Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Z-Şekilli Kavitideki Akış Desenleri ve Çatallanmalar

Year 2020, Volume 36, Issue 3, 408 - 419, 31.12.2020

Abstract

İki kapağı aynı yönde hareket eden Z-şekilli bölgedeki sıkıştırılamaz, durağan akışlar için akış desenleri sayısal yöntem ve lineer olmayan dinamik sistemler kullanılarak belirlendi. Stokes denklemi tarafından yönetilen kaviti tipi akış problemi, kavitinin ( h_1 ve h_2 ) yükseklikleri değiştikçe bölgede birçok farklı akış yapısı içerir. Bu yapıların dönüşümü incelenerek bölgedeki girdap oluşum senaryoları belirlendi.

References

  • Gürcan F. Effect of the Reynolds number on streamline bifurcations in a double-lid-driven cavity with free surfaces. Comput. Fluids 2003;32:1283–98.
  • Gürcan F, Gaskell PH, Savage MD, Wilson MCT. Eddy genesis and transformation of Stokes flow in a double-lid driven cavity. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003;217:353–63.
  • Gürcan F, Wilson MCT, Savage MD. Eddy genesis and transformation of Stokes flow in a double-lid-driven cavity. Part 2: Deep cavities. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2006;220:1765–73.
  • Gaskell PH, Savage MD, Wilson M. Stokes flow in a half-filled annulus between rotating coaxial cylinders. J. Fluid Mech. 1997;337:263–82.
  • Gürcan F, Bilgil H. Bifurcations and eddy genesis of Stokes flow within a sectorial cavity. Eur. J. Mech. B/Fluids 2013;39:42–51.
  • Gürcan F, Bilgil H, Şahin A. Bifurcations and eddy genesis of Stokes flow within a sectorial cavity PART II: Co-moving lids. Eur. J. Mech. B/Fluids 2016;56:200–10.
  • McQuain WD, Ribbens CJ, Wang CY, Watson LT. Steady viscous flow in a trapezoidal cavity. Comput. Fluids 1994;23:613–26.
  • Erturk E, Gokcol O. Fine Grid Numerical Solutions of Triangular Cavity Flow. Appl. Phys. 2005;38:97–105.
  • Bilgil H, Gürcan F. Effect of the Reynolds number on flow bifurcations and eddy genesis in a lid-driven sectorial cavity. Jpn. J. Ind. Appl. Math. 2016;33:343–60.
  • Deliceoĝlu A, Aydin SH. Flow bifurcation and eddy genesis in an L-shaped cavity. Comput. Fluids 2013;73:24–46.
  • Deliceoǧlu A, Aydin SH. Topological flow structures in an L-shaped cavity with horizontal motion of the upper lid. J. Comput. Appl. Math. 2014;259:937–43.
  • Mitchell AR. Finite elements: An introduction. Volume 1, E. B. Becker, G. F. Carey and J. T. Oden, Prentice-Hall. Int. J. Numer. Methods Eng. 1982;18:954–5.
  • Hartnack JN. Streamline topologies near a fixed wall using normal forms. Acta Mech. 1999;136:55–75.
  • Brøns M, Hartnack JN. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries. Phys. Fluids 1999;11:314–24.
  • Gürcan F, Deliceoǧlu A, Bakker PG. Streamline topologies near a non-simple degenerate critical point close to a stationary wall using normal forms. J. Fluid Mech. 2005;539:299–311.

Flow Patterns and Bifurcations in a Z-Shaped Cavity

Year 2020, Volume 36, Issue 3, 408 - 419, 31.12.2020

Abstract

References

  • Gürcan F. Effect of the Reynolds number on streamline bifurcations in a double-lid-driven cavity with free surfaces. Comput. Fluids 2003;32:1283–98.
  • Gürcan F, Gaskell PH, Savage MD, Wilson MCT. Eddy genesis and transformation of Stokes flow in a double-lid driven cavity. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003;217:353–63.
  • Gürcan F, Wilson MCT, Savage MD. Eddy genesis and transformation of Stokes flow in a double-lid-driven cavity. Part 2: Deep cavities. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2006;220:1765–73.
  • Gaskell PH, Savage MD, Wilson M. Stokes flow in a half-filled annulus between rotating coaxial cylinders. J. Fluid Mech. 1997;337:263–82.
  • Gürcan F, Bilgil H. Bifurcations and eddy genesis of Stokes flow within a sectorial cavity. Eur. J. Mech. B/Fluids 2013;39:42–51.
  • Gürcan F, Bilgil H, Şahin A. Bifurcations and eddy genesis of Stokes flow within a sectorial cavity PART II: Co-moving lids. Eur. J. Mech. B/Fluids 2016;56:200–10.
  • McQuain WD, Ribbens CJ, Wang CY, Watson LT. Steady viscous flow in a trapezoidal cavity. Comput. Fluids 1994;23:613–26.
  • Erturk E, Gokcol O. Fine Grid Numerical Solutions of Triangular Cavity Flow. Appl. Phys. 2005;38:97–105.
  • Bilgil H, Gürcan F. Effect of the Reynolds number on flow bifurcations and eddy genesis in a lid-driven sectorial cavity. Jpn. J. Ind. Appl. Math. 2016;33:343–60.
  • Deliceoĝlu A, Aydin SH. Flow bifurcation and eddy genesis in an L-shaped cavity. Comput. Fluids 2013;73:24–46.
  • Deliceoǧlu A, Aydin SH. Topological flow structures in an L-shaped cavity with horizontal motion of the upper lid. J. Comput. Appl. Math. 2014;259:937–43.
  • Mitchell AR. Finite elements: An introduction. Volume 1, E. B. Becker, G. F. Carey and J. T. Oden, Prentice-Hall. Int. J. Numer. Methods Eng. 1982;18:954–5.
  • Hartnack JN. Streamline topologies near a fixed wall using normal forms. Acta Mech. 1999;136:55–75.
  • Brøns M, Hartnack JN. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries. Phys. Fluids 1999;11:314–24.
  • Gürcan F, Deliceoǧlu A, Bakker PG. Streamline topologies near a non-simple degenerate critical point close to a stationary wall using normal forms. J. Fluid Mech. 2005;539:299–311.

Details

Primary Language English
Subjects Engineering
Journal Section Article
Authors

Ebutalib ÇELİK (Primary Author)
Erciyes Üniversitesi
0000-0002-4500-4465
Türkiye

Supporting Institution Tübitak
Project Number 114F525
Thanks The author wish to thank Prof. Dr. A. Deliceoğlu and Prof. Dr. F. Gürcan for their valuable support, comments, suggestions and corrections.
Publication Date December 31, 2020
Published in Issue Year 2020, Volume 36, Issue 3

Cite

Bibtex @research article { erciyesfen711342, journal = {Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi}, issn = {1012-2354}, address = {ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 38039 Kayseri, TÜRKİYE}, publisher = {Erciyes University}, year = {2020}, volume = {36}, pages = {408 - 419}, doi = {}, title = {Flow Patterns and Bifurcations in a Z-Shaped Cavity}, key = {cite}, author = {Çelik, Ebutalib} }
APA Çelik, E. (2020). Flow Patterns and Bifurcations in a Z-Shaped Cavity . Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi , 36 (3) , 408-419 . Retrieved from https://dergipark.org.tr/en/pub/erciyesfen/issue/59314/711342
MLA Çelik, E. "Flow Patterns and Bifurcations in a Z-Shaped Cavity" . Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 (2020 ): 408-419 <https://dergipark.org.tr/en/pub/erciyesfen/issue/59314/711342>
Chicago Çelik, E. "Flow Patterns and Bifurcations in a Z-Shaped Cavity". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 (2020 ): 408-419
RIS TY - JOUR T1 - Flow Patterns and Bifurcations in a Z-Shaped Cavity AU - Ebutalib Çelik Y1 - 2020 PY - 2020 N1 - DO - T2 - Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 408 EP - 419 VL - 36 IS - 3 SN - 1012-2354- M3 - UR - Y2 - 2020 ER -
EndNote %0 Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi Flow Patterns and Bifurcations in a Z-Shaped Cavity %A Ebutalib Çelik %T Flow Patterns and Bifurcations in a Z-Shaped Cavity %D 2020 %J Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi %P 1012-2354- %V 36 %N 3 %R %U
ISNAD Çelik, Ebutalib . "Flow Patterns and Bifurcations in a Z-Shaped Cavity". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 / 3 (December 2020): 408-419 .
AMA Çelik E. Flow Patterns and Bifurcations in a Z-Shaped Cavity. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020; 36(3): 408-419.
Vancouver Çelik E. Flow Patterns and Bifurcations in a Z-Shaped Cavity. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020; 36(3): 408-419.
IEEE E. Çelik , "Flow Patterns and Bifurcations in a Z-Shaped Cavity", Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 36, no. 3, pp. 408-419, Dec. 2021