Bu çalışmada elektrokardiyografi (EKG) kayıtlarından aritmi türlerini belirlemek amacıyla modern makine öğrenme algoritmalarının kullanılanımı incelenmiştir. Amacımız, EKG sinyallerinin daha etkin bir şekilde analiz edilmesiyle aritmi sınıflandırmasında daha üstün sonuçların elde edilmesidir. Çalışmada kullanılan EKG verileri, MIT PhysioNet veri tabanındaki 203, 208, 210 ve 213 numaralı hasta kayıtlarından seçilmiştir. Bu kayıtlar, V, F ve N aritmi türleri ile etiketlenmiştir. Bagging Decision Tree (BDT), Random Forest (RF), Extra Tree (ET),
Gradient Boosting (GB) ve Support Vector Machine (SVM) makine öğrenmesi algoritmaları ile yapılan sınıflandırma işlemleri neticesinde en yüksek doğruluk %98,14 doğruluk ile ET algoritması kullanılarak başarılmıştır. Bununla birlikte ET sınıflandırıcısı 2,17 saniyede eğitilmiş ve 0,0269 saniyede cevap üretebilmiştir. Elde edilen sonuçlar, yeni makine öğrenme algoritmalarının EKG aritmi sınıflandırmasında klasik Yapay Sinir Ağları tabanlı sınıflandırıcılara göre daha etkili sonuçlar üretebildiğini göstermektedir. Bu algoritmalar, geleneksel yöntemlere kıyasla daha yüksek doğruluk, hassasiyet ve özgünlük değerleri sunmaktadır.
Makine Öğrenmesi Bagging Decision Tree Random Forest Extra Tree Gradient Boosting Support Vector Machine
Birincil Dil | Türkçe |
---|---|
Konular | Yapay Görme |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 31 Aralık 2023 |
Yayımlanma Tarihi | 31 Aralık 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 39 Sayı: 3 |
✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.