BibTex RIS Cite

Slater ve gauss tipi orbitallerle Li, Na ve N atomlarında elektrik dipol geçişlerinin hesaplanmasi

Year 2011, Volume: 27 Issue: 3, 234 - 241, 01.06.2011

Abstract

Bu çalışmada Slater Tipi Orbitaller (STO) ve Gauss Tipi Orbitaller (GTO) kullanılarak Li (Lityum), Na
(Sodyum) ve N (Azot) atomlarında, elektrik dipol yaklaşıklığı altında ilk uyarılmış seviyeden temel
seviyeye kendiliğinden geçiş olasılıkları hesaplanmıştır. STO baz setleri kullanılarak gerçekleştirilen
hesaplamalarda, öncelikle tek elektronlu atom yaklaşımı altında kendiliğinden geçiş olasılıkları için
analitik ifadelerin türetilmiştir. Daha sonra bu analitik ifadeler çok elektronlu atomlara genişletilse de STO
baz setleri kullanılan hesaplamalarda elektronlar arası LS çiftlenimleri ve konfigürasyon etkileşmeleri
hesaba katılmamıştır. Elde edilen nihai ifadeler kullanılarak geçiş olasılıkları hesabı için C bilgisayar
programlama dilinde bir bilgisayar programı yazılmıştır. Yazılan bu program sayesinde STO baz setlerinin
kullanıldığı hesaplamalar gerçekleştirilmiştir. Ayrıca aynı hesaplamalar GTO baz setlerini kullanan
Gaussian 98 paket programı yardıPı ile tekrarlanmıştır. Fakat bu hesaplamalar esnasında Gaussian 98
paket programında tekli yerleşim etkileşmelerini hesaba katan CIS hesaplama yöntemi seçilerek bir
nebzede olsa yerleşim etkileşmeleri hesaba katılmıştır. STO ve GTO baz setleri kullanılarak elde edilen
sonuçları birbirleriyle ve literatürdeki mevcut sonuçlarla karşılaştıUılmıştır. Bu sonuçlar ışığında çeşitli
hesaplama teknikleri ve farklı baz setleri kullanılması arasındaki farklar tartışılmıştır.

References

  • Bates, D. R. and Damgaard, A., The calculation of the absolute strengths of spectral lines, Philos. Trans. R. Soc. London Ser. A, 242, 101-122, 1949. 2. Kelly, P. S., Transition probabilities in nitrogen and oxygen from Hartree-Fock-Slater wave functions, J. Quant. Spectrose. Radiat. Transfer., 4, 117-148, 1964. 3. Beck, D. R. and Nicolaides, C. A., Theoretical oscillator strengths for the NI and OI resonance transitions, J. Quant. Spectrose. Radiat. Transfer., 16, 297-300, 1976. 4. Bell, K. L. and Berrington, K. A., Photoionization of the
  • S0 ground state of atomic nitrogen and atomic nitrogen 4S0-4P oscillator strengths, J. Phys. B: At.
  • Mol. Opt. Phys, 24, 933-941, 1991. 5.
  • Kostelecky, V. A. and Nieto, M. M., Evidence from
  • S,2P and2D states 8. 9.
  • Marxer, H. and Spruch, L., Semiclassical estimation of the radiative mean lifetimes of hydrogenlike states, Phys. Rev. A, 43, 1268-1274, 1991.
  • Robinson, D. J. R. and Hibbert, A., Quartet transitions in neutral nitrogen, J. Phys. B: At. Mol. Opt. Phys, 30, 4813-4825, 1997.
  • Tong, M., et al, Systematic transition probability studies for neutral nitrogen, J. Phys. B: At. Mol. Opt. Phys., 27, 4819-4828, 1994.
  • Zheng, N. W. and Wang, T., Theoretical resonance transition probabilities and lifetimes for atomic nitrogen, Chem. Phys., 282, 31-36, 2002.
  • Kostelecky, V. A. and Nieto, M. M., Analytical wave functions for atomic quantum-defect theory, Phys. Rev. A, 32, 3243-3246, 1985.
  • Clementi, E. and Raimondi, D.L., Atomic screening constants from SCF functions, J. Chem. Phys., 38, 2686-2689, 1963.
  • Clementi, E., et al, Accurate analytical self-consistenet field functions for atoms. II. lowest configurations of the neutral first row atoms, Phys. Rev., 127, 1618- 1620, 1962.
  • Hartmann, H. and Clementi E., Relativistic correction for analytic Hartree-Fock wave functions, Phys. Rev., 133, A1295-A1299, 1964.
  • Hartree, W., et al, Self-consistent field calculations for Zn, Ga, Ga+, Ga+++, As, As+, As++, As+++, Phys. Rev., 59, 299-305, 1941.
  • Hartree, W., et al, Self-consistent field calculations for Ge++ and Ge, Phys. Rev., 59, 306-307, 1941.
  • Hartree, W., et al, Self-consistent field, with exchange, for Si IV and Si V, Phys. Rev., 60, 857-865, 1941.
  • Hartree, D. R., Variation of atomic wave functions with atomic number, Rev. Mod. Phys., 30, 63-68, 1958.
  • Roothaan, C. C. J., et al, Analytical self-consistent field wave functions for the atomic configurations 1s2, 1s22s, and 1s22s2, Rev. Mod. Phys., 32, 186-194, 1960.
  • Roothaan, C. C. J., New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69-89, 1951.
  • Roothaan, C. C. J., Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys., 32, 179-185, 1960.
  • Slater J. C., The self consistent field and the structure of atoms, Phys. Rev., 32, 339-348, 1928.
  • Slater J. C., Atomic sheilding constants, Phys. Rev., 36, 57-64, 1930.
  • Slater J. C., Analytic atomic wave functions, Phys. Rev., 42, 33-43, 1932.
  • Slater J. C., A simplification of the Hartree-Fock method, Phys. Rev., 81, 385-390, 1951.
  • Weinstein D. H., A lower limit for the ground state of the helium atom, Phys. Rev., 40, 797-799, 1932.
  • Zener, C., Analytic atomic wave functions, Phys. Rev., 36, 51-56, 1930.
  • Jones, M. D., et al, Theoretical atomic volumes of the light actinides, Phys. Rev. B, 61, 4644-4650, 2000.
  • Stanke, M., et al, Accuracy limits on the description of the lowest S excitation in the Li atom using explicitly correlated Gaussian basis functions, Phys. Rev. A, 78, 052507-052514, 2008.
  • Tachikawa, M. and Shiga, M., Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions via the McMurchie-Davidson recursion formula, Phys. Rev. E, 64, 056706-056709, 2001.
  • Winter, T. G., and Lin C. C., Electron capture by protons in helium and hdrogen atoms at intermediate energies, Phys. Rev. A, 10, 2141-2155, 1974.
  • Kavruk, A. E., Slater ve Gaussian Tipi Orbitalleri Kullanarak Baz Atomlar n Elektrik Dipol Geçi lerinin ncelenmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, 2003.
  • Atkins, P. and Friedman, R., Molecular Quantum Mechanics, p. 233, Oxford University Press, New York, 2005.
  • Arfken, G. B. and Weber, H. J., Mathematical Methods for Physicists, p. 644, Academic Press, Orlando, 2001.
  • Frisch, M. J., et al, GAUSSIAN98, Revision A.7, Gaussian Inc., Pittsburgh, PA, 1998.

Calculation of electric dipole moment transitions of Li, Na and N atoms by using slater and gaussian type orbitals

Year 2011, Volume: 27 Issue: 3, 234 - 241, 01.06.2011

Abstract

In this study, spontaneous transition probabilities from the first excited state to the ground state of Li
(Lithium), Na (Sodium) and N (Nitrojen) atoms were calculated by using Slater Type Orbitals (STOs) and
Gaussian Type Orbitals (GTOs) in accordance with the electric dipole approximation. For the calculations
based on STO type orbitals analytic expressions were obtained for the spontaneous transition probabilities
within the single electron atom approximation. Although obtained analytical expressions were extended to
include many electron atoms, LS coupling among electrons and configuration interaction effects were not
taken into consideration. A computer program was written in C programming language by using these
analytical expressions and the calculations for STO type orbitals were performed by using this program.
Also similar calculations were performed using the Gaussian-98 software in which GTO basis functions are
employed. However, in the calculations with Gaussian-98 we have used CIS method which takes single
configuration interactions into account. The results obtained from the calculations with STO and GTO basis
sets were compared with each other and the values obtained from the literature. Considering these results,
the differences between different calculation methods and different basis sets were discussed.

References

  • Bates, D. R. and Damgaard, A., The calculation of the absolute strengths of spectral lines, Philos. Trans. R. Soc. London Ser. A, 242, 101-122, 1949. 2. Kelly, P. S., Transition probabilities in nitrogen and oxygen from Hartree-Fock-Slater wave functions, J. Quant. Spectrose. Radiat. Transfer., 4, 117-148, 1964. 3. Beck, D. R. and Nicolaides, C. A., Theoretical oscillator strengths for the NI and OI resonance transitions, J. Quant. Spectrose. Radiat. Transfer., 16, 297-300, 1976. 4. Bell, K. L. and Berrington, K. A., Photoionization of the
  • S0 ground state of atomic nitrogen and atomic nitrogen 4S0-4P oscillator strengths, J. Phys. B: At.
  • Mol. Opt. Phys, 24, 933-941, 1991. 5.
  • Kostelecky, V. A. and Nieto, M. M., Evidence from
  • S,2P and2D states 8. 9.
  • Marxer, H. and Spruch, L., Semiclassical estimation of the radiative mean lifetimes of hydrogenlike states, Phys. Rev. A, 43, 1268-1274, 1991.
  • Robinson, D. J. R. and Hibbert, A., Quartet transitions in neutral nitrogen, J. Phys. B: At. Mol. Opt. Phys, 30, 4813-4825, 1997.
  • Tong, M., et al, Systematic transition probability studies for neutral nitrogen, J. Phys. B: At. Mol. Opt. Phys., 27, 4819-4828, 1994.
  • Zheng, N. W. and Wang, T., Theoretical resonance transition probabilities and lifetimes for atomic nitrogen, Chem. Phys., 282, 31-36, 2002.
  • Kostelecky, V. A. and Nieto, M. M., Analytical wave functions for atomic quantum-defect theory, Phys. Rev. A, 32, 3243-3246, 1985.
  • Clementi, E. and Raimondi, D.L., Atomic screening constants from SCF functions, J. Chem. Phys., 38, 2686-2689, 1963.
  • Clementi, E., et al, Accurate analytical self-consistenet field functions for atoms. II. lowest configurations of the neutral first row atoms, Phys. Rev., 127, 1618- 1620, 1962.
  • Hartmann, H. and Clementi E., Relativistic correction for analytic Hartree-Fock wave functions, Phys. Rev., 133, A1295-A1299, 1964.
  • Hartree, W., et al, Self-consistent field calculations for Zn, Ga, Ga+, Ga+++, As, As+, As++, As+++, Phys. Rev., 59, 299-305, 1941.
  • Hartree, W., et al, Self-consistent field calculations for Ge++ and Ge, Phys. Rev., 59, 306-307, 1941.
  • Hartree, W., et al, Self-consistent field, with exchange, for Si IV and Si V, Phys. Rev., 60, 857-865, 1941.
  • Hartree, D. R., Variation of atomic wave functions with atomic number, Rev. Mod. Phys., 30, 63-68, 1958.
  • Roothaan, C. C. J., et al, Analytical self-consistent field wave functions for the atomic configurations 1s2, 1s22s, and 1s22s2, Rev. Mod. Phys., 32, 186-194, 1960.
  • Roothaan, C. C. J., New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69-89, 1951.
  • Roothaan, C. C. J., Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys., 32, 179-185, 1960.
  • Slater J. C., The self consistent field and the structure of atoms, Phys. Rev., 32, 339-348, 1928.
  • Slater J. C., Atomic sheilding constants, Phys. Rev., 36, 57-64, 1930.
  • Slater J. C., Analytic atomic wave functions, Phys. Rev., 42, 33-43, 1932.
  • Slater J. C., A simplification of the Hartree-Fock method, Phys. Rev., 81, 385-390, 1951.
  • Weinstein D. H., A lower limit for the ground state of the helium atom, Phys. Rev., 40, 797-799, 1932.
  • Zener, C., Analytic atomic wave functions, Phys. Rev., 36, 51-56, 1930.
  • Jones, M. D., et al, Theoretical atomic volumes of the light actinides, Phys. Rev. B, 61, 4644-4650, 2000.
  • Stanke, M., et al, Accuracy limits on the description of the lowest S excitation in the Li atom using explicitly correlated Gaussian basis functions, Phys. Rev. A, 78, 052507-052514, 2008.
  • Tachikawa, M. and Shiga, M., Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions via the McMurchie-Davidson recursion formula, Phys. Rev. E, 64, 056706-056709, 2001.
  • Winter, T. G., and Lin C. C., Electron capture by protons in helium and hdrogen atoms at intermediate energies, Phys. Rev. A, 10, 2141-2155, 1974.
  • Kavruk, A. E., Slater ve Gaussian Tipi Orbitalleri Kullanarak Baz Atomlar n Elektrik Dipol Geçi lerinin ncelenmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, 2003.
  • Atkins, P. and Friedman, R., Molecular Quantum Mechanics, p. 233, Oxford University Press, New York, 2005.
  • Arfken, G. B. and Weber, H. J., Mathematical Methods for Physicists, p. 644, Academic Press, Orlando, 2001.
  • Frisch, M. J., et al, GAUSSIAN98, Revision A.7, Gaussian Inc., Pittsburgh, PA, 1998.
There are 34 citations in total.

Details

Other ID JA82AU83JB
Journal Section Article
Authors

Ahmet Emre Kavruk This is me

Hüseyin Yüksel This is me

Ayhan Özmen This is me

Ülfet Atav This is me

Publication Date June 1, 2011
Published in Issue Year 2011 Volume: 27 Issue: 3

Cite

APA Kavruk, A. E., Yüksel, H., Özmen, A., Atav, Ü. (2011). Slater ve gauss tipi orbitallerle Li, Na ve N atomlarında elektrik dipol geçişlerinin hesaplanmasi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 27(3), 234-241.
AMA Kavruk AE, Yüksel H, Özmen A, Atav Ü. Slater ve gauss tipi orbitallerle Li, Na ve N atomlarında elektrik dipol geçişlerinin hesaplanmasi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. June 2011;27(3):234-241.
Chicago Kavruk, Ahmet Emre, Hüseyin Yüksel, Ayhan Özmen, and Ülfet Atav. “Slater Ve Gauss Tipi Orbitallerle Li, Na Ve N atomlarında Elektrik Dipol geçişlerinin Hesaplanmasi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 27, no. 3 (June 2011): 234-41.
EndNote Kavruk AE, Yüksel H, Özmen A, Atav Ü (June 1, 2011) Slater ve gauss tipi orbitallerle Li, Na ve N atomlarında elektrik dipol geçişlerinin hesaplanmasi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 27 3 234–241.
IEEE A. E. Kavruk, H. Yüksel, A. Özmen, and Ü. Atav, “Slater ve gauss tipi orbitallerle Li, Na ve N atomlarında elektrik dipol geçişlerinin hesaplanmasi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 27, no. 3, pp. 234–241, 2011.
ISNAD Kavruk, Ahmet Emre et al. “Slater Ve Gauss Tipi Orbitallerle Li, Na Ve N atomlarında Elektrik Dipol geçişlerinin Hesaplanmasi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 27/3 (June 2011), 234-241.
JAMA Kavruk AE, Yüksel H, Özmen A, Atav Ü. Slater ve gauss tipi orbitallerle Li, Na ve N atomlarında elektrik dipol geçişlerinin hesaplanmasi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2011;27:234–241.
MLA Kavruk, Ahmet Emre et al. “Slater Ve Gauss Tipi Orbitallerle Li, Na Ve N atomlarında Elektrik Dipol geçişlerinin Hesaplanmasi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 27, no. 3, 2011, pp. 234-41.
Vancouver Kavruk AE, Yüksel H, Özmen A, Atav Ü. Slater ve gauss tipi orbitallerle Li, Na ve N atomlarında elektrik dipol geçişlerinin hesaplanmasi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2011;27(3):234-41.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.