Araştırma Makalesi
BibTex RIS Kaynak Göster

Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study

Yıl 2025, Cilt: 41 Sayı: 2, 484 - 503, 30.08.2025

Öz

The detection of plant diseases and their application to agricultural production have the potential to increase productivity and regulate pesticide use. Time-dependent meteorological climate data play an active role in plant disease control practices.The aim of this study was to develop a prediction model for the presence of net blotch disease in barley plants in Turkey. The machine learning and artificial neural network-based model was developed and evaluated using a three-year disease development period (2021-2023) as the training and testing dataset. The model was trained using nine different meteorological climate data, including temperature(min, max, avg), humidity, rainfall, wind speed, sun exposure time, actual vapor pressure, dew point temperature. The outcomes of the evaluation process yielded an 88.9% accuracy for the XGBoost classifier and a noteworthy 92.16% accuracy value for the Artificial Neural Network (ANN).The precision, recall and f-score values for the ANN model were found to be 96.10%, 89.16% and 92.50%, respectively. The findings indicated that the model exhibited superior performance in detecting the absence of the disease when compared to existing studies. Furthermore, the impact of nine distinct inputs on the manifestation of the disease and the interrelationships between these inputs were analysed. The analysis revealed that sun exposure time, temperature, wind speed and humidity factors exerted the most substantial influence on environmental variables. The high performance obtained from the model lends further credence to the hypothesis that artificial intelligence models can be successful in combating the disease and that an increase in productivity can be achieved in the product by reducing the negative effects of the disease.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey (TUBITAK)

Proje Numarası

124F251

Teşekkür

This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 124F251. The authors thank to TUBITAK for their supports.

Kaynakça

  • Finch, H., Samuel, A.M, Lane, G.F. 2002. Lockhart & Wiseman's crop husbandry. 10th Edition. Cambridge: WoodHead, 3-25.
  • Adeboyejo, F. O., Olatunde, S. J., Rustria, G. A., Azotea, A. N. B., Ostonal, J. M., Reyes, J. A., Oyeyinka, S. A. 2023. Asian fermented cereal-based products. Indigenous Fermented Foods for the Tropics, Academic Press, 37-56
  • Food and Agriculture Organization of the United Nations. 2024. Cereal Production. https://ourworldindata.org/grapher/cereal-production (Accessed Date: 03.12.2024).
  • Uçar, Ö. 2020. The Situation of Cereals Cultivation in the World and Turkey. New Approaches and Applications in Agriculture, İksad Publishing, 328-344.
  • Shahbandeh, M. 2024. Worldwide production of grain in 2024/25, by type (in million metric tons). https://www.statista.com/statistics/263977/world-grain-production-by-type/ (Accessed Date: 03.12.2024).
  • Turkstat. 2023. Crop Production Statistics, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Crop-Production-Statistics-2023-49535 (Accessed Date: 03.12.2024).
  • Foreign Agricultural Services U.S. 2024. Barley Production. https://fas.usda.gov/data/production/commodity/0430000 (Accessed Date: 03.12.2024).
  • Abbass K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., Younis, I. 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29, 42539-42559.
  • Sadra, S., Mohammadi, G., Mondani,F. 2024. Effects of cover crops and nitrogen fertilizer on greenhouse gas emissions and net global warming potential in a potato cropping system. Journal of Agriculture and Food Research, 18, 1-11.
  • Duchenne-Moutie, R.A., Neetoo,H. 2021. Climate Change and Emerging Food Safety Issues: A Review. Journal of Food Protection, 84(11), 1884-1897.
  • Malhi, Y., Franklin, J., Seddon, N. Solan,M. Turner, M.G., Field, C.B., Knowlton, N. 2019. Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B, 375, 1-8.
  • Kojiri, T. Hamaguchi, T. Ode,M. 2008. Assessment of global warming impacts on water resources and ecology of a river basin in Japan. Journal of Hydro-environment Research, 1(3-4), 164-175.
  • Njuki, E. Nava, N.J., Bravo-Ureta, B.E. 2025. Climate and weather impacts on agricultural productivity, Encyclopedia of Energy, Natural Resource, and Environmental Economics, 2, 261-268.
  • Nazir, N., Bilal, S., Bhat, K., Shah, T., Badri, Z., Bhat, F., Wani, T., Mugal, M., Parveen, S., Dorjey, S. 2017. Effect of Climate Change on Plant Diseases. International Journal of Current Microbiology and Applied Sciences, 7(6), 250-256.
  • Shah, M.H., Aktar, S.N., Pramanik, K., Pande, C.B., Ali, G.T. 2024. The impact of climate change on plant diseases and food security. Biocontrol Agents for Improved Agriculture, Academic Press, 353-384.
  • Çelik, E., Karakaya, A. 2015. Eskişehir ili arpa ekim alanlarında görülen fungal yaprak ve başak hastalıklarının görülme sıklıklarının ve yoğunluklarının belirlenmesi. Bitki Koruma Bülteni, 55(2), 157-170.
  • Tini, F., Covarelli, L., Ricci, G. Balducci, E. Orfei, M., Beccari, G. 2022. Management of Pyrenophora teres f. teres, the Causal Agent of Net Form Net Blotch of Barley, in A Two-Year Field Experiment in Central Italy. Pathogens, 11(3), 291-294.
  • Fenu, G., Malloci, F. M., 2021. Forecasting Plant and Crop Disease: An Explorative Study on Current Algorithms. Big Data Cognitive Computing, 5(1), 2-3.
  • Charaya, M. U., Upadhyay, A. Bhati, H. P., Kumar, A. 2021. Plant disease forecasting: Past practices to emerging technologies. Plant Disease Management Strategies, 1-30.
  • Landschoot, S., Waegeman, W., Audenaert, K., Damme, P. V., Vandepitte, J., Baets, B.D., Haesaert, G. 2013. A field-specific web tool for the prediction of Fusarium head blight and deoxynivalenol content in Belgium. Computers and Electronics in Agriculture, 93, 140-148.
  • Musa, T., Hecker, A., Vogelgsang, S., Forrer, H. R. 2007. Forecasting of Fusarium head blight and deoxynivalenol content in winter wheat with FusaProg. EPPO Bulletin, 37(2), 283-289.
  • Shah, D. A., Paul, P., Wolf, E.D., Madden, L. V. 2019. Predicting plant disease epidemics from functionally represented weather series. Philosophical Transactions B, 374, 1-6.
  • Shah, D. A., Wolf, E.D., Paul, P., Madden, L. V. 2019. Functional Data Analysis of Weather Variables Linked to Fusarium Head Blight Epidemics in the United States. Phytopathology, 109(1), 96-110.
  • Shah, D. A., Molineros, J., Paul, P., Willyerd, K., Madden, L. V., Wolf, E.D. 2013. Predicting Fusarium Head Blight Epidemics With Weather-Driven Pre- and Post-Anthesis Logistic Regression Models. Ecology and Epidemiology, 103(9), 1-14.
  • Jorgensen, L.N., Matzen, N., Ficke, A., Andersson, B., Jalli, M., Ronis, A., Nielsen, G. C. 2021. Using risk models for control of leaf blotch diseases in barley minimises fungicide use – experiences from the Nordic and Baltic countries. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71(4), 247-260.
  • Henriksen, K., Jorgensen, L. N., Nielsen, G. C. 2000. PC-Plant Protection - a tool to reduce fungicide input in winter wheat, winter barley and spring barley in Denmark. In Proceedings of the Brighton Crop Protection Conference—Pest and Diseases, Brighton, UK.
  • Ruusunen, O., Jalli, M., Jauhiainen, L., Ruusunen, M., Leiviska, K. 2020. Advanced Data Analysis as a Tool for Net Blotch Density Estimation in Spring Barley. Agriculture, 10(5), 179.
  • Ruusunen, O., Jalli, M., Jauhiainen, L., Ruusunen, M., Leiviska, K. 2020. Identification of Optimal Starting Time Instance to Forecast Net Blotch Density in Spring Barley with Meteorological Data in Finland. Agriculture, 12(11), 1939.
  • Ruusunen, O., Jalli, M., Jauhiainen, L., Ruusunen, M., Leiviska, K. 2024. Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland. Agriculture, 14(10), 1779.
  • Elan, Y., Pertot, I. 2014. Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99-139.
  • Tho, K.E., McCann, E. B., Wiriyajitsomboon, P. Hausbeck, M. K. 2019. Effects of Temperature, Relative Humidity, and Plant Age on Bacterial Disease of Onion Plants. Plant Health Progress, 20, 200-206.
  • Bowers, J. H., Sonoda, R. M., Mitchell, D. J. 1990. Path coefficient analysis of the effect of rainfall variables on the epidemiology of Phytophthora blight of pepper caused by Phytophthora capsici. Ecology and Epidemiology, 80(12), 1439- 1447.
  • Xu, R. 2009. Effects of Prevailing Wind Direction on Spatial Statistics of Plant Disease Epidemics. Journal of Phytopathology, 149, 155-166.
  • Austin, C. N., Wilcox, W. F. 2012. Effects of sunlight exposure on grapevine powdery mildew development. Phytopathology, 102(9), 857-867.
  • Allen, R. G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper. Rome: FAO - Food and Agriculture Organization of the United Nations, 17-28.
  • Arslan, R. S., Ulutaş, H., Köksal, A. S., Bakır, M., Çiftçi, B. 2022. Automated sleep scoring system using multi-channel data and machine learning. Computers in Biology and Medicine, 146, 105653.
  • Arslan, R. S. 2023. Sleep disorder and apnea events detection framework with high performance using two-tier learning model design. PeerJ Computer Science, 9, e1554.
  • Köksoy, O., Daşbaşı, B. 2005. Ağır Kuyruklu Dağılımlarda Monte Carlo Simulasyonu ile Konum Parametresinin Analizi. Journal of Arts and Sciences, 4, 1-14.
  • Uğurlu, M., Doğru, İ. A., Arslan, R. S. 2021. A new classification method for encrypted internet traffic using machine learning. Turkish Journal of Electrical Engineering and Computer Sciences, 29(5), 2450-2468.
  • Hızlısoy, S., Çolakoğlu, E., Arslan, R. S. 2022. Speech-to-Gender Recognition Based on Machine Learning Algorithms. International Journal Of Applied Mathematics Electronics and Computers, 10(4), 84-92.
  • Daşbaşı, B., Barak, D., Taşyürek, M., Arslan, R. S. 2024. Using an Artificial Neural Networks Approach to Assess the Links Among Environmental Protection Expenditure, Energy use and Growth in Finland. Journal of the Knowledge Economy, 1-29.
  • Jayasena, K., Burgel, A. V., Tanaka, K., Majewski, J., Loughman, R. 2007. Yield reduction in barley in relation to spot-type net blotch. Australasian Plant Pathology, 36, 429-433.
  • Murray, G. M., Brennan, J. P. 2010. Estimating disease losses to the Australian barley industry. Australasian Plant Pathology, 39, 85-96.
  • Beckes, A., Guerriero, G., Barka, E. A., Jacquard, C. 2021. Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. Frontier Plant Science, 12, 1-18.
  • Arslan, R. S. 2022. FG-Droid: Grouping based feature size reduction for Android malware detection. Peerj Computer Science, 8, e1043, 1-24.

Yapay Sinir Ağları (YSA) ve XGBoost Kullanılarak İlkbahar Arpasında Net Leke Hastalığı Tahmin Modeli: Karşılaştırmalı Bir Çalışma

Yıl 2025, Cilt: 41 Sayı: 2, 484 - 503, 30.08.2025

Öz

Bitki hastalıklarının tespiti ve bunun tarımsal üretime uygulanmasıyla üründe hem verimlilik artışının sağlanması hemde pestisit kullanımının düzenlenmesi mümkün olabilecektir. Bitki hastalıkları ile yapılacak mücadele uygulamalarında zamana bağlı meteorolojik iklim verileri etkin rol oynamaktadır. Bu çalışma kapsamında Türkiye’de arpa bitkisinde net blotch hastalığının varlığına ilişkin bir tahmin modelinin geliştirilmesi amaçlanmıştır. Sınıflandırma için sıcaklık, nem, yağış miktarı, rüzgar hızı, güneşlenme şiddeti, gerçek buhar basıncı ve çiğ noktası sıcaklığı olarak verilen 9 farklı meteorolojik iklim verilerinin makine öğrenmesi ve yapay sinir ağı tabanlı modelin eğitim ve test süreçlerlerinde kullanılması yaklaşımı benimsenmiştir. 2021-2023 yılları arasındaki 3 yıllık bir hastalık gelişimi dönemine ait veriler kullanılmıştır. Yapılan testler sonucunda XGBoost sınıflandırıcı ile 88.9% Accuracy değeri elde edilirken, Yapay sinir ağı (YSA) ile 92.16% Accuracy değeri elde edilmiştir. YSA modeli için precision, recall ve f-score değerleri sırasıyla 96.10%, 89.16% ve 92.50% olmuştur. Sonuçlar modelin hastalığın yokluğunu tespit etmede literatürdeki çalışmalara kıyasla en iyi başarıma sahip çalışmalarıdan birisi olduğunu göstermiştir. Bunun yanında 9 farklı girdinin hastalığın meydana gelmesine etkileri ve girdilerin kendi aralarındaki ilişkileri de analiz edilmiştir. Sonuçta, sıcaklık, güneşlenme süresi ve nem faktörlerinin, çevresel değişkenler üzerinde en belirgin etkiye sahip olduğu anlaşılmıştır. Elde edilen yüksek başarım, hastalığın mücadelesinde yapay zeka modellerinin başarılı olabileceğini ve hastalığın olumsuz etkisini düşürerek üründe verimlik artışının yakalanabileceğini kanıtlamıştır.

Proje Numarası

124F251

Kaynakça

  • Finch, H., Samuel, A.M, Lane, G.F. 2002. Lockhart & Wiseman's crop husbandry. 10th Edition. Cambridge: WoodHead, 3-25.
  • Adeboyejo, F. O., Olatunde, S. J., Rustria, G. A., Azotea, A. N. B., Ostonal, J. M., Reyes, J. A., Oyeyinka, S. A. 2023. Asian fermented cereal-based products. Indigenous Fermented Foods for the Tropics, Academic Press, 37-56
  • Food and Agriculture Organization of the United Nations. 2024. Cereal Production. https://ourworldindata.org/grapher/cereal-production (Accessed Date: 03.12.2024).
  • Uçar, Ö. 2020. The Situation of Cereals Cultivation in the World and Turkey. New Approaches and Applications in Agriculture, İksad Publishing, 328-344.
  • Shahbandeh, M. 2024. Worldwide production of grain in 2024/25, by type (in million metric tons). https://www.statista.com/statistics/263977/world-grain-production-by-type/ (Accessed Date: 03.12.2024).
  • Turkstat. 2023. Crop Production Statistics, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Crop-Production-Statistics-2023-49535 (Accessed Date: 03.12.2024).
  • Foreign Agricultural Services U.S. 2024. Barley Production. https://fas.usda.gov/data/production/commodity/0430000 (Accessed Date: 03.12.2024).
  • Abbass K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., Younis, I. 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29, 42539-42559.
  • Sadra, S., Mohammadi, G., Mondani,F. 2024. Effects of cover crops and nitrogen fertilizer on greenhouse gas emissions and net global warming potential in a potato cropping system. Journal of Agriculture and Food Research, 18, 1-11.
  • Duchenne-Moutie, R.A., Neetoo,H. 2021. Climate Change and Emerging Food Safety Issues: A Review. Journal of Food Protection, 84(11), 1884-1897.
  • Malhi, Y., Franklin, J., Seddon, N. Solan,M. Turner, M.G., Field, C.B., Knowlton, N. 2019. Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B, 375, 1-8.
  • Kojiri, T. Hamaguchi, T. Ode,M. 2008. Assessment of global warming impacts on water resources and ecology of a river basin in Japan. Journal of Hydro-environment Research, 1(3-4), 164-175.
  • Njuki, E. Nava, N.J., Bravo-Ureta, B.E. 2025. Climate and weather impacts on agricultural productivity, Encyclopedia of Energy, Natural Resource, and Environmental Economics, 2, 261-268.
  • Nazir, N., Bilal, S., Bhat, K., Shah, T., Badri, Z., Bhat, F., Wani, T., Mugal, M., Parveen, S., Dorjey, S. 2017. Effect of Climate Change on Plant Diseases. International Journal of Current Microbiology and Applied Sciences, 7(6), 250-256.
  • Shah, M.H., Aktar, S.N., Pramanik, K., Pande, C.B., Ali, G.T. 2024. The impact of climate change on plant diseases and food security. Biocontrol Agents for Improved Agriculture, Academic Press, 353-384.
  • Çelik, E., Karakaya, A. 2015. Eskişehir ili arpa ekim alanlarında görülen fungal yaprak ve başak hastalıklarının görülme sıklıklarının ve yoğunluklarının belirlenmesi. Bitki Koruma Bülteni, 55(2), 157-170.
  • Tini, F., Covarelli, L., Ricci, G. Balducci, E. Orfei, M., Beccari, G. 2022. Management of Pyrenophora teres f. teres, the Causal Agent of Net Form Net Blotch of Barley, in A Two-Year Field Experiment in Central Italy. Pathogens, 11(3), 291-294.
  • Fenu, G., Malloci, F. M., 2021. Forecasting Plant and Crop Disease: An Explorative Study on Current Algorithms. Big Data Cognitive Computing, 5(1), 2-3.
  • Charaya, M. U., Upadhyay, A. Bhati, H. P., Kumar, A. 2021. Plant disease forecasting: Past practices to emerging technologies. Plant Disease Management Strategies, 1-30.
  • Landschoot, S., Waegeman, W., Audenaert, K., Damme, P. V., Vandepitte, J., Baets, B.D., Haesaert, G. 2013. A field-specific web tool for the prediction of Fusarium head blight and deoxynivalenol content in Belgium. Computers and Electronics in Agriculture, 93, 140-148.
  • Musa, T., Hecker, A., Vogelgsang, S., Forrer, H. R. 2007. Forecasting of Fusarium head blight and deoxynivalenol content in winter wheat with FusaProg. EPPO Bulletin, 37(2), 283-289.
  • Shah, D. A., Paul, P., Wolf, E.D., Madden, L. V. 2019. Predicting plant disease epidemics from functionally represented weather series. Philosophical Transactions B, 374, 1-6.
  • Shah, D. A., Wolf, E.D., Paul, P., Madden, L. V. 2019. Functional Data Analysis of Weather Variables Linked to Fusarium Head Blight Epidemics in the United States. Phytopathology, 109(1), 96-110.
  • Shah, D. A., Molineros, J., Paul, P., Willyerd, K., Madden, L. V., Wolf, E.D. 2013. Predicting Fusarium Head Blight Epidemics With Weather-Driven Pre- and Post-Anthesis Logistic Regression Models. Ecology and Epidemiology, 103(9), 1-14.
  • Jorgensen, L.N., Matzen, N., Ficke, A., Andersson, B., Jalli, M., Ronis, A., Nielsen, G. C. 2021. Using risk models for control of leaf blotch diseases in barley minimises fungicide use – experiences from the Nordic and Baltic countries. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71(4), 247-260.
  • Henriksen, K., Jorgensen, L. N., Nielsen, G. C. 2000. PC-Plant Protection - a tool to reduce fungicide input in winter wheat, winter barley and spring barley in Denmark. In Proceedings of the Brighton Crop Protection Conference—Pest and Diseases, Brighton, UK.
  • Ruusunen, O., Jalli, M., Jauhiainen, L., Ruusunen, M., Leiviska, K. 2020. Advanced Data Analysis as a Tool for Net Blotch Density Estimation in Spring Barley. Agriculture, 10(5), 179.
  • Ruusunen, O., Jalli, M., Jauhiainen, L., Ruusunen, M., Leiviska, K. 2020. Identification of Optimal Starting Time Instance to Forecast Net Blotch Density in Spring Barley with Meteorological Data in Finland. Agriculture, 12(11), 1939.
  • Ruusunen, O., Jalli, M., Jauhiainen, L., Ruusunen, M., Leiviska, K. 2024. Linear Discriminant Analysis for Predicting Net Blotch Severity in Spring Barley with Meteorological Data in Finland. Agriculture, 14(10), 1779.
  • Elan, Y., Pertot, I. 2014. Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99-139.
  • Tho, K.E., McCann, E. B., Wiriyajitsomboon, P. Hausbeck, M. K. 2019. Effects of Temperature, Relative Humidity, and Plant Age on Bacterial Disease of Onion Plants. Plant Health Progress, 20, 200-206.
  • Bowers, J. H., Sonoda, R. M., Mitchell, D. J. 1990. Path coefficient analysis of the effect of rainfall variables on the epidemiology of Phytophthora blight of pepper caused by Phytophthora capsici. Ecology and Epidemiology, 80(12), 1439- 1447.
  • Xu, R. 2009. Effects of Prevailing Wind Direction on Spatial Statistics of Plant Disease Epidemics. Journal of Phytopathology, 149, 155-166.
  • Austin, C. N., Wilcox, W. F. 2012. Effects of sunlight exposure on grapevine powdery mildew development. Phytopathology, 102(9), 857-867.
  • Allen, R. G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper. Rome: FAO - Food and Agriculture Organization of the United Nations, 17-28.
  • Arslan, R. S., Ulutaş, H., Köksal, A. S., Bakır, M., Çiftçi, B. 2022. Automated sleep scoring system using multi-channel data and machine learning. Computers in Biology and Medicine, 146, 105653.
  • Arslan, R. S. 2023. Sleep disorder and apnea events detection framework with high performance using two-tier learning model design. PeerJ Computer Science, 9, e1554.
  • Köksoy, O., Daşbaşı, B. 2005. Ağır Kuyruklu Dağılımlarda Monte Carlo Simulasyonu ile Konum Parametresinin Analizi. Journal of Arts and Sciences, 4, 1-14.
  • Uğurlu, M., Doğru, İ. A., Arslan, R. S. 2021. A new classification method for encrypted internet traffic using machine learning. Turkish Journal of Electrical Engineering and Computer Sciences, 29(5), 2450-2468.
  • Hızlısoy, S., Çolakoğlu, E., Arslan, R. S. 2022. Speech-to-Gender Recognition Based on Machine Learning Algorithms. International Journal Of Applied Mathematics Electronics and Computers, 10(4), 84-92.
  • Daşbaşı, B., Barak, D., Taşyürek, M., Arslan, R. S. 2024. Using an Artificial Neural Networks Approach to Assess the Links Among Environmental Protection Expenditure, Energy use and Growth in Finland. Journal of the Knowledge Economy, 1-29.
  • Jayasena, K., Burgel, A. V., Tanaka, K., Majewski, J., Loughman, R. 2007. Yield reduction in barley in relation to spot-type net blotch. Australasian Plant Pathology, 36, 429-433.
  • Murray, G. M., Brennan, J. P. 2010. Estimating disease losses to the Australian barley industry. Australasian Plant Pathology, 39, 85-96.
  • Beckes, A., Guerriero, G., Barka, E. A., Jacquard, C. 2021. Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. Frontier Plant Science, 12, 1-18.
  • Arslan, R. S. 2022. FG-Droid: Grouping based feature size reduction for Android malware detection. Peerj Computer Science, 8, e1043, 1-24.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Derin Öğrenme, Makine Öğrenme (Diğer), Yaşam Bilimlerinde Bilgi İşleme, Bitki Bilimi (Diğer)
Bölüm Makaleler
Yazarlar

Recep Sinan Arslan 0000-0002-3028-0416

Nilüfer Akci 0000-0001-9614-8613

Dilara Çelik

Bahatdin Daşbaşı 0000-0001-8201-7495

Kadir Aytaç Özaydın 0000-0003-4654-9106

Teslima Daşbaşı

Proje Numarası 124F251
Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 8 Nisan 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 41 Sayı: 2

Kaynak Göster

APA Arslan, R. S., Akci, N., Çelik, D., … Daşbaşı, B. (2025). Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 41(2), 484-503.
AMA Arslan RS, Akci N, Çelik D, Daşbaşı B, Özaydın KA, Daşbaşı T. Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2025;41(2):484-503.
Chicago Arslan, Recep Sinan, Nilüfer Akci, Dilara Çelik, Bahatdin Daşbaşı, Kadir Aytaç Özaydın, ve Teslima Daşbaşı. “Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41, sy. 2 (Ağustos 2025): 484-503.
EndNote Arslan RS, Akci N, Çelik D, Daşbaşı B, Özaydın KA, Daşbaşı T (01 Ağustos 2025) Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41 2 484–503.
IEEE R. S. Arslan, N. Akci, D. Çelik, B. Daşbaşı, K. A. Özaydın, ve T. Daşbaşı, “Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 41, sy. 2, ss. 484–503, 2025.
ISNAD Arslan, Recep Sinan vd. “Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41/2 (Ağustos2025), 484-503.
JAMA Arslan RS, Akci N, Çelik D, Daşbaşı B, Özaydın KA, Daşbaşı T. Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41:484–503.
MLA Arslan, Recep Sinan vd. “Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 41, sy. 2, 2025, ss. 484-03.
Vancouver Arslan RS, Akci N, Çelik D, Daşbaşı B, Özaydın KA, Daşbaşı T. Predictive Modeling of Net Blotch Disease in Spring Barley Using Artificial Neural Networks (ANN) and XGBoost: A Comparative Study. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41(2):484-503.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.