Research Article
BibTex RIS Cite

Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun ve Filtrasyon Performansının İncelenmesi

Year 2020, Volume: 36 Issue: 1, 47 - 60, 26.04.2020

Abstract

Bu çalışmada laboratuvar ölçekli bir aerobik membran biyoreaktörde (MBR) sülfür oksidasyon verimi ve filtrasyon performansı incelenmiştir. Bunun için sentetik asidik maden sızıntı suyu arıtımı amaçlı işletilen sülfat indirgeyen anaerobik MBR (SanMBR)çıkış suları sülfür oksitleyen MBR’ye (SoxMBR) beslenerek, yüksek filtrasyon akı değerlerinde (8 – 30 L/m2.s) sülfür oksidasyon ve organik madde giderim veriminin yanı sıra, membran tıkanma durumunun takibi, reaktör içinde ve membran yüzeyinde organik ve inorganik kirleticilerin tayini ve çamurun özellikleri üzerinden değerlendirmeler yapılmıştır. SoxMBR ile, süzüntüde sülfür konsantrasyonu 1 mg/L’nin altında olacak şekilde oldukça yüksek sülfür oksidasyon ve organik madde giderim verimleri elde edilmiş, yüksek akılarda işletim sırasında dahi membran basıncı (TMP) 200 mbar altında tutularak kimyasal yıkama ihtiyacı görülmemiştir.

Supporting Institution

Tübitak

Project Number

116Y124

Thanks

Bu çalışma 116Y124 No.lu TÜBİTAK bilimsel araştırma projesi tarafından desteklenmiş olup, TÜBİTAK’a finansal desteğinden ötürü teşekkür ederiz.

References

  • [1] X. Xu, C. Chen, D.J. Lee, A. Wang, W. Guo, X. Zhou, et al., Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: Modeling and experimental validation, Bioresour. Technol. 147 (2013) 202–211. doi:10.1016/j.biortech.2013.07.113.
  • [2] A.P. Annachhatre, S. Suktrakoolvait, Biological sulfide oxidation in a fluidized bed reactor, Env. Technol. 22 (2001) 661–672. doi:10.1080/09593332208618238.
  • [3] J. Lohwacharin, A.P. Annachhatre, Biological sulfide oxidation in an airlift bioreactor, Bioresour. Technol. 101 (2010) 2114–2120. doi:10.1016/j.biortech.2009.10.093.
  • [4] P. Le Clech, B. Jefferson, I.S. Chang, S.J. Judd, Critical flux determination by the flux-step method in a submerged membrane bioreactor, J. Memb. Sci. 227 (2003) 81–93. doi:10.1016/j.memsci.2003.07.021.
  • [5] F. Meng, S.R. Chae, A. Drews, M. Kraume, H.S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material, Water Res. 43 (2009) 1489–1512. doi:10.1016/j.watres.2008.12.044.
  • [6] A.H. Kaksonen, J. a. Puhakka, Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals, Eng. Life Sci. 7 (2007) 541–564. doi:10.1002/elsc.200720216.
  • [7] E. Sahinkaya, M. Gungor, Bioresource Technology Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater, Bioresour. Technol. 101 (2010) 9508–9514. doi:10.1016/j.biortech.2010.07.113.
  • [8] E. Sahinkaya, H. Hasar, A.H. Kaksonen, B.E. Rittmann, Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent, Environ. Sci. Technol. 45 (2011) 4080–4087. doi:10.1021/es200140c.
  • [9] B. Krishnakumar, S. Majumdar, V.B. Manilal, A. Haridas, Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR), Water Res. 39 (2005) 639–647. doi:10.1016/j.watres.2004.11.015.
  • [10] L.B. Celis-García, E. Razo-Flores, O. Monroy, Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors., Biotechnol. Bioeng. 97 (2007) 771–779. doi:10.1002/bit.21288.
  • [11] K. Tang, S. An, M. Nemati, Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD, Bioresour. Technol. 101 (2010) 8109–8118. doi:10.1016/j.biortech.2010.06.037.
  • [12] R.K. Dereli, A. Grelot, B. Heffernan, F.P. van der Zee, J.B. van Lier, Implications of changes in solids retention time on long term evolution of sludge filterability in anaerobic membrane bioreactors treating high strength industrial wastewater., Water Res. 59C (2014) 11–22. doi:10.1016/j.watres.2014.03.073.
  • [13] H. Hasar, C. Kinaci, A. Ünlü, H. Toˇ, U. Ipek, H. Toǧrul, et al., Rheological properties of activated sludge in a sMBR, Biochem. Eng. J. 20 (2004) 1–6. doi:10.1016/j.bej.2004.02.011.
  • [14] Z. Wang, Z. Wu, G. Yu, J. Liu, Z. Zhou, Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors, J. Memb. Sci. 284 (2006) 87–94. doi:10.1016/j.memsci.2006.07.006.
  • [15] Z. Wu, Z. Wang, Z. Zhou, G. Yu, G. Gu, Sludge rheological and physiological characteristics in a pilot-scale submerged membrane bioreactor, Desalination. 212 (2007) 152–164. doi:10.1016/j.desal.2006.11.005.
  • [16] E. Sahinkaya, A. Yurtsever, E. Isler, I. Coban, Ö. Aktaş, Sulfate reduction and filtration performances of an anaerobic membrane bioreactor (AnMBR), Chem. Eng. J. 349 (2018) 47–55. doi:10.1016/j.cej.2018.05.001.
  • [17] APHA, Standard Methods for the Examination of Water and Wastewater, Washington DC, USA, 2005.
  • [18] M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350–356. doi:10.1021/ac60111a017.
  • [19] R.J.R. O.H. Lowry, N.J. Rosebrough, A.L. Farr, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.
  • [20] W.P. Barber, D.C. Stuckey, The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review, Water Res. 33 (1999) 1559–1578. doi:10.1016/S0043-1354(98)00371-6.
  • [21] A.Y. Hu, D.C. Stuckey, Treatment of Dilute Wastewaters Using a Novel Submerged Anaerobic Membrane Bioreactor, J. Environ. Eng. 132 (2006) 190–198. doi:10.1061/(ASCE)0733-9372(2006)132:2(190).
  • [22] A. Akram, D.C. Stuckey, Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC), Process Biochem. 43 (2008) 93–102. doi:10.1016/j.procbio.2007.10.020.
  • [23] H. Lin, B. Liao, J. Chen, W. Gao, L. Wang, F. Wang, et al., Bioresource Technology New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge, Bioresour. Technol. 102 (2011) 2373–2379. doi:10.1016/j.biortech.2010.10.103.
  • [24] S.M. Hocaoglu, D. Orhon, Fate of soluble residual organics in membrane bioreactor, J. Memb. Sci. 364 (2010) 65–74. doi:10.1016/j.memsci.2010.07.050.
  • [25] X.J. Xu, C. Chen, A.J. Wang, N. Fang, Y. Yuan, N.Q. Ren, et al., Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition, Bioresour. Technol. 116 (2012) 517–521. doi:10.1016/j.biortech.2012.03.095.
  • [26] A. Drews, Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures, J. Memb. Sci. 363 (2010) 1–28. doi:10.1016/j.memsci.2010.06.046.
  • [27] N. Ren, Z. Chen, X. Wang, D. Hu, A. Wang, Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment, Int. Biodeterior. Biodegrad. 56 (2005) 216–223. doi:10.1016/j.ibiod.2005.08.003.
  • [28] B.J. Ni, B.E. Rittmann, H.Q. Yu, Soluble microbial products and their implications in mixed culture biotechnology, Trends Biotechnol. 29 (2011) 454–463. doi:10.1016/j.tibtech.2011.04.006.
  • [29] Q. Wang, Z. Wang, Z. Wu, J. Ma, Z. Jiang, Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces, Chem. Eng. J. 179 (2012) 169–177. doi:10.1016/j.cej.2011.10.074.
  • [30] A.A. Moreau, N. Ratkovich, I. Nopens, J.H.J.M. Van Der Graaf, The ( in ) significance of apparent viscosity in full-scale municipal membrane bioreactors, 340 (2009) 249–256. doi:10.1016/j.memsci.2009.05.049.
  • [31] A. Yurtsever, Ö. Çınar, E. Sahinkaya, Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors, J. Memb. Sci. 511 (2016) 228–237. doi:10.1016/j.memsci.2016.03.044.
  • [32] M. Lousada-ferreira, J.B. Van Lier, J.H.J.M. Van Der Graaf, Impact of suspended solids concentration on sludge fi lterability in full-scale membrane bioreactors, J. Memb. Sci. 476 (2015) 68–75. doi:10.1016/j.memsci.2014.11.012.
  • [33] P. Le-Clech, V. Chen, T. a G. Fane, Fouling in membrane bioreactors used in wastewater treatment, J. Memb. Sci. 284 (2006) 17–53. doi:10.1016/j.memsci.2006.08.019.
  • [34] A. Yurtsever, E. Sahinkaya, Ö. Aktaş, D. Uçar, Ö. Çınar, Z. Wang, Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater, Bioresour. Technol. 192 (2015) 564–573. doi:10.1016/j.biortech.2015.06.024.
  • [35] I. Vyrides, D.C. Stuckey, Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): Effects of activated carbon addition and biogas-sparging time, Water Res. 43 (2009) 933–942. doi:10.1016/j.watres.2008.11.054.
  • [36] B. Jin, B.M. Wilén, P. Lant, A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge, Chem. Eng. J. 95 (2003) 221–234. doi:10.1016/S1385-8947(03)00108-6.
  • [37] H.Y. Ng, T.W. Tan, S.L. Ong, Membrane fouling of submerged membrane bioreactors: Impact of mean cell residence time and the contributing factors, Environ. Sci. Technol. 40 (2006) 2706–2713. doi:10.1021/es0516155.
Year 2020, Volume: 36 Issue: 1, 47 - 60, 26.04.2020

Abstract

Project Number

116Y124

References

  • [1] X. Xu, C. Chen, D.J. Lee, A. Wang, W. Guo, X. Zhou, et al., Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: Modeling and experimental validation, Bioresour. Technol. 147 (2013) 202–211. doi:10.1016/j.biortech.2013.07.113.
  • [2] A.P. Annachhatre, S. Suktrakoolvait, Biological sulfide oxidation in a fluidized bed reactor, Env. Technol. 22 (2001) 661–672. doi:10.1080/09593332208618238.
  • [3] J. Lohwacharin, A.P. Annachhatre, Biological sulfide oxidation in an airlift bioreactor, Bioresour. Technol. 101 (2010) 2114–2120. doi:10.1016/j.biortech.2009.10.093.
  • [4] P. Le Clech, B. Jefferson, I.S. Chang, S.J. Judd, Critical flux determination by the flux-step method in a submerged membrane bioreactor, J. Memb. Sci. 227 (2003) 81–93. doi:10.1016/j.memsci.2003.07.021.
  • [5] F. Meng, S.R. Chae, A. Drews, M. Kraume, H.S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material, Water Res. 43 (2009) 1489–1512. doi:10.1016/j.watres.2008.12.044.
  • [6] A.H. Kaksonen, J. a. Puhakka, Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals, Eng. Life Sci. 7 (2007) 541–564. doi:10.1002/elsc.200720216.
  • [7] E. Sahinkaya, M. Gungor, Bioresource Technology Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater, Bioresour. Technol. 101 (2010) 9508–9514. doi:10.1016/j.biortech.2010.07.113.
  • [8] E. Sahinkaya, H. Hasar, A.H. Kaksonen, B.E. Rittmann, Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent, Environ. Sci. Technol. 45 (2011) 4080–4087. doi:10.1021/es200140c.
  • [9] B. Krishnakumar, S. Majumdar, V.B. Manilal, A. Haridas, Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR), Water Res. 39 (2005) 639–647. doi:10.1016/j.watres.2004.11.015.
  • [10] L.B. Celis-García, E. Razo-Flores, O. Monroy, Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors., Biotechnol. Bioeng. 97 (2007) 771–779. doi:10.1002/bit.21288.
  • [11] K. Tang, S. An, M. Nemati, Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD, Bioresour. Technol. 101 (2010) 8109–8118. doi:10.1016/j.biortech.2010.06.037.
  • [12] R.K. Dereli, A. Grelot, B. Heffernan, F.P. van der Zee, J.B. van Lier, Implications of changes in solids retention time on long term evolution of sludge filterability in anaerobic membrane bioreactors treating high strength industrial wastewater., Water Res. 59C (2014) 11–22. doi:10.1016/j.watres.2014.03.073.
  • [13] H. Hasar, C. Kinaci, A. Ünlü, H. Toˇ, U. Ipek, H. Toǧrul, et al., Rheological properties of activated sludge in a sMBR, Biochem. Eng. J. 20 (2004) 1–6. doi:10.1016/j.bej.2004.02.011.
  • [14] Z. Wang, Z. Wu, G. Yu, J. Liu, Z. Zhou, Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors, J. Memb. Sci. 284 (2006) 87–94. doi:10.1016/j.memsci.2006.07.006.
  • [15] Z. Wu, Z. Wang, Z. Zhou, G. Yu, G. Gu, Sludge rheological and physiological characteristics in a pilot-scale submerged membrane bioreactor, Desalination. 212 (2007) 152–164. doi:10.1016/j.desal.2006.11.005.
  • [16] E. Sahinkaya, A. Yurtsever, E. Isler, I. Coban, Ö. Aktaş, Sulfate reduction and filtration performances of an anaerobic membrane bioreactor (AnMBR), Chem. Eng. J. 349 (2018) 47–55. doi:10.1016/j.cej.2018.05.001.
  • [17] APHA, Standard Methods for the Examination of Water and Wastewater, Washington DC, USA, 2005.
  • [18] M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350–356. doi:10.1021/ac60111a017.
  • [19] R.J.R. O.H. Lowry, N.J. Rosebrough, A.L. Farr, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.
  • [20] W.P. Barber, D.C. Stuckey, The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review, Water Res. 33 (1999) 1559–1578. doi:10.1016/S0043-1354(98)00371-6.
  • [21] A.Y. Hu, D.C. Stuckey, Treatment of Dilute Wastewaters Using a Novel Submerged Anaerobic Membrane Bioreactor, J. Environ. Eng. 132 (2006) 190–198. doi:10.1061/(ASCE)0733-9372(2006)132:2(190).
  • [22] A. Akram, D.C. Stuckey, Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC), Process Biochem. 43 (2008) 93–102. doi:10.1016/j.procbio.2007.10.020.
  • [23] H. Lin, B. Liao, J. Chen, W. Gao, L. Wang, F. Wang, et al., Bioresource Technology New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge, Bioresour. Technol. 102 (2011) 2373–2379. doi:10.1016/j.biortech.2010.10.103.
  • [24] S.M. Hocaoglu, D. Orhon, Fate of soluble residual organics in membrane bioreactor, J. Memb. Sci. 364 (2010) 65–74. doi:10.1016/j.memsci.2010.07.050.
  • [25] X.J. Xu, C. Chen, A.J. Wang, N. Fang, Y. Yuan, N.Q. Ren, et al., Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition, Bioresour. Technol. 116 (2012) 517–521. doi:10.1016/j.biortech.2012.03.095.
  • [26] A. Drews, Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures, J. Memb. Sci. 363 (2010) 1–28. doi:10.1016/j.memsci.2010.06.046.
  • [27] N. Ren, Z. Chen, X. Wang, D. Hu, A. Wang, Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment, Int. Biodeterior. Biodegrad. 56 (2005) 216–223. doi:10.1016/j.ibiod.2005.08.003.
  • [28] B.J. Ni, B.E. Rittmann, H.Q. Yu, Soluble microbial products and their implications in mixed culture biotechnology, Trends Biotechnol. 29 (2011) 454–463. doi:10.1016/j.tibtech.2011.04.006.
  • [29] Q. Wang, Z. Wang, Z. Wu, J. Ma, Z. Jiang, Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces, Chem. Eng. J. 179 (2012) 169–177. doi:10.1016/j.cej.2011.10.074.
  • [30] A.A. Moreau, N. Ratkovich, I. Nopens, J.H.J.M. Van Der Graaf, The ( in ) significance of apparent viscosity in full-scale municipal membrane bioreactors, 340 (2009) 249–256. doi:10.1016/j.memsci.2009.05.049.
  • [31] A. Yurtsever, Ö. Çınar, E. Sahinkaya, Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors, J. Memb. Sci. 511 (2016) 228–237. doi:10.1016/j.memsci.2016.03.044.
  • [32] M. Lousada-ferreira, J.B. Van Lier, J.H.J.M. Van Der Graaf, Impact of suspended solids concentration on sludge fi lterability in full-scale membrane bioreactors, J. Memb. Sci. 476 (2015) 68–75. doi:10.1016/j.memsci.2014.11.012.
  • [33] P. Le-Clech, V. Chen, T. a G. Fane, Fouling in membrane bioreactors used in wastewater treatment, J. Memb. Sci. 284 (2006) 17–53. doi:10.1016/j.memsci.2006.08.019.
  • [34] A. Yurtsever, E. Sahinkaya, Ö. Aktaş, D. Uçar, Ö. Çınar, Z. Wang, Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater, Bioresour. Technol. 192 (2015) 564–573. doi:10.1016/j.biortech.2015.06.024.
  • [35] I. Vyrides, D.C. Stuckey, Saline sewage treatment using a submerged anaerobic membrane reactor (SAMBR): Effects of activated carbon addition and biogas-sparging time, Water Res. 43 (2009) 933–942. doi:10.1016/j.watres.2008.11.054.
  • [36] B. Jin, B.M. Wilén, P. Lant, A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge, Chem. Eng. J. 95 (2003) 221–234. doi:10.1016/S1385-8947(03)00108-6.
  • [37] H.Y. Ng, T.W. Tan, S.L. Ong, Membrane fouling of submerged membrane bioreactors: Impact of mean cell residence time and the contributing factors, Environ. Sci. Technol. 40 (2006) 2706–2713. doi:10.1021/es0516155.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zeynep Tayran

Adem Yurtsever

Senem Teksoy Basaran

Erkan Sahinkaya

Project Number 116Y124
Publication Date April 26, 2020
Published in Issue Year 2020 Volume: 36 Issue: 1

Cite

APA Tayran, Z., Yurtsever, A., Teksoy Basaran, S., Sahinkaya, E. (2020). Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun ve Filtrasyon Performansının İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 36(1), 47-60.
AMA Tayran Z, Yurtsever A, Teksoy Basaran S, Sahinkaya E. Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun ve Filtrasyon Performansının İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. April 2020;36(1):47-60.
Chicago Tayran, Zeynep, Adem Yurtsever, Senem Teksoy Basaran, and Erkan Sahinkaya. “Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun Ve Filtrasyon Performansının İncelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36, no. 1 (April 2020): 47-60.
EndNote Tayran Z, Yurtsever A, Teksoy Basaran S, Sahinkaya E (April 1, 2020) Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun ve Filtrasyon Performansının İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 1 47–60.
IEEE Z. Tayran, A. Yurtsever, S. Teksoy Basaran, and E. Sahinkaya, “Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun ve Filtrasyon Performansının İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 36, no. 1, pp. 47–60, 2020.
ISNAD Tayran, Zeynep et al. “Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun Ve Filtrasyon Performansının İncelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36/1 (April 2020), 47-60.
JAMA Tayran Z, Yurtsever A, Teksoy Basaran S, Sahinkaya E. Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun ve Filtrasyon Performansının İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;36:47–60.
MLA Tayran, Zeynep et al. “Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun Ve Filtrasyon Performansının İncelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 36, no. 1, 2020, pp. 47-60.
Vancouver Tayran Z, Yurtsever A, Teksoy Basaran S, Sahinkaya E. Aerobik Membran Biyoreaktörde Sülfür Oksidasyonunun ve Filtrasyon Performansının İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;36(1):47-60.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.