BİR VİNÇ ATÖLYESİNDE İKİLİ VERİLERE DAYALI HÜCRE OLUŞTURMA YÖNTEMLERİYLE HÜCRELERİN OLUŞTURULMASI
Yıl 2009,
Sayı: 32, 135 - 151, 14.05.2015
Bülent Başaran
Feray Odman Çelikçapa
Öz
Fonksiyonel yerleşim düzeninde faaliyet gösteren üretim işletmelerinde hücresel üretime geçiş belirli bir süreci gerektirir. Bu sürecin ilk aşaması hücrelerin uygun sayı ve büyüklükte oluşturulmasıdır. Hücrelerin oluşturulmasında parçaların üretim akışlarını gösteren ve ikili verilerden oluşan parça-makine görünüm matrisinden yararlanılabilir. Bu matriste parçalar ve makineler, satırlar ve sütunlarla temsil edilir. Bu ikili matris blok-köşegen matrise dönüştürülerek makine hücreleri ve parça aileleri belirlenir. Blok-köşegen matris oluşturmada birçok yöntem vardır. Bu çalışmada bir vinç atölyesinden elde edilen parça-makine görünüm matrisine bu yöntemlerden üçü uygulanmıştır. Sonuçta iki hücreden oluşan yeni bir yerleşim düzeni önerilmiştir. Çalışmanın amacı sunulan prosedürün benzer atölyeler için de izlenebilecek bir örnek teşkil etmesidir.
Kaynakça
- BEZDEK, James C.; (1981), Patern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, New York, USA, 256s.
- BURBIDGE, John L.; (1975), The Introduction of Group Technology, William Heinemann Ltd., London, 267s.
- CHENG, Chun Hung; Ashok KUMAR ve Jaideep MOTWANI; (1995), “A Comparative Examination of Selected Cellular Manufacturing Algorithms”, International Journal of Operations & Production Management, 15(12), ss.86-97.
- CHU, Chao-Hsien ve Jack C. HAYYA; (1991), “A Fuzzy Clustering Approach to Manufacturing Cell Formation”, International Journal of Production Research, 29(7), ss.1475-1487.
- HERAGU, Sunderesh; (1997), Facilities Design, PWS Publishing Company, Boston, MA, USA, ss.281-285.
- ISLAM, Khan; MD. Saiful ve Bhaba R. SARKER; (2000), “A Similarity Coefficient Measure and Machine-Parts Grouping in Cellular Manufacturing Systems”, International Journal of Production Research, 38(3), ss.699-720.
- KING, J. R.; (1980), “Machine-Component Grouping in Production Flow Analysis: An Approach Using a Rank Order Clustering Algorithm”, International Journal of Production Research,18(2), ss. 213-232.
- MAHDAVI, Iraj; O. P. KAUSHAL ve M. CHANDRA; (2000), “Graph-Neural Network Approach in Cellular Manufacturing on the Basis of a Binary System”, International Journal of Production Research, 39(13), ss.2913-2922.
- MILTENBURG J. ve W. ZHANG; (1991), “A Comparative Evaluation of Nine Well-Known Algorithms for Solving the Cell Formation Problem in Group Technology”, Journal of Operations Management, Special Issue on Group Technology and Cellular Manuffacturing, 10(1), ss. 44-72.
- OFFODILE, O. Felix ve John GRZNAR; (1997), “Part Family Formation for Variety Reduction in Flexible Manufacturing Systems”, International Journal of Operations & Production Management, 17(3), ss. 291- 304.
- RUSPINI, E.; (1970), “Numerical Methods for Fuzzy Clustering”, Information Science, 2(1), ss. 319-350.
- WON, Youkyung ve Kun Chang LEE; (2001), “Group Technology Cell Formation Volumes”, International Journal of Production Research, 39(13), ss. 2755-2768. Sequences and Production
- XU, Haiping ve Hsu-Pin (Ben) WANG; (1989), “Part Family Formation for GT Aplications Based on Fuzzy Mathematics”, International Journal of Production Research, 27(9), ss. 1637-1651.
- YIN, Yong ve Kazuhiko YASUDA; (2005), “Similarity Coefficient Methods Applied to The Cell Formation Problem: A Comparative Investigation”, Computers & Industrial Engineering, 48(3), ss. 471-489.
Yıl 2009,
Sayı: 32, 135 - 151, 14.05.2015
Bülent Başaran
Feray Odman Çelikçapa
Kaynakça
- BEZDEK, James C.; (1981), Patern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, New York, USA, 256s.
- BURBIDGE, John L.; (1975), The Introduction of Group Technology, William Heinemann Ltd., London, 267s.
- CHENG, Chun Hung; Ashok KUMAR ve Jaideep MOTWANI; (1995), “A Comparative Examination of Selected Cellular Manufacturing Algorithms”, International Journal of Operations & Production Management, 15(12), ss.86-97.
- CHU, Chao-Hsien ve Jack C. HAYYA; (1991), “A Fuzzy Clustering Approach to Manufacturing Cell Formation”, International Journal of Production Research, 29(7), ss.1475-1487.
- HERAGU, Sunderesh; (1997), Facilities Design, PWS Publishing Company, Boston, MA, USA, ss.281-285.
- ISLAM, Khan; MD. Saiful ve Bhaba R. SARKER; (2000), “A Similarity Coefficient Measure and Machine-Parts Grouping in Cellular Manufacturing Systems”, International Journal of Production Research, 38(3), ss.699-720.
- KING, J. R.; (1980), “Machine-Component Grouping in Production Flow Analysis: An Approach Using a Rank Order Clustering Algorithm”, International Journal of Production Research,18(2), ss. 213-232.
- MAHDAVI, Iraj; O. P. KAUSHAL ve M. CHANDRA; (2000), “Graph-Neural Network Approach in Cellular Manufacturing on the Basis of a Binary System”, International Journal of Production Research, 39(13), ss.2913-2922.
- MILTENBURG J. ve W. ZHANG; (1991), “A Comparative Evaluation of Nine Well-Known Algorithms for Solving the Cell Formation Problem in Group Technology”, Journal of Operations Management, Special Issue on Group Technology and Cellular Manuffacturing, 10(1), ss. 44-72.
- OFFODILE, O. Felix ve John GRZNAR; (1997), “Part Family Formation for Variety Reduction in Flexible Manufacturing Systems”, International Journal of Operations & Production Management, 17(3), ss. 291- 304.
- RUSPINI, E.; (1970), “Numerical Methods for Fuzzy Clustering”, Information Science, 2(1), ss. 319-350.
- WON, Youkyung ve Kun Chang LEE; (2001), “Group Technology Cell Formation Volumes”, International Journal of Production Research, 39(13), ss. 2755-2768. Sequences and Production
- XU, Haiping ve Hsu-Pin (Ben) WANG; (1989), “Part Family Formation for GT Aplications Based on Fuzzy Mathematics”, International Journal of Production Research, 27(9), ss. 1637-1651.
- YIN, Yong ve Kazuhiko YASUDA; (2005), “Similarity Coefficient Methods Applied to The Cell Formation Problem: A Comparative Investigation”, Computers & Industrial Engineering, 48(3), ss. 471-489.