop., Berlin, 2950-2954, 2009.
  • Semenov, S. Y., et al., Three-dimensional Microwave Tomography: Experimental Prototype of the System and Vector Born Reconstruction Method, IEEE Trans. on Biomed. Engineering, 46, 937–946, 1999.
  • Meaney, P. M., Fanning, M. W., Li, D., Poplack, S. P., Paulsen, K. D., A Clinical Prototype for Active Microwave Imaging of the Breast, IEEE Trans. on Microw. Theory and Tech., 48, 1841–1853, 2000.
  • Meaney, P. M., Paulsen, K. D., Hartov, A., Crane, R. K., An Active Microwave Imaging System for Reconstruction of 2-D Electrical Property Distributions, IEEE Trans. on Biomed. Engineering, 42, 1017–1026, 1995.
  • Li, D., Meaney, P. M., Paulsen, K.D., Conformal Imaging with a Non-contacting Microwave Antenna Array”, Microwave Symposium Digest, Phoenix, 563-566, 2001.
  • Li, D., et al., Parallel-Detection Microwave Spectroscopy System for Breast Imaging, Review of Scientific Instruments, 75, 2305–2313, 2004.
  • Paulsen, K. D., Meaney, P. M., Gilman, L. C., Alternative Breast Imaging. Four Model-Based Approaches, Springer Science + Business Media Inc., Boston, 2005.
  • Gunnarsson, T., et al., Quantitative Imaging Using a 2.45 GHz Planar Camera, 5th World Congress on Industrial Process Tomography, Bergen, 2007.
  • Pastorino, M., Recent Inversion Procedures for Microwave Imaging in Biomedical, Subsurface Detection and Measurement, 36, 257–269, 2004. Evaluation Applications,
  • Bolomey, J. C., Gardiol, F. E., Engineering Applications of the Modulated Scatterer Technique, Artech House Publishers, Boston, 2001.
  • Ramahi, O. M., Kermani, M. H., Transmission Line Resonators for Breast Tumor Detection, Antennas and Propagation Society International Symposium, 803-806, 2005.
  • Sill, J.M., Williams, T.C., Fear, E.C., Frayne, R., Okoniewski, M., Realistic Breast Models for Second Generation Tissue Sensing Adaptive Radar System, EuCAP’07, 2nd Europ. Conf. on Ant. and Prop., Edinburgh, 1-4, 2007.
  • Kosmas, P., Rappaport, C. M., Time Reversal with the FDTD Method for Microwave Breast Cancer Detection, IEEE Trans. on Microwave Theory and Techniques, 53, 2317–2323, 2005.
  • Nilavalan, R., Craddock, I. J., Preece, A., Leendertz, J., Benjamin, R., Breast Cancer Tumour Detection Using Microwave Radar Techniques, URSI’04, Int. Symp. on Electromagnetic Theory, 117–119, 2004.
  • Craddock, J., Klemm, M., Preece, A., Leendertz, J., Benjamin, R., Evaluation of a Hemi-spherical Wideband Antenna Electromagnetic Theory Symposium, Ottawa, 2007.
  • Jean, B. R., Trumbo, M. L., Marks, R. J., A New Modality for Microwave Tomographic Imaging: Transit Time Tomography, International Journal of Tomography & Simulation, 11, 2009.
  • Khor, W. C., Bialkowski, M. E., Abbosh, A., Seman, N., Crozier, S., An Ultra-Wideband Microwave Imaging System for Breast Cancer Detection, IEICE Trans. Commun., E90, 2376–2381, 2007.
  • Wang, H., Bialkowski, M. E., Liu, F., Crozier, S., “FDTD Investigations into UWB Radar Technique of Breast Tumor Detection and Location”, Auswireless’06, 2006.
  • Li, X., Hagness, S. C., Van Veen, B. D., van der Weide, D., Experimental Investigation of Microwave Imaging via Space-time Beamforming for Breast Cancer Detection, IEEE Microwave Symposium Digest, Philadelphia, 379- 382, 2003.
  • Li, X., Davis, S. K., Hagness, S. C., van der Weide, D. W., Van Veen, B. D., Microwave Imaging via Space– Time Beamforming: Experimental Investigation of Tumor Detection in Multilayer Breast Phantoms, IEEE Trans. on Microwave Theory and Techniques, 52, 1856–1865, 2004.
  • Miyakawa, M., Ikarashi, H., Ishii, N., Bertero, M., Visualization of the Breast Tumor by the Integrated use of CP-MCT and Chirp Pulse Microwave Breast Radar”, Microwave Conference, 1043–1046, 2005.
  • Sabouni, A., Flores-Tapia, D., Noghanian, S., Thomas, G., Pistorius, S., Hybrid Microwave Tomography Technique for Breast Cancer Imaging, Engineering in Medicine and Biology Society, New York, 4273–4276, 2006.
  • Wu, X., Romahi, O. M., Near-field Scanning Microwave Microscopy for Detection of Subsurface Biological Anomalies, International Symposium, 2444-2447, 2004. and Antennas Propagation Society
  • Guo, B., et al., Multifrequency Microwave Induced Thermal Acoustic Imaging for Breast Cancer Detection, IEEE Trans. on Biom. Engineering, 54, 2000–2010, 2007.
  • Kruger, R.A., et al., Thermoacoustic CT, IEEE Microwave Symposium Digest, Boston, 933-936, 2000.
  • Ku, G., Wanga, L. V., Scanning Microwave Induced Thermoacoustic Tomography: Signal, Resolution, and Contrast, Medical Physics, 28, 4–10, 2001.
  • Jiang, H., Li, C., Pearlstone, D., Fajardo, L. L., Ultrasound-guided Microwave Imaging of Breast Cancer: Tissue Phantom and Pilot Clinical Experiments, Medical Physics, 32, 2528-2535, 2005.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA79HH27DM
Bölüm Makaleler
Yazarlar

Mustafa Berkan Biçer Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 30 Sayı: 4

Kaynak Göster

APA Biçer, M. B. (2014). Meme kanseri görüntülemesinde mikrodalganın yeri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(4), 257-263.
AMA Biçer MB. Meme kanseri görüntülemesinde mikrodalganın yeri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2014;30(4):257-263.
Chicago Biçer, Mustafa Berkan. “Meme Kanseri görüntülemesinde mikrodalganın Yeri”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 30, sy. 4 (Ağustos 2014): 257-63.
EndNote Biçer MB (01 Ağustos 2014) Meme kanseri görüntülemesinde mikrodalganın yeri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 30 4 257–263.
IEEE M. B. Biçer, “Meme kanseri görüntülemesinde mikrodalganın yeri”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 30, sy. 4, ss. 257–263, 2014.
ISNAD Biçer, Mustafa Berkan. “Meme Kanseri görüntülemesinde mikrodalganın Yeri”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 30/4 (Ağustos 2014), 257-263.
JAMA Biçer MB. Meme kanseri görüntülemesinde mikrodalganın yeri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2014;30:257–263.
MLA Biçer, Mustafa Berkan. “Meme Kanseri görüntülemesinde mikrodalganın Yeri”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 30, sy. 4, 2014, ss. 257-63.
Vancouver Biçer MB. Meme kanseri görüntülemesinde mikrodalganın yeri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2014;30(4):257-63.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.