Research Article
BibTex RIS Cite

W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi

Year 2022, Volume: 38 Issue: 2, 357 - 370, 23.08.2022

Abstract

Bu çalışmada elektronik devrelerde yüksek hızlı anahtarlama özellikleriyle ön plana çıkan Schottky engel diyotlar, sonlu elemanlar metoduyla incelenmiştir. Schottky kontak modelleme çalışması için W-at.%10Ir, W-at.%20Ir, W-at.%30Ir, W-at.%50Ir ve W-at.%70Ir olmak üzere beş farklı oranda alaşım ile saf W ve saf Ir metalleri kullanılmıştır. Sonlu elemanlar yöntemi kullanılarak oluşturulan sayısal model deneysel olarak da doğrulanmıştır. Schottky engel diyotların engel yüksekliği, idealite faktörü ve seri direnç değerleri, ileri beslem yarı logaritmik akım-gerilim karakteristikleri, Cheung fonksiyonları ve Norde metodu kullanılarak hesaplanmıştır. Elde edilen sonuçlara göre, alaşımdaki Ir oranı artıkça iş fonksiyonunun ve engel yüksekliğinin arttığı belirlenmiştir. Alaşım diyotlar içinde en büyük engel yüksekliği, 4.951 eV iş fonksiyonuna sahip W-at.%70Ir alaşımıyla modellenen, W70Ir/n-Si diyot için yaklaşık 1.02 eV olarak elde edilmiştir. Ayrıca ileri beslem altında diyotların yüzey elektriksel potansiyeli, elektron ve hol konsantrasyonlarının dağılımı simule edilerek görsel grafikler oluşturulmuştur. Diyotların akım iletimi gerçekleşirken özellikle hollerin dağılımında önemli değişiklikler olmuştur. Bu çalışma ile olası bir üretim süreci sonunda diyotların sahip olabileceği parametreler elde edilerek alaşımlandırmanın Schottky diyotun çalışma şartlarına etkileri belirlenmiştir.

References

  • 1. Bardeen, J. 1947. "Surface States and Rectification at a Metal Semi-Conductor Contact", Physical Review, 71(10), 717.
  • 2. Cowley, A., Sze, S. 1965. "Surface States and Barrier Height of Metal‐Semiconductor Systems", Journal of Applied Physics, 36(10), 3212-3220.
  • 3. Spitzer, W., Mead, C. 1963. "Barrier Height Studies on Metal‐Semiconductor Systems", Journal of Applied Physics, 34(10), 3061-3069.
  • 4. Schottky, W., Stormer, R., Waibel, F. 1931. "Rectifying Action at the Boundary between Cuprous Oxide and Applied Metal Electrodes", Z. Hoch Frequentztechnik, 37, 162.
  • 5. Schottky, W. 1991. Semiconductor Theory of the Blocking Layer: World Scientific
  • 6. Mott, N. F., Note on the Contact between a Metal and an Insulator or Semi-Conductor, Mathematical Proceedings of the Cambridge Philosophical Society. 568-572, 1938.
  • 7. Rhoderick, E. H., Williams, R. H. 1988. Metal-Semiconductor Contacts Oxford: Clarendon Press
  • 8. Myburg, G., Auret, F., Meyer, W., Louw, C., Van Staden, M. 1998. "Summary of Schottky Barrier Height Data on Epitaxially Grown N-and P-Gaas", Thin solid films, 325(1-2), 181-186.
  • 9. Tung, R. T. 2014. "The Physics and Chemistry of the Schottky Barrier Height", Applied Physics Reviews, 1(1), 011304.
  • 10. Tung, R. T. 2001. "Formation of an Electric Dipole at Metal-Semiconductor Interfaces", Physical review B, 64(20), 205310.
  • 11. Ayyildiz, E., Türüt, A., Efeoğlu, H., Tüzemen, S., Sağlam, M., Yoğurtçu, Y. K. 1996. "Effect of Series Resistance on the Forward Current-Voltage Characteristics of Schottky Diodes in the Presence of Interfacial Layer", Solid-State Electronics, 39(1), 83-87.
  • 12. Ayyıldız, E., Türüt, A. 1999. "The Effect of Thermal Treatment on the Characteristic Parameters of Ni/-, Ti/-and Niti Alloy/N-Gaas Schottky Diodes", Solid-State Electronics, 43(3), 521-527.
  • 13. Kahveci, O., Akkaya, A., Ayyildiz, E., Türüt, A. 2017. "Comparison of the Ti/N-Gaas Schottky Contacts’parameters Fabricated Using Dc Magnetron Sputtering and Thermal Evaporation", Surface Review and Letters, 24(04), 1750047.
  • 14. Akkaya, A. 2018. "The Current–Voltage and Capacitance–Voltage Characterization of the Au/Methylene Blue/N-Gaas Organic-Modified Schottky Diodes", Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 19(3), 756-767.
  • 15. Grillo, A., Di Bartolomeo, A. 2021. "A Current–Voltage Model for Double Schottky Barrier Devices", Advanced Electronic Materials, 7(2), 2000979.
  • 16. Çaldıran, Z. 2021. "Modification of Schottky Barrier Height Using an Inorganic Compound Interface Layer for Various Contact Metals in the Metal/P-Si Device Structure", Journal of Alloys and Compounds, 865, 158856.
  • 17. Aboelfotoh, M. 1987. "Schottky‐Barrier Behavior of a Ti‐W Alloy on Si (100)", Journal of applied physics, 61(7), 2558-2565.
  • 18. Akkaya, A. 2021. "Au–Ag Binary Alloys on N-Gaas Substrates and Effect of Work Functions on Schottky Barrier Height", Journal of Materials Science: Materials in Electronics, 32(13), 17448-17461.
  • 19. Beştaş, A., Yazıcı, S., Aktaş, F., Abay, B. 2014. "Double Gaussian Distribution of Barrier Height for Fecrnic Alloy Schottky Contacts on P-Si Substrates", Applied surface science, 318, 280-284.
  • 20. Aboelfotoh, M., Tu, K.-N. 1986. "Schottky-Barrier Height of a Ti-W Alloy on N-Type and P-Type Si", Physical Review B, 33(10), 6572.
  • 21. Hasegawa, H., Ohno, H. 1986. "Unified Disorder Induced Gap State Model for Insulator–Semiconductor and Metal–Semiconductor Interfaces", Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 4(4), 1130-1138.
  • 22. Spicer, W., Chye, P., Skeath, P. R., Su, C. Y., Lindau, I. 1979. "New and Unified Model for Schottky Barrier and Iii–V Insulator Interface States Formation", Journal of Vacuum Science and Technology, 16(5), 1422-1433.
  • 23. Tsukamoto, D., Shiro, A., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., Hirai, T. 2012. "Photocatalytic H2o2 Production from Ethanol/O2 System Using Tio2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles", ACS catalysis, 2(4), 599-603.
  • 24. Küp, S., Taşer, A., Kanmaz, İ., Güzeldir, B., Sağlam, M. 2019. "Effects of Au-Ag and Au-Cu Alloy Ratios on the Temperature Dependent Current-Voltage Characteristics of Au-Ag/N-Gaas/in and Au-Cu/N-Gaas/in Schottky Diodes", Materials Today: Proceedings, 18, 1936-1945.
  • 25. Glesener, J., Morrish, A., Snail, K. 1991. "A Thin‐Film Schottky Diode Fabricated from Flame‐Grown Diamond", Journal of applied physics, 70(9), 5144-5146.
  • 26. Cai, L., Wang, L., Huang, J., Yao, B., Tang, K., Zhang, J., Qin, K., Min, J., Xia, Y. 2013. "Preparation of Polycrystalline Cdznte Thick Film Schottky Diode for Ultraviolet Detectors", Vacuum, 88, 28-31.
  • 27. Bishop, W. L., Crowe, T. W., Mattauch, R. J., Planar Gaas Schottky Diode Fabrication: Progress and Challenges, Proc. 4th Int. Space THz Tech. Symp., Los Angeles, CA. 1993.
  • 28. Chen, D., Huang, Y., Liu, B., Xie, Z., Zhang, R., Zheng, Y., Wei, Y., Narayanamurti, V. 2009. "High-Quality Schottky Contacts to N-in Ga N Alloys Prepared for Photovoltaic Devices", Journal of Applied Physics, 105(6), 063714.
  • 29. Bouzid, F., Pezzimenti, F., Dehimi, L., Megherbi, M. L., Della Corte, F. G. 2017. "Numerical Simulations of the Electrical Transport Characteristics of a Pt/N-Gan Schottky Diode", Japanese Journal of Applied Physics, 56(9), 094301.
  • 30. Kaushal, P., Chand, S., Osvald, J. 2013. "Current–Voltage Characteristics of Schottky Diode Simulated Using Semiconductor Device Equations", International Journal of Electronics, 100(5), 686-698.
  • 31. Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., Ziane, A., Guermoui, M., Hatem-Kacha, A., Monier, G., Gruzza, B., Bideux, L. 2018. "Simulation and Experimental Studies of Illumination Effects on the Current Transport of Nitridated Gaas Schottky Diode", Semiconductors, 52(16), 1998-2006.
  • 32. Chand, S., Kaushal, P., Osvald, J. 2013. "Numerical Simulation Study of Current–Voltage Characteristics of a Schottky Diode with Inverse Doped Surface Layer", Materials science in semiconductor processing, 16(2), 454-460.
  • 33. Husain, M. K., Li, X. V., de Groot, C. H. 2009. "Observation of Negative Differential Conductance in a Reverse-Biased Ni/Ge Schottky Diode", IEEE electron device letters, 30(9), 966-968.
  • 34. Donoval, D., Snowden, C. M., Barus, M., Racko, J., Bedlek, M. 1994. "Critical Analysis of the Schottky Boundary Condition for Numerical Simulation of Schottky and Mesfet Structure", Physica Scripta, 50(4), 432.
  • 35. Li, W., Nomoto, K., Jena, D., Xing, H. G. 2020. "Thermionic Emission or Tunneling? The Universal Transition Electric Field for Ideal Schottky Reverse Leakage Current: A Case Study in Β-Ga2o3", Applied Physics Letters, 117(22), 222104.
  • 36. Osvald, J. 2007. "Numerical Simulation of Tunneling Current in Gan Schottky Diodes", Journal of applied physics, 101(10), 103701.
  • 37. Takano, H., Kimura, M., Ando, T., Niemcharoen, S., Yasumura, Y., Sato, K. 2000. "Optical Response of Planar Mo/N-Si/Mo Structures with Long Neutral Region and Schottky Barriers at Both Ends", Solid-State Electronics, 44(12), 2161-2164.
  • 38. Mamor, M., Dufour-Gergam, E., Finkman, L., Tremblay, G., Meyer, F., Bouziane, K. 1995. "Wsi Schottky Diodes: Effect of Sputtering Deposition Conditions on the Barrier Height", Applied surface science, 91(1-4), 342-346.
  • 39. Bouziane, K., Mamor, M., Meyer, F. 2005. "Dc Magnetron Sputtered Tungsten: W Film Properties and Electrical Properties of W/Si Schottky Diodes", Applied Physics A, 81(1), 209-215.
  • 40. Mamor, M., Finkman, E., Meyer, F., Bouziane, K. 1994. "W/Si Schottky Diodes: Effect of Metal Deposition Conditions on the Barrier Height", MRS Online Proceedings Library (OPL), 356.
  • 41. Baltakesmez, A., Tekmen, S., Güzeldir, B. 2020. "Temperature Dependent Current-and Capacitance-Voltage Characteristics of W/N-Si Structures with Two-Dimensional Ws2 and Three-Dimensional Wo3 Interfaces Deposited by Rf Sputtering Technique", Materials Science in Semiconductor Processing, 118, 105204.
  • 42. Kumari, P., Rao, V. R., High Performance W/N-Si Schottky Diode Using Black Phosphorus as an Interlayer, 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). 1-3, 2019.
  • 43. Bauza, D. 1993. "Effect of Deep Traps on the Capacitance‐Voltage Plots of Schottky Barrier Diodes: Application to the Study of Sputter‐Etched Ti‐W/N‐Si Diodes", Journal of applied physics, 73(4), 1858-1865.
  • 44. Okada, N., Uchida, N., Ogawa, S., Endo, K., Kanayama, T., Cluster-Preforming-Deposited Amorphous Wsi N (N= 12) Insertion Film of Low Sbh and High Diffusion Barrier for Direct Cu Contact, 2017 IEEE International Electron Devices Meeting (IEDM). 22.25. 21-22.25. 24, 2017.
  • 45. Eizenberg, M., Tu, K.-N. 1982. "Formation of Shallow Silicide Contacts of High Schottky Barrier on Si: Alloying Pd and Pt with W Versus Alloying Pd and Pt with Si", Journal of Applied Physics, 53(3), 1577-1585.
  • 46. Chang, P., Su, Y., Lee, K., Yu, C., Chang, S., Liu, C. 2010. "Improved Performance of Gan-Based Schottky Barrier Photodetectors by Annealing Ir/Pt Schottky Contact in O2", Journal of Alloys and Compounds, 504, S429-S431.
  • 47. Jeon, C. M., Jang, H. W., Lee, J.-L. 2003. "Thermally Stable Ir Schottky Contact on Algan/Gan Heterostructure", Applied physics letters, 82(3), 391-393.
  • 48. Kohli, S., Niles, D., Rithner, C. D., Dorhout, P. K. 2002. "Structural and Optical Properties of Iridium Films Annealed in Air", JCPDS-International Centre for Diffraction Data, Advances in X-ray Analysis, 45, 352-358.
  • 49. Fain Jr, S., McDavid, J. 1974. "Work-Function Variation with Alloy Composition: Ag-Au", Physical Review B, 9(12), 5099.
  • 50. Turut, A., Yıldız, D., Karabulut, A., Orak, İ. 2020. "Electrical Characteristics of Atomic Layer Deposited Au/Ti/Hfo2/N-Gaas Mis Diodes in the Wide Temperature Range", Journal of Materials Science: Materials in Electronics, 31(10), 7839-7849.
  • 51. Akkaya, A., Esmer, L., Kantar, B. B., Çetin, H., Ayyıldız, E. 2014. "Effect of Thermal Annealing on Electrical and Structural Properties of Ni/Au/N-Gan Schottky Contacts", Microelectronic engineering, 130, 62-68. 52. Kittel, C. 2021. "Introduction to Solid State Physics Eighth Edition".
  • 53. Sze, S. M., Li, Y., Ng, K. K. 2021. Physics of Semiconductor Devices John wiley & sons.
  • 54. Cheung, S., Cheung, N. 1986. "Extraction of Schottky Diode Parameters from Forward Current‐Voltage Characteristics", Applied physics letters, 49(2), 85-87.
  • 55. Norde, H. 1979. "A Modified Forward I‐V Plot for Schottky Diodes with High Series Resistance", Journal of applied physics, 50(7), 5052-5053.
  • 56. Baik, D., Cho, S. 1999. "Application of Sol-Gel Derived Films for Zno/N-Si Junction Solar Cells", Thin Solid Films, 354(1-2), 227-231.
  • 57. Zafar, S., Cabral Jr, C., Amos, R., Callegari, A. 2002. "A Method for Measuring Barrier Heights, Metal Work Functions and Fixed Charge Densities in Metal/Sio 2/Si Capacitors", Applied physics letters, 80(25), 4858-4860.
  • 58. Rankin, D. W., Crc Handbook of Chemistry and Physics, Edited by David R. Lide. 2009, Taylor & Francis.
  • 59. Tōyama, N. 1988. "Variation in the Effective Richardson Constant of a Metal‐Silicon Contact Due to Metal‐Film Thickness", Journal of applied physics, 63(8), 2720-2724.
  • 60. Wang, Q., Xu, B., Sun, J., Liu, H., Zhao, Z., Yu, D., Fan, C., He, J. 2014. "Direct Band Gap Silicon Allotropes", Journal of the American Chemical Society, 136(28), 9826-9829.
  • 61. Jiménez-Leube, F., Clement, M., Sanz Maudes, J., Rodrı́guez, T. 1997. "Electrical Characterization of Iridium Schottky Contacts to Silicon: Early Stages of Silicidation", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 15(4), 903-907.
  • 62. Akkaya, A., Ayyıldız, E. 2020. "Automation Software for Semiconductor Research Laboratories: Electrical Parameter Calculation Program (Seclas-Pc)", Journal of Circuits, Systems and Computers, 29(13), 2050215.
  • 63. Durcan, C. A., Balsano, R., LaBella, V. P. 2015. "Time Dependent Changes in Schottky Barrier Mapping of the W/Si (001) Interface Utilizing Ballistic Electron Emission Microscopy", Journal of Applied Physics, 117(24), 245306.
  • 64. Cohen, M. L. 1979. "Schottky and Bardeen Limits for Schottky Barriers", Journal of Vacuum Science and Technology, 16(5), 1135-1136.

Investigation the W-Ir Alloy Schottky Barrier Diodes Performance Using Finite Element Method

Year 2022, Volume: 38 Issue: 2, 357 - 370, 23.08.2022

Abstract

In this study, Schottky barrier diodes, which stand out with their high-speed switching properties in electronic circuits, were investigated using the finite element method. For Schottky contact modeling work, five different alloy ratios like W-at.10%Ir, W-at.20%Ir, W-at.30%Ir, W-at.50%Ir and W-at.70%Ir, pure W and pure Ir metals were used. The numerical model created by using the finite element method was also experimentally verified. Barrier height, ideality factor and series resistance values of Schottky barrier diodes were calculated using forward feed semi-logarithmic current-voltage characteristics, Cheung functions and Norde method. According to the obtained results, it was determined that the work function and barrier height increased by the Ir ratio in the alloying samples. The largest barrier height among alloy diodes was obtained as approximately 1.02 eV for W70Ir/n-Si diode, which has aW-at.70%Ir alloy with a work function of 4.951 eV. In addition, visual graphs were created by simulating the surface electrical potential of the diodes, the distribution of electron and hole concentrations under feed-forward situation. While the current conduction of the diodes took place, significant changes in the distribution of the halls were observed. In this study, the effects of alloying on the working conditions of the Schottky diode were determined by obtaining the parameters that the diodes may have at the end of a possible production process.

References

  • 1. Bardeen, J. 1947. "Surface States and Rectification at a Metal Semi-Conductor Contact", Physical Review, 71(10), 717.
  • 2. Cowley, A., Sze, S. 1965. "Surface States and Barrier Height of Metal‐Semiconductor Systems", Journal of Applied Physics, 36(10), 3212-3220.
  • 3. Spitzer, W., Mead, C. 1963. "Barrier Height Studies on Metal‐Semiconductor Systems", Journal of Applied Physics, 34(10), 3061-3069.
  • 4. Schottky, W., Stormer, R., Waibel, F. 1931. "Rectifying Action at the Boundary between Cuprous Oxide and Applied Metal Electrodes", Z. Hoch Frequentztechnik, 37, 162.
  • 5. Schottky, W. 1991. Semiconductor Theory of the Blocking Layer: World Scientific
  • 6. Mott, N. F., Note on the Contact between a Metal and an Insulator or Semi-Conductor, Mathematical Proceedings of the Cambridge Philosophical Society. 568-572, 1938.
  • 7. Rhoderick, E. H., Williams, R. H. 1988. Metal-Semiconductor Contacts Oxford: Clarendon Press
  • 8. Myburg, G., Auret, F., Meyer, W., Louw, C., Van Staden, M. 1998. "Summary of Schottky Barrier Height Data on Epitaxially Grown N-and P-Gaas", Thin solid films, 325(1-2), 181-186.
  • 9. Tung, R. T. 2014. "The Physics and Chemistry of the Schottky Barrier Height", Applied Physics Reviews, 1(1), 011304.
  • 10. Tung, R. T. 2001. "Formation of an Electric Dipole at Metal-Semiconductor Interfaces", Physical review B, 64(20), 205310.
  • 11. Ayyildiz, E., Türüt, A., Efeoğlu, H., Tüzemen, S., Sağlam, M., Yoğurtçu, Y. K. 1996. "Effect of Series Resistance on the Forward Current-Voltage Characteristics of Schottky Diodes in the Presence of Interfacial Layer", Solid-State Electronics, 39(1), 83-87.
  • 12. Ayyıldız, E., Türüt, A. 1999. "The Effect of Thermal Treatment on the Characteristic Parameters of Ni/-, Ti/-and Niti Alloy/N-Gaas Schottky Diodes", Solid-State Electronics, 43(3), 521-527.
  • 13. Kahveci, O., Akkaya, A., Ayyildiz, E., Türüt, A. 2017. "Comparison of the Ti/N-Gaas Schottky Contacts’parameters Fabricated Using Dc Magnetron Sputtering and Thermal Evaporation", Surface Review and Letters, 24(04), 1750047.
  • 14. Akkaya, A. 2018. "The Current–Voltage and Capacitance–Voltage Characterization of the Au/Methylene Blue/N-Gaas Organic-Modified Schottky Diodes", Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 19(3), 756-767.
  • 15. Grillo, A., Di Bartolomeo, A. 2021. "A Current–Voltage Model for Double Schottky Barrier Devices", Advanced Electronic Materials, 7(2), 2000979.
  • 16. Çaldıran, Z. 2021. "Modification of Schottky Barrier Height Using an Inorganic Compound Interface Layer for Various Contact Metals in the Metal/P-Si Device Structure", Journal of Alloys and Compounds, 865, 158856.
  • 17. Aboelfotoh, M. 1987. "Schottky‐Barrier Behavior of a Ti‐W Alloy on Si (100)", Journal of applied physics, 61(7), 2558-2565.
  • 18. Akkaya, A. 2021. "Au–Ag Binary Alloys on N-Gaas Substrates and Effect of Work Functions on Schottky Barrier Height", Journal of Materials Science: Materials in Electronics, 32(13), 17448-17461.
  • 19. Beştaş, A., Yazıcı, S., Aktaş, F., Abay, B. 2014. "Double Gaussian Distribution of Barrier Height for Fecrnic Alloy Schottky Contacts on P-Si Substrates", Applied surface science, 318, 280-284.
  • 20. Aboelfotoh, M., Tu, K.-N. 1986. "Schottky-Barrier Height of a Ti-W Alloy on N-Type and P-Type Si", Physical Review B, 33(10), 6572.
  • 21. Hasegawa, H., Ohno, H. 1986. "Unified Disorder Induced Gap State Model for Insulator–Semiconductor and Metal–Semiconductor Interfaces", Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 4(4), 1130-1138.
  • 22. Spicer, W., Chye, P., Skeath, P. R., Su, C. Y., Lindau, I. 1979. "New and Unified Model for Schottky Barrier and Iii–V Insulator Interface States Formation", Journal of Vacuum Science and Technology, 16(5), 1422-1433.
  • 23. Tsukamoto, D., Shiro, A., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., Hirai, T. 2012. "Photocatalytic H2o2 Production from Ethanol/O2 System Using Tio2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles", ACS catalysis, 2(4), 599-603.
  • 24. Küp, S., Taşer, A., Kanmaz, İ., Güzeldir, B., Sağlam, M. 2019. "Effects of Au-Ag and Au-Cu Alloy Ratios on the Temperature Dependent Current-Voltage Characteristics of Au-Ag/N-Gaas/in and Au-Cu/N-Gaas/in Schottky Diodes", Materials Today: Proceedings, 18, 1936-1945.
  • 25. Glesener, J., Morrish, A., Snail, K. 1991. "A Thin‐Film Schottky Diode Fabricated from Flame‐Grown Diamond", Journal of applied physics, 70(9), 5144-5146.
  • 26. Cai, L., Wang, L., Huang, J., Yao, B., Tang, K., Zhang, J., Qin, K., Min, J., Xia, Y. 2013. "Preparation of Polycrystalline Cdznte Thick Film Schottky Diode for Ultraviolet Detectors", Vacuum, 88, 28-31.
  • 27. Bishop, W. L., Crowe, T. W., Mattauch, R. J., Planar Gaas Schottky Diode Fabrication: Progress and Challenges, Proc. 4th Int. Space THz Tech. Symp., Los Angeles, CA. 1993.
  • 28. Chen, D., Huang, Y., Liu, B., Xie, Z., Zhang, R., Zheng, Y., Wei, Y., Narayanamurti, V. 2009. "High-Quality Schottky Contacts to N-in Ga N Alloys Prepared for Photovoltaic Devices", Journal of Applied Physics, 105(6), 063714.
  • 29. Bouzid, F., Pezzimenti, F., Dehimi, L., Megherbi, M. L., Della Corte, F. G. 2017. "Numerical Simulations of the Electrical Transport Characteristics of a Pt/N-Gan Schottky Diode", Japanese Journal of Applied Physics, 56(9), 094301.
  • 30. Kaushal, P., Chand, S., Osvald, J. 2013. "Current–Voltage Characteristics of Schottky Diode Simulated Using Semiconductor Device Equations", International Journal of Electronics, 100(5), 686-698.
  • 31. Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., Ziane, A., Guermoui, M., Hatem-Kacha, A., Monier, G., Gruzza, B., Bideux, L. 2018. "Simulation and Experimental Studies of Illumination Effects on the Current Transport of Nitridated Gaas Schottky Diode", Semiconductors, 52(16), 1998-2006.
  • 32. Chand, S., Kaushal, P., Osvald, J. 2013. "Numerical Simulation Study of Current–Voltage Characteristics of a Schottky Diode with Inverse Doped Surface Layer", Materials science in semiconductor processing, 16(2), 454-460.
  • 33. Husain, M. K., Li, X. V., de Groot, C. H. 2009. "Observation of Negative Differential Conductance in a Reverse-Biased Ni/Ge Schottky Diode", IEEE electron device letters, 30(9), 966-968.
  • 34. Donoval, D., Snowden, C. M., Barus, M., Racko, J., Bedlek, M. 1994. "Critical Analysis of the Schottky Boundary Condition for Numerical Simulation of Schottky and Mesfet Structure", Physica Scripta, 50(4), 432.
  • 35. Li, W., Nomoto, K., Jena, D., Xing, H. G. 2020. "Thermionic Emission or Tunneling? The Universal Transition Electric Field for Ideal Schottky Reverse Leakage Current: A Case Study in Β-Ga2o3", Applied Physics Letters, 117(22), 222104.
  • 36. Osvald, J. 2007. "Numerical Simulation of Tunneling Current in Gan Schottky Diodes", Journal of applied physics, 101(10), 103701.
  • 37. Takano, H., Kimura, M., Ando, T., Niemcharoen, S., Yasumura, Y., Sato, K. 2000. "Optical Response of Planar Mo/N-Si/Mo Structures with Long Neutral Region and Schottky Barriers at Both Ends", Solid-State Electronics, 44(12), 2161-2164.
  • 38. Mamor, M., Dufour-Gergam, E., Finkman, L., Tremblay, G., Meyer, F., Bouziane, K. 1995. "Wsi Schottky Diodes: Effect of Sputtering Deposition Conditions on the Barrier Height", Applied surface science, 91(1-4), 342-346.
  • 39. Bouziane, K., Mamor, M., Meyer, F. 2005. "Dc Magnetron Sputtered Tungsten: W Film Properties and Electrical Properties of W/Si Schottky Diodes", Applied Physics A, 81(1), 209-215.
  • 40. Mamor, M., Finkman, E., Meyer, F., Bouziane, K. 1994. "W/Si Schottky Diodes: Effect of Metal Deposition Conditions on the Barrier Height", MRS Online Proceedings Library (OPL), 356.
  • 41. Baltakesmez, A., Tekmen, S., Güzeldir, B. 2020. "Temperature Dependent Current-and Capacitance-Voltage Characteristics of W/N-Si Structures with Two-Dimensional Ws2 and Three-Dimensional Wo3 Interfaces Deposited by Rf Sputtering Technique", Materials Science in Semiconductor Processing, 118, 105204.
  • 42. Kumari, P., Rao, V. R., High Performance W/N-Si Schottky Diode Using Black Phosphorus as an Interlayer, 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). 1-3, 2019.
  • 43. Bauza, D. 1993. "Effect of Deep Traps on the Capacitance‐Voltage Plots of Schottky Barrier Diodes: Application to the Study of Sputter‐Etched Ti‐W/N‐Si Diodes", Journal of applied physics, 73(4), 1858-1865.
  • 44. Okada, N., Uchida, N., Ogawa, S., Endo, K., Kanayama, T., Cluster-Preforming-Deposited Amorphous Wsi N (N= 12) Insertion Film of Low Sbh and High Diffusion Barrier for Direct Cu Contact, 2017 IEEE International Electron Devices Meeting (IEDM). 22.25. 21-22.25. 24, 2017.
  • 45. Eizenberg, M., Tu, K.-N. 1982. "Formation of Shallow Silicide Contacts of High Schottky Barrier on Si: Alloying Pd and Pt with W Versus Alloying Pd and Pt with Si", Journal of Applied Physics, 53(3), 1577-1585.
  • 46. Chang, P., Su, Y., Lee, K., Yu, C., Chang, S., Liu, C. 2010. "Improved Performance of Gan-Based Schottky Barrier Photodetectors by Annealing Ir/Pt Schottky Contact in O2", Journal of Alloys and Compounds, 504, S429-S431.
  • 47. Jeon, C. M., Jang, H. W., Lee, J.-L. 2003. "Thermally Stable Ir Schottky Contact on Algan/Gan Heterostructure", Applied physics letters, 82(3), 391-393.
  • 48. Kohli, S., Niles, D., Rithner, C. D., Dorhout, P. K. 2002. "Structural and Optical Properties of Iridium Films Annealed in Air", JCPDS-International Centre for Diffraction Data, Advances in X-ray Analysis, 45, 352-358.
  • 49. Fain Jr, S., McDavid, J. 1974. "Work-Function Variation with Alloy Composition: Ag-Au", Physical Review B, 9(12), 5099.
  • 50. Turut, A., Yıldız, D., Karabulut, A., Orak, İ. 2020. "Electrical Characteristics of Atomic Layer Deposited Au/Ti/Hfo2/N-Gaas Mis Diodes in the Wide Temperature Range", Journal of Materials Science: Materials in Electronics, 31(10), 7839-7849.
  • 51. Akkaya, A., Esmer, L., Kantar, B. B., Çetin, H., Ayyıldız, E. 2014. "Effect of Thermal Annealing on Electrical and Structural Properties of Ni/Au/N-Gan Schottky Contacts", Microelectronic engineering, 130, 62-68. 52. Kittel, C. 2021. "Introduction to Solid State Physics Eighth Edition".
  • 53. Sze, S. M., Li, Y., Ng, K. K. 2021. Physics of Semiconductor Devices John wiley & sons.
  • 54. Cheung, S., Cheung, N. 1986. "Extraction of Schottky Diode Parameters from Forward Current‐Voltage Characteristics", Applied physics letters, 49(2), 85-87.
  • 55. Norde, H. 1979. "A Modified Forward I‐V Plot for Schottky Diodes with High Series Resistance", Journal of applied physics, 50(7), 5052-5053.
  • 56. Baik, D., Cho, S. 1999. "Application of Sol-Gel Derived Films for Zno/N-Si Junction Solar Cells", Thin Solid Films, 354(1-2), 227-231.
  • 57. Zafar, S., Cabral Jr, C., Amos, R., Callegari, A. 2002. "A Method for Measuring Barrier Heights, Metal Work Functions and Fixed Charge Densities in Metal/Sio 2/Si Capacitors", Applied physics letters, 80(25), 4858-4860.
  • 58. Rankin, D. W., Crc Handbook of Chemistry and Physics, Edited by David R. Lide. 2009, Taylor & Francis.
  • 59. Tōyama, N. 1988. "Variation in the Effective Richardson Constant of a Metal‐Silicon Contact Due to Metal‐Film Thickness", Journal of applied physics, 63(8), 2720-2724.
  • 60. Wang, Q., Xu, B., Sun, J., Liu, H., Zhao, Z., Yu, D., Fan, C., He, J. 2014. "Direct Band Gap Silicon Allotropes", Journal of the American Chemical Society, 136(28), 9826-9829.
  • 61. Jiménez-Leube, F., Clement, M., Sanz Maudes, J., Rodrı́guez, T. 1997. "Electrical Characterization of Iridium Schottky Contacts to Silicon: Early Stages of Silicidation", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 15(4), 903-907.
  • 62. Akkaya, A., Ayyıldız, E. 2020. "Automation Software for Semiconductor Research Laboratories: Electrical Parameter Calculation Program (Seclas-Pc)", Journal of Circuits, Systems and Computers, 29(13), 2050215.
  • 63. Durcan, C. A., Balsano, R., LaBella, V. P. 2015. "Time Dependent Changes in Schottky Barrier Mapping of the W/Si (001) Interface Utilizing Ballistic Electron Emission Microscopy", Journal of Applied Physics, 117(24), 245306.
  • 64. Cohen, M. L. 1979. "Schottky and Bardeen Limits for Schottky Barriers", Journal of Vacuum Science and Technology, 16(5), 1135-1136.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Osman Kahveci

Mehmet Fatih Kaya 0000-0002-2444-0583

Early Pub Date August 23, 2022
Publication Date August 23, 2022
Published in Issue Year 2022 Volume: 38 Issue: 2

Cite

APA Kahveci, O., & Kaya, M. F. (2022). W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(2), 357-370.
AMA Kahveci O, Kaya MF. W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. August 2022;38(2):357-370.
Chicago Kahveci, Osman, and Mehmet Fatih Kaya. “W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38, no. 2 (August 2022): 357-70.
EndNote Kahveci O, Kaya MF (August 1, 2022) W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38 2 357–370.
IEEE O. Kahveci and M. F. Kaya, “W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 38, no. 2, pp. 357–370, 2022.
ISNAD Kahveci, Osman - Kaya, Mehmet Fatih. “W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38/2 (August 2022), 357-370.
JAMA Kahveci O, Kaya MF. W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38:357–370.
MLA Kahveci, Osman and Mehmet Fatih Kaya. “W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 38, no. 2, 2022, pp. 357-70.
Vancouver Kahveci O, Kaya MF. W-Ir Alaşım Schottky Engel Diyotların Performansının Sonlu Elemanlar Metoduyla İncelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38(2):357-70.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.