Araştırma Makalesi
BibTex RIS Kaynak Göster

ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi

Yıl 2024, Cilt: 40 Sayı: 3, 450 - 461, 30.12.2024

Öz

Aşınma ve sürtünme nedenli ekonomik kayıpların azaltılması için yağlayıcıların kullanılması etkili çözüm yöntemlerinden biridir. Motor yağlarında kullanılan yağ katkı malzemeleri ile yağın tribolojik ve termofiziksel özelliklerinin gelişmesi sağlanmaktadır. Bu çalışmada ZnS nanopartikül sentez parametrelerinden proses sıcaklığı (10 ve 70 °C) ve farklı çözücü (1-PrOH ve EtOH) kullanımı koşullarında elde edilen nanopartiküllerin motor yağına eklendiğinde tribolojik davranışlara olan etkisi araştırılmıştır. Elde edilen sonuçlar; 10 °C de EtOH içerisinde yapılan işlemler ile daha küçük boyutlu nanopartiküller elde edilmiştir. Bu nanopartiküllerin baz yağa eklendiğinde 10W yağa göre; vizkozitenin ve 0–200 °C aralığında termal kararlılığın arttığını ve aşınmanın ortalama %39 azaldığını göstermiştir.

Destekleyen Kurum

Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri (ESTÜ BAP) Komisyonu

Proje Numarası

21GAP120

Teşekkür

Bu çalışma, Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri (ESTÜ BAP) komisyonu tarafından desteklenmiştir (Proje No: 21GAP120). Termal analizler Seramik Araştırma Merkezi (SAM) A.Ş.’de yapılmıştır. Sağlanan desteğe teşekkür ederiz.

Kaynakça

  • [1] Holmberg, K. and Erdemir, A. 2017. Influence of tribology on global energy consumption, costs and emissions. Friction 5, 3, 263-284.
  • [2] Holmberg, K., Andersson, P. and Erdemir, A. 2012. Global energy consumption due to friction in passenger cars. Tribol Int 47, 221-234.
  • [3] Holmberg, K. and Erdemir, A. 2019. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int 135, 389-396.
  • [4] Hutchings, I. and Shipway, P. 2017. Tribology, Friction and Wear of Engineering Materials. Editon Edition, Butterworth-Heinemann, United Kingdom.
  • [5] Nagrale, P., Automotive Lubricants Market Research Report Information By Material (Mineral Oil, Fully Synthetic Oil, Semi-Synthetic Oil and Bio-Based Oil), Product Type (Engine Oil, Brake Oil, Gear Oil, Grease, and Other Fluids), Application (Two Wheelers, Three Wheelers, Passenger Cars, Light-Weight Commercial Vehicles, and Heavy-Weight Commercial Vehicles), and By Region (Asia-Pacific, North America, Europe, And Rest Of The World) –Market Forecast Till 2032 https://www.marketresearchfuture.com/reports/automotive-lubricants-market-1225, (Erişim tarihi: 17.06.2024).
  • [6] Betton, C. I. 2010. Lubricants and Their Environmental Impact. Editon Edition, Springer Netherlands, Dordrecht.
  • [7] Speight, J. and Exall, D. I. 2014. Refining Used Lubricating Oils. Editon Edition, CRC Press., Boca Raton.
  • [8] Lacroix-Andrivet, O., Hubert-Roux, M., Loutelier Bourhis, C., Moualdi, S., Mendes Siqueira, A. L. and Afonso, C. 2023. Characterization of Base Oil and Additive Oxidation Products from Formulated Lubricant by Ultra- High Resolution Mass Spectrometry. Lubricants 11, 8, 345.
  • [9] Akbulut, M. 2012. Nanoparticle-based lubrication systems. J. Powder Metall. Min 1, 1, 1-3.
  • [10] Mousavi, S. B., Heris, S. Z. and Estellé, P. 2020. Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci Rep-Uk 10, 1, 5813.
  • [11] Duan, L., Li, J. and Duan, H. 2023. Nanomaterials for lubricating oil application: A review. Friction 11, 5, 647- 684.
  • [12] Zhao, J., Huang, Y. Y., He, Y. Y. and Shi, Y. J. 2021. Nanolubricant additives: A review. Friction 9, 5, 891-917.
  • [13] Singh, A., Chauhan, P. and Mamatha, T. G. 2020. A review on tribological performance of lubricants with nanoparticles additives. Materials Today: Proceedings 25, 586-591.
  • [14] Wang, B., Qiu, F., Barber, G. C., Zou, Q., Wang, J., Guo, S., Yuan, Y. and Jiang, Q. 2022. Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear 490-491, 204206.
  • [15] Chen, Y., Renner, P. and Liang, H. 2023. A review of current understanding in tribochemical reactions involving lubricant additives. Friction 11, 4, 489-512.
  • [16] Liu, Y.-D., Wang, C.-B., Yuan, J.-J. and Liu, J.-J. 2010. Investigation on anti-wear properties of sulfide layer on bearing steel lubricated by oil-containing FeS particles. Surface and Coatings Technology 205, 2, 470-474.
  • [17] Hatami, M., Hasanpour, M. and Jing, D. 2020. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano-lubricants. Journal of Molecular Liquids 319, 114156.
  • [18] Oganesova, E. Y., Lyadov, A. S. and Parenago, O. P. 2018. Nanosized Additives to Lubricating Materials. Russ J Appl Chem+ 91, 10, 1559-1573.
  • [19] Dai, W., Kheireddin, B., Gao, H. and Liang, H. 2016. Roles of nanoparticles in oil lubrication. Tribol Int 102, 88-98.
  • [20] Shafi, W. K. and Charoo, M. S. 2021. An overall review on the tribological, thermal and rheological properties of nanolubricants. Tribol-Mater Surf In 15, 1, 20-54.
  • [21] Yu, H., Chen, H., Zheng, Z., Qiao, D., Feng, D., Gong, Z. and Dong, G. 2023. Effect of functional groups on tribological properties of lubricants and mechanism investigation. Friction 11, 6, 911-926.
  • [22] Kaur, N., Kaur, S., Singh, J. and Rawat, M. 2016. A Review on Zinc Sulphide Nanoparticles : From Synthesis , Properties to Applications. Journal of Bioelectronics and Nanotechnology 1, 1, 1-5.
  • [23] Wang, H., Xu, B. and Liu, J. 2012. Micron-nano ZnS Solid Lubrication Film. Editon Edition, Springer Berlin Heidelberg, Berlin, Heidelberg.
  • [24] Zhang, S., Yang, J., Chen, B., Guo, S., Li, J. and Li, C. 2017. One-step hydrothermal synthesis of reduced graphene oxide/zinc sulfide hybrids for enhanced tribological properties of epoxy coatings. Surface and Coatings Technology 326, 87-95.
  • [25] Zhao, F., Li, G., Zhang, G., Wang, T. and Wang, Q. 2017. Hybrid effect of ZnS sub-micrometer particles and reinforcing fibers on tribological performance of polyimide under oil lubrication conditions. Wear 380-381, 86-95.
  • [26] Liu, H., Qi, Z., Wang, H., Huang, J., Zhao, Y., Yang, Y. and Zhao, Z. 2024. ‘Ball-on-plane’ ZnS@RGO compound filler: effect on tribological properties of thermosetting polyimide film. Composite Interfaces, 1-18.
  • [27] Liu, W. and Chen, S. 2000. An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear 238, 2, 120-124.
  • [28] Chen, S. and Liu, W. 2001. Characterization and antiwear ability of non-coated ZnS nanoparticles and DDP-coated ZnS nanoparticles. Mater Res Bull 36, 1, 137-143.
  • [29] Wang, L., Gao, Y., Li, Z., Zhou, A. and Li, P. 2015. Preparation and tribological properties of surface-modified ZnS nanoparticles. Lubrication Science 27, 4, 241-250.
  • [30] Lu, A., Niu, W., Dai, Y., Xu, H. and Dong, J. 2019. Tribological Properties of ZnS(NH2CH2CH2NH2)0.5 and ZnS as Additives in Lithium Grease. Lubricants 7, 3, 26.
  • [31] Kumara, C., Armstrong, B., Lyo, I., Lee, H. W. and Qu, J. 2023. Organic-modified ZnS nanoparticles as a high-performance lubricant additive. Rsc Adv 13, 10, 7009-7019.
  • [32] Uğur, A. and Avan, İ. 2023. Investigation of 1-octanethiol capped ZnS nanoparticles as lubricant additives and tribological behavior of oil-based nanolubricant. Wear 530-531, 205029.
  • [33] Uğur, A. and Avan, İ. 2024. Anti-wear behavior of 1-octanethiol and tween-80 capped ZnO nanoparticles as lubricating oil additives. Surfaces and Interfaces 46, 104018.
  • [34] International, A. 2003. Standard Test Method for Measurement of Load-Carrying Capacity of Lubricating Grease (Timken Method), Test no. D-2509-03. International, A., West Conshohocken.
  • [35] International, A. 2020. Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Timken Method), Test No: D2782-20. International, A., West Conshohocken.
  • [36] Hu, P., Cao, Y., Lou, Y., Lu, B., Shao, M., Ni, J. and Cao, M. 2013. A New Simple Route to ZnS Quantized Particles with Tunable Size and Shape, and Size/Shape-Dependent Optical Properties. Advances in Materials Physics and Chemistry Vol.03No.01, 9.
  • [37] Qu, H., Cao, L. X., Su, G., Liu, W., Gao, R. J., Xia, C. H. and Qin, J. J. 2014. Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J Nanopart Res 16, 12.
  • [38] Yan, L., Yue, W., Wang, C., Wei, D. and Xu, B. 2012. Comparing tribological behaviors of sulfur- and phosphorus-free organomolybdenum additive with ZDDP and MoDTC. Tribol Int 53, 150-158.
  • [39] Viswanath, R., Naik, H. S. B., Somalanaik, Y. K. G., Neelanjeneallu, P. K. P., Harish, K. N. and Prabhakara, M. C. 2014. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles. Journal of Nanotechnology 2014, 1-8.
  • [40] Bahena-Martínez, C. J., Torres-Gómez, N. and Vilchis-Néstor, A. R. 2020. Study of the temperature effect on the morphology and structure of ZnS nanoparticles synthesized by hydrothermal method. MRS Advances 5, 63, 3379-3388.
  • [41] Jrad, A., Naouai, M., Ammar, S. and Turki-Kamoun, N. 2022. Chemical composition, structural, morphological, optical and luminescence properties of chemical bath deposited Fe:ZnS thin films. Optical Materials 123, 111851.
  • [42] Yu, H.-l., Xu, Y., Shi, P.-j., Xu, B.-s., Wang, X.-l. and Liu, Q. 2008. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China 18, 3, 636- 641.
  • [43] Chen, Y., Yang, K., Lin, H., Zhang, F., Xiong, B., Zhang, H. and Zhang, C. 2022. Important contributions of multidimensional nanoadditives on the tribofilms: From formation mechanism to tribological behaviors. Composites Part B: Engineering 234, 109732.
  • [44] Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z., Debnath, S., Jamil, M., Ali, H. M. and Sharma, S. 2022. Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. The International Journal of Advanced Manufacturing Technology 120, 1, 1-27.
  • [45] Chen, H., Chow, C. L. and Lau, D. 2023. Recycling used engine oil in concrete: Fire performance evaluation. Journal of Building Engineering 64, 105637.

Effect of ZnS nanoparticles synthesis parameters on the improvement of tribological properties

Yıl 2024, Cilt: 40 Sayı: 3, 450 - 461, 30.12.2024

Öz

Using lubricants is one of the effective solution methods to reduce economic losses caused by wear and friction. Lubricant additives used in motor oils improve the tribological and thermophysical properties of the oil. In this study, the performance of the engine oil related to the tribological behavior was investigated when the nanoparticles were obtained under different synthesis parameters such as process temperature (10 and 70°C) and the use of various solvents (1-PrOH and EtOH). The results showed that smaller-sized nanoparticles were obtained under 10°C process conditions and when EtOH was used. Furthermore, when these NPs were added to the base oil, it was found that the viscosity increased compared to 10W oil, the thermal stability was increased in the range of 0-200°C and the wear loss rate decreased by an average of 39%.

Proje Numarası

21GAP120

Kaynakça

  • [1] Holmberg, K. and Erdemir, A. 2017. Influence of tribology on global energy consumption, costs and emissions. Friction 5, 3, 263-284.
  • [2] Holmberg, K., Andersson, P. and Erdemir, A. 2012. Global energy consumption due to friction in passenger cars. Tribol Int 47, 221-234.
  • [3] Holmberg, K. and Erdemir, A. 2019. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int 135, 389-396.
  • [4] Hutchings, I. and Shipway, P. 2017. Tribology, Friction and Wear of Engineering Materials. Editon Edition, Butterworth-Heinemann, United Kingdom.
  • [5] Nagrale, P., Automotive Lubricants Market Research Report Information By Material (Mineral Oil, Fully Synthetic Oil, Semi-Synthetic Oil and Bio-Based Oil), Product Type (Engine Oil, Brake Oil, Gear Oil, Grease, and Other Fluids), Application (Two Wheelers, Three Wheelers, Passenger Cars, Light-Weight Commercial Vehicles, and Heavy-Weight Commercial Vehicles), and By Region (Asia-Pacific, North America, Europe, And Rest Of The World) –Market Forecast Till 2032 https://www.marketresearchfuture.com/reports/automotive-lubricants-market-1225, (Erişim tarihi: 17.06.2024).
  • [6] Betton, C. I. 2010. Lubricants and Their Environmental Impact. Editon Edition, Springer Netherlands, Dordrecht.
  • [7] Speight, J. and Exall, D. I. 2014. Refining Used Lubricating Oils. Editon Edition, CRC Press., Boca Raton.
  • [8] Lacroix-Andrivet, O., Hubert-Roux, M., Loutelier Bourhis, C., Moualdi, S., Mendes Siqueira, A. L. and Afonso, C. 2023. Characterization of Base Oil and Additive Oxidation Products from Formulated Lubricant by Ultra- High Resolution Mass Spectrometry. Lubricants 11, 8, 345.
  • [9] Akbulut, M. 2012. Nanoparticle-based lubrication systems. J. Powder Metall. Min 1, 1, 1-3.
  • [10] Mousavi, S. B., Heris, S. Z. and Estellé, P. 2020. Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant. Sci Rep-Uk 10, 1, 5813.
  • [11] Duan, L., Li, J. and Duan, H. 2023. Nanomaterials for lubricating oil application: A review. Friction 11, 5, 647- 684.
  • [12] Zhao, J., Huang, Y. Y., He, Y. Y. and Shi, Y. J. 2021. Nanolubricant additives: A review. Friction 9, 5, 891-917.
  • [13] Singh, A., Chauhan, P. and Mamatha, T. G. 2020. A review on tribological performance of lubricants with nanoparticles additives. Materials Today: Proceedings 25, 586-591.
  • [14] Wang, B., Qiu, F., Barber, G. C., Zou, Q., Wang, J., Guo, S., Yuan, Y. and Jiang, Q. 2022. Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear 490-491, 204206.
  • [15] Chen, Y., Renner, P. and Liang, H. 2023. A review of current understanding in tribochemical reactions involving lubricant additives. Friction 11, 4, 489-512.
  • [16] Liu, Y.-D., Wang, C.-B., Yuan, J.-J. and Liu, J.-J. 2010. Investigation on anti-wear properties of sulfide layer on bearing steel lubricated by oil-containing FeS particles. Surface and Coatings Technology 205, 2, 470-474.
  • [17] Hatami, M., Hasanpour, M. and Jing, D. 2020. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano-lubricants. Journal of Molecular Liquids 319, 114156.
  • [18] Oganesova, E. Y., Lyadov, A. S. and Parenago, O. P. 2018. Nanosized Additives to Lubricating Materials. Russ J Appl Chem+ 91, 10, 1559-1573.
  • [19] Dai, W., Kheireddin, B., Gao, H. and Liang, H. 2016. Roles of nanoparticles in oil lubrication. Tribol Int 102, 88-98.
  • [20] Shafi, W. K. and Charoo, M. S. 2021. An overall review on the tribological, thermal and rheological properties of nanolubricants. Tribol-Mater Surf In 15, 1, 20-54.
  • [21] Yu, H., Chen, H., Zheng, Z., Qiao, D., Feng, D., Gong, Z. and Dong, G. 2023. Effect of functional groups on tribological properties of lubricants and mechanism investigation. Friction 11, 6, 911-926.
  • [22] Kaur, N., Kaur, S., Singh, J. and Rawat, M. 2016. A Review on Zinc Sulphide Nanoparticles : From Synthesis , Properties to Applications. Journal of Bioelectronics and Nanotechnology 1, 1, 1-5.
  • [23] Wang, H., Xu, B. and Liu, J. 2012. Micron-nano ZnS Solid Lubrication Film. Editon Edition, Springer Berlin Heidelberg, Berlin, Heidelberg.
  • [24] Zhang, S., Yang, J., Chen, B., Guo, S., Li, J. and Li, C. 2017. One-step hydrothermal synthesis of reduced graphene oxide/zinc sulfide hybrids for enhanced tribological properties of epoxy coatings. Surface and Coatings Technology 326, 87-95.
  • [25] Zhao, F., Li, G., Zhang, G., Wang, T. and Wang, Q. 2017. Hybrid effect of ZnS sub-micrometer particles and reinforcing fibers on tribological performance of polyimide under oil lubrication conditions. Wear 380-381, 86-95.
  • [26] Liu, H., Qi, Z., Wang, H., Huang, J., Zhao, Y., Yang, Y. and Zhao, Z. 2024. ‘Ball-on-plane’ ZnS@RGO compound filler: effect on tribological properties of thermosetting polyimide film. Composite Interfaces, 1-18.
  • [27] Liu, W. and Chen, S. 2000. An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear 238, 2, 120-124.
  • [28] Chen, S. and Liu, W. 2001. Characterization and antiwear ability of non-coated ZnS nanoparticles and DDP-coated ZnS nanoparticles. Mater Res Bull 36, 1, 137-143.
  • [29] Wang, L., Gao, Y., Li, Z., Zhou, A. and Li, P. 2015. Preparation and tribological properties of surface-modified ZnS nanoparticles. Lubrication Science 27, 4, 241-250.
  • [30] Lu, A., Niu, W., Dai, Y., Xu, H. and Dong, J. 2019. Tribological Properties of ZnS(NH2CH2CH2NH2)0.5 and ZnS as Additives in Lithium Grease. Lubricants 7, 3, 26.
  • [31] Kumara, C., Armstrong, B., Lyo, I., Lee, H. W. and Qu, J. 2023. Organic-modified ZnS nanoparticles as a high-performance lubricant additive. Rsc Adv 13, 10, 7009-7019.
  • [32] Uğur, A. and Avan, İ. 2023. Investigation of 1-octanethiol capped ZnS nanoparticles as lubricant additives and tribological behavior of oil-based nanolubricant. Wear 530-531, 205029.
  • [33] Uğur, A. and Avan, İ. 2024. Anti-wear behavior of 1-octanethiol and tween-80 capped ZnO nanoparticles as lubricating oil additives. Surfaces and Interfaces 46, 104018.
  • [34] International, A. 2003. Standard Test Method for Measurement of Load-Carrying Capacity of Lubricating Grease (Timken Method), Test no. D-2509-03. International, A., West Conshohocken.
  • [35] International, A. 2020. Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Timken Method), Test No: D2782-20. International, A., West Conshohocken.
  • [36] Hu, P., Cao, Y., Lou, Y., Lu, B., Shao, M., Ni, J. and Cao, M. 2013. A New Simple Route to ZnS Quantized Particles with Tunable Size and Shape, and Size/Shape-Dependent Optical Properties. Advances in Materials Physics and Chemistry Vol.03No.01, 9.
  • [37] Qu, H., Cao, L. X., Su, G., Liu, W., Gao, R. J., Xia, C. H. and Qin, J. J. 2014. Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J Nanopart Res 16, 12.
  • [38] Yan, L., Yue, W., Wang, C., Wei, D. and Xu, B. 2012. Comparing tribological behaviors of sulfur- and phosphorus-free organomolybdenum additive with ZDDP and MoDTC. Tribol Int 53, 150-158.
  • [39] Viswanath, R., Naik, H. S. B., Somalanaik, Y. K. G., Neelanjeneallu, P. K. P., Harish, K. N. and Prabhakara, M. C. 2014. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles. Journal of Nanotechnology 2014, 1-8.
  • [40] Bahena-Martínez, C. J., Torres-Gómez, N. and Vilchis-Néstor, A. R. 2020. Study of the temperature effect on the morphology and structure of ZnS nanoparticles synthesized by hydrothermal method. MRS Advances 5, 63, 3379-3388.
  • [41] Jrad, A., Naouai, M., Ammar, S. and Turki-Kamoun, N. 2022. Chemical composition, structural, morphological, optical and luminescence properties of chemical bath deposited Fe:ZnS thin films. Optical Materials 123, 111851.
  • [42] Yu, H.-l., Xu, Y., Shi, P.-j., Xu, B.-s., Wang, X.-l. and Liu, Q. 2008. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China 18, 3, 636- 641.
  • [43] Chen, Y., Yang, K., Lin, H., Zhang, F., Xiong, B., Zhang, H. and Zhang, C. 2022. Important contributions of multidimensional nanoadditives on the tribofilms: From formation mechanism to tribological behaviors. Composites Part B: Engineering 234, 109732.
  • [44] Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z., Debnath, S., Jamil, M., Ali, H. M. and Sharma, S. 2022. Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. The International Journal of Advanced Manufacturing Technology 120, 1, 1-27.
  • [45] Chen, H., Chow, C. L. and Lau, D. 2023. Recycling used engine oil in concrete: Fire performance evaluation. Journal of Building Engineering 64, 105637.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer), Nanomalzemeler
Bölüm Makaleler
Yazarlar

Alper Uğur 0000-0002-8310-8839

İlker Avan 0000-0002-0816-0610

Proje Numarası 21GAP120
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 29 Haziran 2024
Kabul Tarihi 13 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 40 Sayı: 3

Kaynak Göster

APA Uğur, A., & Avan, İ. (2024). ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(3), 450-461.
AMA Uğur A, Avan İ. ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Aralık 2024;40(3):450-461.
Chicago Uğur, Alper, ve İlker Avan. “ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40, sy. 3 (Aralık 2024): 450-61.
EndNote Uğur A, Avan İ (01 Aralık 2024) ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40 3 450–461.
IEEE A. Uğur ve İ. Avan, “ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 3, ss. 450–461, 2024.
ISNAD Uğur, Alper - Avan, İlker. “ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40/3 (Aralık 2024), 450-461.
JAMA Uğur A, Avan İ. ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40:450–461.
MLA Uğur, Alper ve İlker Avan. “ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 3, 2024, ss. 450-61.
Vancouver Uğur A, Avan İ. ZnS Nanopartikülleri Sentez Parametrelerinin Tribolojik Özellikleri İyileştirmeye Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40(3):450-61.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.