Başlama aşamasındaki arızalarının erken teşhisi ve tespiti asenkron motorların verimli çalışması ve çevrimiçi durum değerlendirmesi için önemlidir. Bu çalışmada asenkron motorlarda oluşan kırık rotor çubuğu ve stator arızalarını teşhis etmek için yapay sinir ağı tabanlı bir akıllı hesaplama tekniği sunulmuştur. Kırık rotor çubuğu ile ilgili özelliklerin çıkarımı için Fourier dönüşümüne dayalı motor akım imza analizi kullanılmıştır. Stator arızaları için ise park vektör dönüşümü ve temel bileşen analizi tabanlı bir özellik çıkarım işlemi yapılmıştır. Modeli gerçekleştirmek için ileri beslemeli bir yapay sinir ağı kullanılmıştır. Yapay sinir ağlarının öğrenme ve uyarlanabilme özellikleri sayesinde özelliklere göre arızaların sınıflandırılması sağlanabilir. Yapay sinir ağının girişlerini iki yan bant bileşeni ve stator için elde edilen özellik oluşturmaktadır. Yapay sinir ağının çıkışları ile sağlam durum, bir kırık rotor çubuğu, stator ve çoklu arızalar tespit edilebilmektedir. Arıza teşhisi için veriler deneysel olarak alınmış olup, yöntemin doğruluğu bu veriler ile doğrulanmıştır.
Yapay sinir ağları İşaret işleme Asenkron motor Arıza teşhisi ve tespiti
The detection and diagnosis of induction motor faults in an early stage is important for fertile working and online evaluating condition of induction motors. In this study, an artificial neural network based intelligent computing method is proposed to detect broken rotor bar and stator faults in induction motors. A Fourier based motor current signature analysis is used to extract the broken rotor bar related features. A feature extraction based on park vector transformation and principal component analysis is done for stator faults. Classification of faults can be ensured by means of the learning and adapting capabilities of artificial neural networks. Two sideband components and the features obtained for stator faults constitute the inputs of artificial neural networks. Healthy motor condition, one broken rotor bar fault, stator fault and multiple faults can be detected with outputs of artificial neural networks. The signals are acquired from an experimental setup and the accuracy of method has been verified by this signals
Artificial neural networks Signal processing Induction motors Fault diagnosis and detection
Diğer ID | JA82NF87GF |
---|---|
Bölüm | Makale |
Yazarlar | |
Yayımlanma Tarihi | 1 Şubat 2009 |
Yayımlandığı Sayı | Yıl 2009 Cilt: 25 Sayı: 1 |
✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.