Research Article
BibTex RIS Cite

EXAMINING THE FINANCIAL RATIOS AND PROFITABILITY OF COMPANIES BY USING ANFIS: A STUDY ON LEATHER AND CLOTHING INDUSTRIES TRAIDED IN BIST

Year 2022, Issue: 61, 369 - 384, 29.04.2022
https://doi.org/10.18070/erciyesiibd.1013035

Abstract

This study aims to predict Return on Equity (ROE), Return on Assets (ROA), and Return on Sales (ROS) of the textile industry companies traded in Borsa İstanbul (BİST). For this purpose, a dataset was prepared using 7-year (2013-2019) liquidity, financial structure, operation, and rate of return data of 20 companies operating in the textile industry. The financial ratios of these companies were subjected to principal components analysis and it was determined that the first 4 components explained approx. 84% of all the data. These first 4 components with eigenvalues higher than 1 were modeled using ANFIS and, as a result of the experimental study, it was determined that the model was successful at predetermining the companies’ return on equity at the level of 81%, return on assets at the level of 79%, and net profit margin at the level of 71%.

References

  • Atsalakis, G. and Valavanis, K. 2009. Forecasting Stock Market Short-Term Trends Using A Neuro Fuzzy Based Methodology. Expert Systemswith Applications, 36: 10696-10707.
  • Birgili, E. and Esen, S. 2013. Teknik Analiz Yönteminin Bulanık Mantık Yaklaşımı İle Uygulanması: IMKB 30 Banka Hisseleri Örneği. Finans Politik ve Ekonomik Yorumlar, 50 (575): 95-113.
  • Boyacıoğlu, M. A. and Avcı, D. 2010. “Borsa Getirisinin Tahmini İçin Uyarlanabilir Ağ Tabanlı Bulanık Çıkarsama Sistemi (ANFIS): İstanbul Menkul Kıymetler Borsası Örneği”, Expert Systems with Applications, 37( 12): 7908-7912.
  • Bro, R. and Smilde A. K. 2014. Principal Component Analysis. Anal Methods, 6(9): 2812–2831.
  • Cheng, P., Quek, C. and Mah, M.L. 2007. “Predıctıng The Impact Of Antıcıpatory Actıon On U.S. Stock Market An Event Study Usıng ANFIS (A Neural Fuzzy Model)”, Computatıonal Intellıgencev An İnternational Journal, 23 (2): 117-141.
  • Divya, P. and Kumar, P. R. 2012. The Investment Portfolio Selection Using Fuzzy Logic Genetic Algorithm, International Journal of Engineering Research and Applications, 2 (5):2100-2105.
  • Doesken, B., Abraham, A. T. J., & Paprzycki, M. 2005. Real Stock Trading Using Soft Computing Models, İnformation technolog: Coding and computing. Conference Publications, 2: 162-167.
  • Dong, M. and Zhou, X. S. 2002. Exploring The Fuzzy Nature Of Technical Patterns Of U.S Stock Market, ICONIP'02-SEAL'02-FSKD'02, Singapore, 18-22.
  • Dourra H. and Sıy, P. 2002. Investment Using Technical Analysis And Fuzzy Logic. Fuzzy Sets And Systems, 127: 221-240.
  • Dourra H. and Sıy, P. 2001. Stock Evaluation Using Fuzzy Logic. International Journal Of Theoretical And Applied Finance, 4(4): 585-602.
  • Esen, S. 2013. Bulanık Mantık Yaklaşımıyla Teknik Analiz Yönteminin Uygulanması: İMKB 30 Örneği, Yayımlanmamış Doktora Tezi, Sakarya Üniversitesi, Sosyal Bilimler Enstitüsü, Sakarya, TR.
  • Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L. and Maggio, R. M. 2018. Use Of Principal Component Analysis (PCA) And Hierarchical Cluster Analysis (HCA) For Multivariate Association Between Bioactive Compounds And Functional Properties İn Foods: A Critical Perspective. Trends İn Food Science & Technology, 72: 83-90.
  • Gülgör, G. 2010. İMKB 30 Endeksinde Klasik ve Bulanık Analitik Hiyerarşi Süreci İle Portföy Seçimi Ve Performanslarının Karşılaştırılması, Yayımlanmamış Yüksek Lisans Tezi, Osmangazi Üniversitesi, Sosyal Bilimler Enstitüsü, Eskişehir, TR.
  • Jang J. 1993. ANFIS: Adaptive-Network-Based Fuzzy İnference System. Ieee Trans Syst Man Cybern Syst, 23(3): 665-685.
  • Karapınar, A., Bayırlı, R., Bal, H., Altay, A., and Bal, E. Ç. 2007. İleri Düzey SPK Lisanslama Sınavlarına Hazırlık, Gazi Kitabevi, Ankara.
  • Khcherem, F. and Bouri, A. 2009. “Fuzzy Logic And Investment Strategy”, Global Economy & Finance Journal, 2 (2): 22-37.
  • Koç, S. and Ulucan, S. 2016. “Finansal Başarısızlıkların Tespitinde Kullanılan Altman Z Yönteminin Bulanık Mantık (ANFIS) Yöntemi İle Test Edilmesi: Teknoloji Ve Tekstil Sektöründe Bir Uygulama”, Maliye Finans Yazıları, (106):147-168.
  • Lam, S.S. 2001. “A Genetic Fuzzy Expert System For Stock Market Timing”, Proceedings of the IEEE Conference on Evolutionary Computation, (1): 410–417.
  • Li, H. 2019. Multivariate Time Series Clustering Based On Common Principal Component Analysis. Neurocomputing, 349: 239-247.
  • Mangale, C., Meena S. and Birchha, V. 2015. “Prediction Of Stock Values Based On Fuzzy Logic Using Fundamental Analysis”, International Journal on Recent and Innovation Trends in Computing and Communication, 3 (10):5806-5810.
  • Pelitli, D. 2007. Portföy Analizinde Bulanık Mantık Yaklaşımı Ve Uygulama Örneği, Yayımlanmamış Yüksek Lisans Tezi, Pamukkale Üniversitesi, Sosyal Bilimler Enstitüsü, Denizli, TR.
  • Selimoğlu, S. and Orhan, A. 2015. “Finansal Başarısızlığın Oran Analizi Ve Diskriminant Analizi Kullanılarak Ölçümlenmesi: BİST’te İşlem Gören Dokuma, Giyim Eşyası Ve Deri İşletmeleri Üzerine Bir Araştırma”. Muhasebe ve Finansman Dergisi, (66):21-40.
  • Thiagarajah, K. Appadoo S. and . Thavaneswaran, A. 2007. “Option Valuation Model With Adaptive Fuzzy Numbers”. Computers And Mathematics With Applications, (53):831-841.
  • Yıldız, B. and Akkoç, S. 2016. “Çalışma Sermayesi Ve Karlılık İlişkisinin Keşifsel Bir Araçla (ANFIS) İncelenmesi”, Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 11(1): 285-308.
  • Yörük, N., Karaca, S. S., Hekim, M. ve Tuna, İ. 2013. “Sermaye Yapısını Etkileyen Faktörler ve Finansal Oranlar İle Hisse Getirisi Arasındaki İlişkinin ANFIS Yöntemi İle İncelenmesi: İMKB 100’de Bir Uygulama”, Anadolu Üniversitesi Sosyal Bilimler Dergisi, 13(2): 101-114.

FİNANSAL ORANLAR İLE FİRMA KARLILIKLARININ ANFIS YÖNTEMİ İLE İNCELENMESİ: BİST’DE İŞLEM GÖREN TEKSTİL GİYİM EŞYASI VE DERİ SEKTÖRÜ ÜZERİNE BİR ARAŞTIRMA

Year 2022, Issue: 61, 369 - 384, 29.04.2022
https://doi.org/10.18070/erciyesiibd.1013035

Abstract

Bu çalışmanın amacı, Borsa İstanbul’da (BİST) işlem gören tekstil sanayi işletmelerinin öz sermaye karlılığı (ROE), Aktif karlılığı (ROA) ve Net kar marjı (ROS) oranlarının önceden tahmin edilmesidir. Bu amaca yönelik tekstil sektöründe faaliyet gösteren 20 firmanın (2013-2019) yedi yıllık likidite, finansal yapı, faaliyet ve karlılık oranları hesaplanarak veri seti oluşturulmuştur. Firmaların finans oranları temel bileşenler analizine tabi tutulmuş ve ilk dört bileşenin toplam verinin yaklaşık %84’ünü açıklayabildiği tespit edilmiştir. Özdeğeri 1’den büyük olan ilk 4 bileşen ANFİS’le modellenerek yapılan deneysel çalıma sonucunda işletmelerinin öz sermaye karlılığını %81, aktif karlılığını %79 ve net kar marjını ise %71 oranında önceden tahmin etmede başarılı olduğu tespit edilmiştir.

References

  • Atsalakis, G. and Valavanis, K. 2009. Forecasting Stock Market Short-Term Trends Using A Neuro Fuzzy Based Methodology. Expert Systemswith Applications, 36: 10696-10707.
  • Birgili, E. and Esen, S. 2013. Teknik Analiz Yönteminin Bulanık Mantık Yaklaşımı İle Uygulanması: IMKB 30 Banka Hisseleri Örneği. Finans Politik ve Ekonomik Yorumlar, 50 (575): 95-113.
  • Boyacıoğlu, M. A. and Avcı, D. 2010. “Borsa Getirisinin Tahmini İçin Uyarlanabilir Ağ Tabanlı Bulanık Çıkarsama Sistemi (ANFIS): İstanbul Menkul Kıymetler Borsası Örneği”, Expert Systems with Applications, 37( 12): 7908-7912.
  • Bro, R. and Smilde A. K. 2014. Principal Component Analysis. Anal Methods, 6(9): 2812–2831.
  • Cheng, P., Quek, C. and Mah, M.L. 2007. “Predıctıng The Impact Of Antıcıpatory Actıon On U.S. Stock Market An Event Study Usıng ANFIS (A Neural Fuzzy Model)”, Computatıonal Intellıgencev An İnternational Journal, 23 (2): 117-141.
  • Divya, P. and Kumar, P. R. 2012. The Investment Portfolio Selection Using Fuzzy Logic Genetic Algorithm, International Journal of Engineering Research and Applications, 2 (5):2100-2105.
  • Doesken, B., Abraham, A. T. J., & Paprzycki, M. 2005. Real Stock Trading Using Soft Computing Models, İnformation technolog: Coding and computing. Conference Publications, 2: 162-167.
  • Dong, M. and Zhou, X. S. 2002. Exploring The Fuzzy Nature Of Technical Patterns Of U.S Stock Market, ICONIP'02-SEAL'02-FSKD'02, Singapore, 18-22.
  • Dourra H. and Sıy, P. 2002. Investment Using Technical Analysis And Fuzzy Logic. Fuzzy Sets And Systems, 127: 221-240.
  • Dourra H. and Sıy, P. 2001. Stock Evaluation Using Fuzzy Logic. International Journal Of Theoretical And Applied Finance, 4(4): 585-602.
  • Esen, S. 2013. Bulanık Mantık Yaklaşımıyla Teknik Analiz Yönteminin Uygulanması: İMKB 30 Örneği, Yayımlanmamış Doktora Tezi, Sakarya Üniversitesi, Sosyal Bilimler Enstitüsü, Sakarya, TR.
  • Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L. and Maggio, R. M. 2018. Use Of Principal Component Analysis (PCA) And Hierarchical Cluster Analysis (HCA) For Multivariate Association Between Bioactive Compounds And Functional Properties İn Foods: A Critical Perspective. Trends İn Food Science & Technology, 72: 83-90.
  • Gülgör, G. 2010. İMKB 30 Endeksinde Klasik ve Bulanık Analitik Hiyerarşi Süreci İle Portföy Seçimi Ve Performanslarının Karşılaştırılması, Yayımlanmamış Yüksek Lisans Tezi, Osmangazi Üniversitesi, Sosyal Bilimler Enstitüsü, Eskişehir, TR.
  • Jang J. 1993. ANFIS: Adaptive-Network-Based Fuzzy İnference System. Ieee Trans Syst Man Cybern Syst, 23(3): 665-685.
  • Karapınar, A., Bayırlı, R., Bal, H., Altay, A., and Bal, E. Ç. 2007. İleri Düzey SPK Lisanslama Sınavlarına Hazırlık, Gazi Kitabevi, Ankara.
  • Khcherem, F. and Bouri, A. 2009. “Fuzzy Logic And Investment Strategy”, Global Economy & Finance Journal, 2 (2): 22-37.
  • Koç, S. and Ulucan, S. 2016. “Finansal Başarısızlıkların Tespitinde Kullanılan Altman Z Yönteminin Bulanık Mantık (ANFIS) Yöntemi İle Test Edilmesi: Teknoloji Ve Tekstil Sektöründe Bir Uygulama”, Maliye Finans Yazıları, (106):147-168.
  • Lam, S.S. 2001. “A Genetic Fuzzy Expert System For Stock Market Timing”, Proceedings of the IEEE Conference on Evolutionary Computation, (1): 410–417.
  • Li, H. 2019. Multivariate Time Series Clustering Based On Common Principal Component Analysis. Neurocomputing, 349: 239-247.
  • Mangale, C., Meena S. and Birchha, V. 2015. “Prediction Of Stock Values Based On Fuzzy Logic Using Fundamental Analysis”, International Journal on Recent and Innovation Trends in Computing and Communication, 3 (10):5806-5810.
  • Pelitli, D. 2007. Portföy Analizinde Bulanık Mantık Yaklaşımı Ve Uygulama Örneği, Yayımlanmamış Yüksek Lisans Tezi, Pamukkale Üniversitesi, Sosyal Bilimler Enstitüsü, Denizli, TR.
  • Selimoğlu, S. and Orhan, A. 2015. “Finansal Başarısızlığın Oran Analizi Ve Diskriminant Analizi Kullanılarak Ölçümlenmesi: BİST’te İşlem Gören Dokuma, Giyim Eşyası Ve Deri İşletmeleri Üzerine Bir Araştırma”. Muhasebe ve Finansman Dergisi, (66):21-40.
  • Thiagarajah, K. Appadoo S. and . Thavaneswaran, A. 2007. “Option Valuation Model With Adaptive Fuzzy Numbers”. Computers And Mathematics With Applications, (53):831-841.
  • Yıldız, B. and Akkoç, S. 2016. “Çalışma Sermayesi Ve Karlılık İlişkisinin Keşifsel Bir Araçla (ANFIS) İncelenmesi”, Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 11(1): 285-308.
  • Yörük, N., Karaca, S. S., Hekim, M. ve Tuna, İ. 2013. “Sermaye Yapısını Etkileyen Faktörler ve Finansal Oranlar İle Hisse Getirisi Arasındaki İlişkinin ANFIS Yöntemi İle İncelenmesi: İMKB 100’de Bir Uygulama”, Anadolu Üniversitesi Sosyal Bilimler Dergisi, 13(2): 101-114.
There are 25 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Öznur Arslan 0000-0001-5973-9107

Mesut Polatgil 0000-0002-7503-2977

Ebuzer Arslan 0000-0001-6154-6216

Early Pub Date April 28, 2022
Publication Date April 29, 2022
Acceptance Date January 21, 2022
Published in Issue Year 2022 Issue: 61

Cite

APA Arslan, Ö., Polatgil, M., & Arslan, E. (2022). EXAMINING THE FINANCIAL RATIOS AND PROFITABILITY OF COMPANIES BY USING ANFIS: A STUDY ON LEATHER AND CLOTHING INDUSTRIES TRAIDED IN BIST. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(61), 369-384. https://doi.org/10.18070/erciyesiibd.1013035

Ethical Principles and Ethical Guidelines

The Journal of Erciyes University Faculty of Economics and Administrative Sciences places great emphasis on publication ethics, which serve as a foundation for the impartial and reputable advancement of scientific knowledge. In this context, the journal adopts a publishing approach aligned with the ethical standards set by the Committee on Publication Ethics (COPE) and is committed to preventing potential malpractice. The following ethical responsibilities, established based on COPE’s principles, are expected to be upheld by all stakeholders involved in the publication process (authors, readers and researchers, publishers, reviewers, and editors).

Ethical Responsibilities of Editors
Make decisions on submissions based on the quality and originality of the work, its alignment with the journal's aims and scope, and the reviewers’ evaluations, regardless of the authors' religion, language, race, ethnicity, political views, or gender.
Respond to information requests from readers, authors, and reviewers regarding the publication and evaluation processes.
Conduct all processes without compromising ethical standards and intellectual property rights.
Support freedom of thought and protect human and animal rights.
Ensure the peer review process adheres to the principle of double-blind peer review.
Take full responsibility for accepting, rejecting, or requesting changes to a manuscript and ensure that conflicts of interest among stakeholders do not influence these decisions.
Ethical Responsibilities of Authors
Submitted works must be original. When utilizing other works, proper and complete citations and/or references must be provided.
A manuscript must not be under review by another journal simultaneously.
Individuals who have not contributed to the experimental design, implementation, data analysis, or interpretation should not be listed as authors.
If requested during the review process, datasets used in the manuscript must be provided to the editorial board.
If a significant error or mistake is discovered in the manuscript, the journal’s editorial office must be notified.
For studies requiring ethical committee approval, the relevant document must be submitted to the journal. Details regarding the ethical approval (name of the ethics committee, approval document number, and date) must be included in the manuscript.
Changes to authorship (e.g., adding or removing authors, altering the order of authors) cannot be proposed after the review process has commenced.
Ethical Responsibilities of Reviewers
Accept review assignments only in areas where they have sufficient expertise.
Agree to review manuscripts in a timely and unbiased manner.
Ensure confidentiality of the reviewed manuscript and not disclose any information about it, during or after the review process, beyond what is already published.
Refrain from using information obtained during the review process for personal or third-party benefit.
Notify the journal editor if plagiarism or other ethical violations are suspected in the manuscript.
Conduct reviews objectively and avoid conflicts of interest. If a conflict exists, the reviewer should decline the review.
Use polite and constructive language during the review process and avoid personal comments.
Publication Policy
The Journal of Erciyes University Faculty of Economics and Administrative Sciences is a free, open-access, peer-reviewed academic journal that has been in publication since 1981. The journal welcomes submissions in Turkish and English within the fields of economics, business administration, public finance, political science, public administration, and international relations.

No submission or publication fees are charged by the journal.
Every submitted manuscript undergoes a double-blind peer review process and similarity/plagiarism checks via iThenticate.
Submissions must be original and not previously published, accepted for publication, or under review elsewhere.
Articles published in the journal can be cited under the Open Access Policy and Creative Commons license, provided proper attribution is given.
The journal is published three times a year, in April, August, and December. It includes original, high-quality, and scientifically supported research articles and reviews in its listed fields. Academic studies unrelated to these disciplines or their theoretical and empirical foundations are not accepted. The journal's languages are Turkish and English.

Submissions are first subject to a preliminary review for format and content. Manuscripts not meeting the journal's standards are rejected by the editorial board. Manuscripts deemed suitable proceed to the peer review stage.

Each submission is sent to at least two expert reviewers. If both reviews are favorable, the article is approved for publication. In cases where one review is positive and the other negative, the editorial board decides based on the reviews or may send the manuscript to a third reviewer.

Articles published in the journal are open access and can be cited under the Creative Commons license, provided proper attribution is made.