Research Article
BibTex RIS Cite

TURİZM GELİRLERİNİN MODELLENMESİ VE TAHMİN EDİLMESİ: TÜRKİYE ÖRNEĞİ

Year 2024, Issue: 69, 251 - 257, 30.12.2024
https://doi.org/10.18070/erciyesiibd.1581119

Abstract

Bu çalışmanın amacı, ekonomik planlama ve kalkınma için önemli bir faktör olan Türkiye'nin turizm gelirini tahmin etmek için optimum tahmin modelini belirlemektir. Mevsimsel Otoregresif Entegre Hareketli Ortalama (SARIMA), Holt-Winters yöntemleri (eklemeli ve çarpımsal), Durum Uzay Modelleri (ETS), Yapay Sinir Ağları (YSA) ve mevsimsel eğilim ayrıştırma (STL) -ANN hibrit modeli dahil olmak üzere tahmin tekniklerini kullanmak ve bunların performansını değerlendirmektedir. Metodoloji, Ocak 2012'den Aralık 2023'e kadar aylık turizm geliri verilerinin analiz edilmesini ve YSA modeli için ziyaretçi sayıları, ekonomik güven endeksi, tüketici fiyat endeksi, endüstriyel üretim endeksi ve ABD doları döviz kuru gibi ek ekonomik göstergelerin dahil edilmesini içermektedir. Bulgular, özellikle turizm gelirini diğer ekonomik göstergelerle birlikte içeren model olan YSA'ların, en düşük Ortalama Mutlak Ölçekli Hata ve Kök Ortalama Karesel Ölçekli Hata ile geleneksel modellerden daha iyi performans gösterdiğini ortaya koymaktadır. Özellikle, ek öngörücülere sahip YSA modeli en yüksek tahmin doğruluğunu göstermiştir. Bu sonuçlar, gelişmiş makine öğrenme tekniklerinin geleneksel doğrusal modellere kıyasla üstün tahmin yetenekleri sağladığını göstermektedir. Çalışma, daha doğru tahminler için karmaşık modellerin entegre edilmesinin önemini vurgulayarak, turizm sektöründeki politika yapıcılar ve uygulayıcılar için değerli sonuçlar sunmaktadır.

References

  • Akal, M. (2004). Forecasting Türkiye's tourism revenues by ARMAX model. Tourism Management, 25(5), 565-580.
  • Apaydin, H., Sattari, M. T., Falsafian, K., & Prasad, R. (2021). Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. Journal of Hydrology, 600, 126506.
  • Aydin, O. (2016). Tourism Income of Türkiye: A panel data approach. Procedia economics and finance, 38, 245-256.
  • Burger, C. J. S. C., Dohnal, M., Kathrada, M., & Law, R. (2001). A practitioners guide to time-series methods for tourism demand forecasting—a case study of Durban, South Africa. Tourism management, 22(4), 403-409.
  • Chatfield, C., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2001). A new look at models for exponential smoothing. Journal of the Royal Statistical Society: Series D (The Statistician), 50(2), 147-159.
  • Chen, K. Y., & Wang, C. H. (2007). Support vector regression with genetic algorithms in forecasting tourism demand. Tourism management, 28(1), 215-226.
  • Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism management, 24(3), 323-330.
  • Çuhadar, M., Güngör, P., & Göksu, Y. (2009). Turizm talebinin yapay sinir ağları ile tahmini ve zaman serisi yöntemleri ile karşılaştırmalı analizi: Antalya iline yönelik bir uygulama [Forecasting tourism demand using artificial neural networks and comparative analysis with time series methods: An application for Antalya]. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), 99–114.
  • Çuhadar, M. (2020). A comparative study on modelling and forecasting tourism revenues: The case of Türkiye. Advances in Hospitality and Tourism Research (AHTR), 8(2), 235-255.
  • Dritsakis, N. (2012). Tourism development and economic growth in seven Mediterranean countries: A panel data approach. Tourism Economics, 18(4), 801-816.
  • Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 33(4), 819-829.
  • Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media.
  • Hossen, S. M., Ismail, M. T., Tabash, M. I., & Anagreh, S. (2022). Do tourist arrivals in Bangladesh depend on seasonality in humidity? A SARIMA and SANCOVA approach. Geo Journal of Tourism and Geosites, 41(2), 606-613.
  • Karahan, M. (2015). Turizm talebinin yapay sinir ağları yöntemiyle tahmin edilmesi [Forecasting tourism demand using the artificial neural networks method]. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 20(2), 195–209.
  • Kayakuş, M., Erdoğan, D., & Terzioğlu, M. (2023). Predicting the share of tourism revenues in total exports. Alphanumeric Journal, 11(1), 17-30.
  • Kayral, İ. E., Sarı, T., & Tandoğan Aktepe, N. Ş. (2023). Forecasting the Tourist Arrival Volumes and Tourism Income with Combined ANN Architecture in the Post COVID-19 Period: The Case of Türkiye. Sustainability, 15(22), 15924.
  • Kecman, V. (2001). Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT press.
  • Kontogianni, A., Alepis, E., & Patsakis, C. (2022). Promoting smart tourism personalised services via a combination of deep learning techniques. Expert Systems with Applications, 187, 115964.
  • Koyuncu, O., Gozlu, M., & Atici, K. B. (2016). Analysis and forecasts on the healthcare tourism income of Türkiye. Journal of Economics Finance and Accounting, 3(3), 222-233.
  • Kůrková, V. (1992). Kolmogorov's theorem and multilayer neural networks. Neural networks, 5(3), 501-506.
  • Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20(1), 89-97.
  • Li, X., Law, R., Xie, G., & Wang, S. (2021). Review of tourism forecasting research with internet data. Tourism Management, 83, 104245.
  • Muhaimin, A., Prastyo, D. D., & Lu, H. H. S. (2021, January). Forecasting with recurrent neural network in intermittent demand data. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 802-809). IEEE.
  • Palmer, A., Montano, J. J., & Sesé, A. (2006). Designing an artificial neural network for forecasting tourism time series. Tourism Management, 27(5), 781-790.
  • Republic of Türkiye Ministry of Culture and Tourism. (2023). Türkiye tourism strategy. Retrieved from https://www.ktb.gov.tr/TR-96696/turkiye-turizm-stratejisi.html
  • Song, H., & Li, G. (2008). Tourism demand modelling and forecasting-A review of recent research. Tourism Management, 29(2), 203-220.
  • Song, H., Witt, S. F., & Jensen, T. C. (2003). Tourism forecasting: accuracy of alternative econometric models. International Journal of Forecasting, 19(1), 123-141.
  • Sönmez, S., & Sirakaya, E. (2002). A distorted destination image? The case of Türkiye. Journal of travel research, 41(2), 185-196.
  • Tuncsiper, C. (2023). Modeling the Tourism Revenue of Türkiye Using Deep Learning Networks. Open Access Indonesia Journal of Social Sciences, 6(1), 888-897.
  • Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S. M., & Morgan, R. E. (2017). Two hidden layers are usually better than one. In Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August 25–27, 2017, Proceedings (pp. 279-290). Springer International Publishing.
  • Uysal, M., & El Roubi, M. S. (1999). Artificial neural networks versus multiple regression in tourism demand analysis. Journal of Travel Research, 38(2), 111-118.
  • Yenişehirlioğlu, E., Taşar, İ., & Bayat, T. (2020). Tourism Revenue and Economic Growth Relation in Türkiye: Evidence of Symmetrical, Asymmetrical and the Rolling Window Regressions. Journal of Economic Cooperation & Development, 41(2).
  • Wong, K. K. F., Song, H., & Chon, K. K. S. (2006). Bayesian models for tourism demand forecasting. Tourism Management, 27(5), 773-780.
  • World Travel & Tourism Council (WTTC). (2023). Türkiye (Turkey) travel & tourism economic impact factsheet. Retrieved from https://cdn.prod.website-files.com/6329bc97af73223b575983ac/66695b1694d436e5830238da_Turkiye2024_.pdf
  • World Travel & Tourism Council (WTTC). (2024). Travel & tourism set to break all records in 2024. Retrieved from https://wttc.org/news-article/travel-and-tourism-set-to-break-all-records-in-2024-reveals-wttc
  • Zorlutuna, Ş., & Bircan, H. (2019). Türkiye’ye gelen turist sayısı tahmininde zaman serileri analizi ve yapay sinir ağları yöntemlerinin karşılaştırılması [Comparison of time series analysis and artificial neural network methods in forecasting the number of tourists visiting Türkiye]. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 20(2), 164–185.

MODELING AND FORECASTING OF TOURISM INCOME: THE CASE OF TURKEY

Year 2024, Issue: 69, 251 - 257, 30.12.2024
https://doi.org/10.18070/erciyesiibd.1581119

Abstract

This study aims to identify the optimal forecasting model for predicting Türkiye's tourism income, a crucial factor for economic planning and development. This study employs different forecasting techniques, including the seasonal Autoregressive Integrated Moving Average (SARIMA), the additive and multiplicative Holt-Winters methods, the Exponential Smoothing State Space (ETS), Artificial Neural Networks (ANNs) and seasonal-trend decomposition procedure based on the loess (STL)-ANN hybrid model and evaluates their performance. The methodology involves analyzing monthly tourism income data from January 2012 to December 2023, incorporating additional economic indicators such as the economic confidence index, number of visitors, consumer price index, industrial production index, and USD exchange rate, which serve as input for ANN models. The findings reveal that ANNs, particularly the model that incorporates tourism income alongside other economic indicators, outperform traditional models with the lowest Mean Absolute Scaled Error (MASE) and Root Mean Squared Scaled Error (RMSSE). Specifically, the ANN model with additional predictors demonstrates the highest forecasting accuracy. These results suggest that advanced machine learning techniques provide superior predictive capabilities compared to traditional linear models. The study underscores the importance of integrating complex models to achieve more accurate forecasting, offering valuable insights for policymakers and practitioners in the tourism sector.

References

  • Akal, M. (2004). Forecasting Türkiye's tourism revenues by ARMAX model. Tourism Management, 25(5), 565-580.
  • Apaydin, H., Sattari, M. T., Falsafian, K., & Prasad, R. (2021). Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. Journal of Hydrology, 600, 126506.
  • Aydin, O. (2016). Tourism Income of Türkiye: A panel data approach. Procedia economics and finance, 38, 245-256.
  • Burger, C. J. S. C., Dohnal, M., Kathrada, M., & Law, R. (2001). A practitioners guide to time-series methods for tourism demand forecasting—a case study of Durban, South Africa. Tourism management, 22(4), 403-409.
  • Chatfield, C., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2001). A new look at models for exponential smoothing. Journal of the Royal Statistical Society: Series D (The Statistician), 50(2), 147-159.
  • Chen, K. Y., & Wang, C. H. (2007). Support vector regression with genetic algorithms in forecasting tourism demand. Tourism management, 28(1), 215-226.
  • Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism management, 24(3), 323-330.
  • Çuhadar, M., Güngör, P., & Göksu, Y. (2009). Turizm talebinin yapay sinir ağları ile tahmini ve zaman serisi yöntemleri ile karşılaştırmalı analizi: Antalya iline yönelik bir uygulama [Forecasting tourism demand using artificial neural networks and comparative analysis with time series methods: An application for Antalya]. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), 99–114.
  • Çuhadar, M. (2020). A comparative study on modelling and forecasting tourism revenues: The case of Türkiye. Advances in Hospitality and Tourism Research (AHTR), 8(2), 235-255.
  • Dritsakis, N. (2012). Tourism development and economic growth in seven Mediterranean countries: A panel data approach. Tourism Economics, 18(4), 801-816.
  • Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 33(4), 819-829.
  • Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media.
  • Hossen, S. M., Ismail, M. T., Tabash, M. I., & Anagreh, S. (2022). Do tourist arrivals in Bangladesh depend on seasonality in humidity? A SARIMA and SANCOVA approach. Geo Journal of Tourism and Geosites, 41(2), 606-613.
  • Karahan, M. (2015). Turizm talebinin yapay sinir ağları yöntemiyle tahmin edilmesi [Forecasting tourism demand using the artificial neural networks method]. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 20(2), 195–209.
  • Kayakuş, M., Erdoğan, D., & Terzioğlu, M. (2023). Predicting the share of tourism revenues in total exports. Alphanumeric Journal, 11(1), 17-30.
  • Kayral, İ. E., Sarı, T., & Tandoğan Aktepe, N. Ş. (2023). Forecasting the Tourist Arrival Volumes and Tourism Income with Combined ANN Architecture in the Post COVID-19 Period: The Case of Türkiye. Sustainability, 15(22), 15924.
  • Kecman, V. (2001). Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT press.
  • Kontogianni, A., Alepis, E., & Patsakis, C. (2022). Promoting smart tourism personalised services via a combination of deep learning techniques. Expert Systems with Applications, 187, 115964.
  • Koyuncu, O., Gozlu, M., & Atici, K. B. (2016). Analysis and forecasts on the healthcare tourism income of Türkiye. Journal of Economics Finance and Accounting, 3(3), 222-233.
  • Kůrková, V. (1992). Kolmogorov's theorem and multilayer neural networks. Neural networks, 5(3), 501-506.
  • Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20(1), 89-97.
  • Li, X., Law, R., Xie, G., & Wang, S. (2021). Review of tourism forecasting research with internet data. Tourism Management, 83, 104245.
  • Muhaimin, A., Prastyo, D. D., & Lu, H. H. S. (2021, January). Forecasting with recurrent neural network in intermittent demand data. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 802-809). IEEE.
  • Palmer, A., Montano, J. J., & Sesé, A. (2006). Designing an artificial neural network for forecasting tourism time series. Tourism Management, 27(5), 781-790.
  • Republic of Türkiye Ministry of Culture and Tourism. (2023). Türkiye tourism strategy. Retrieved from https://www.ktb.gov.tr/TR-96696/turkiye-turizm-stratejisi.html
  • Song, H., & Li, G. (2008). Tourism demand modelling and forecasting-A review of recent research. Tourism Management, 29(2), 203-220.
  • Song, H., Witt, S. F., & Jensen, T. C. (2003). Tourism forecasting: accuracy of alternative econometric models. International Journal of Forecasting, 19(1), 123-141.
  • Sönmez, S., & Sirakaya, E. (2002). A distorted destination image? The case of Türkiye. Journal of travel research, 41(2), 185-196.
  • Tuncsiper, C. (2023). Modeling the Tourism Revenue of Türkiye Using Deep Learning Networks. Open Access Indonesia Journal of Social Sciences, 6(1), 888-897.
  • Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S. M., & Morgan, R. E. (2017). Two hidden layers are usually better than one. In Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August 25–27, 2017, Proceedings (pp. 279-290). Springer International Publishing.
  • Uysal, M., & El Roubi, M. S. (1999). Artificial neural networks versus multiple regression in tourism demand analysis. Journal of Travel Research, 38(2), 111-118.
  • Yenişehirlioğlu, E., Taşar, İ., & Bayat, T. (2020). Tourism Revenue and Economic Growth Relation in Türkiye: Evidence of Symmetrical, Asymmetrical and the Rolling Window Regressions. Journal of Economic Cooperation & Development, 41(2).
  • Wong, K. K. F., Song, H., & Chon, K. K. S. (2006). Bayesian models for tourism demand forecasting. Tourism Management, 27(5), 773-780.
  • World Travel & Tourism Council (WTTC). (2023). Türkiye (Turkey) travel & tourism economic impact factsheet. Retrieved from https://cdn.prod.website-files.com/6329bc97af73223b575983ac/66695b1694d436e5830238da_Turkiye2024_.pdf
  • World Travel & Tourism Council (WTTC). (2024). Travel & tourism set to break all records in 2024. Retrieved from https://wttc.org/news-article/travel-and-tourism-set-to-break-all-records-in-2024-reveals-wttc
  • Zorlutuna, Ş., & Bircan, H. (2019). Türkiye’ye gelen turist sayısı tahmininde zaman serileri analizi ve yapay sinir ağları yöntemlerinin karşılaştırılması [Comparison of time series analysis and artificial neural network methods in forecasting the number of tourists visiting Türkiye]. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 20(2), 164–185.
There are 36 citations in total.

Details

Primary Language English
Subjects Econometric and Statistical Methods, Economic Models and Forecasting, Time-Series Analysis
Journal Section Makaleler
Authors

Begüm Kara Gülay 0000-0003-2926-2699

Early Pub Date December 27, 2024
Publication Date December 30, 2024
Submission Date November 7, 2024
Acceptance Date December 6, 2024
Published in Issue Year 2024 Issue: 69

Cite

APA Kara Gülay, B. (2024). MODELING AND FORECASTING OF TOURISM INCOME: THE CASE OF TURKEY. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(69), 251-257. https://doi.org/10.18070/erciyesiibd.1581119

Ethical Principles and Ethical Guidelines

The Journal of Erciyes University Faculty of Economics and Administrative Sciences places great emphasis on publication ethics, which serve as a foundation for the impartial and reputable advancement of scientific knowledge. In this context, the journal adopts a publishing approach aligned with the ethical standards set by the Committee on Publication Ethics (COPE) and is committed to preventing potential malpractice. The following ethical responsibilities, established based on COPE’s principles, are expected to be upheld by all stakeholders involved in the publication process (authors, readers and researchers, publishers, reviewers, and editors).

Ethical Responsibilities of Editors
Make decisions on submissions based on the quality and originality of the work, its alignment with the journal's aims and scope, and the reviewers’ evaluations, regardless of the authors' religion, language, race, ethnicity, political views, or gender.
Respond to information requests from readers, authors, and reviewers regarding the publication and evaluation processes.
Conduct all processes without compromising ethical standards and intellectual property rights.
Support freedom of thought and protect human and animal rights.
Ensure the peer review process adheres to the principle of double-blind peer review.
Take full responsibility for accepting, rejecting, or requesting changes to a manuscript and ensure that conflicts of interest among stakeholders do not influence these decisions.
Ethical Responsibilities of Authors
Submitted works must be original. When utilizing other works, proper and complete citations and/or references must be provided.
A manuscript must not be under review by another journal simultaneously.
Individuals who have not contributed to the experimental design, implementation, data analysis, or interpretation should not be listed as authors.
If requested during the review process, datasets used in the manuscript must be provided to the editorial board.
If a significant error or mistake is discovered in the manuscript, the journal’s editorial office must be notified.
For studies requiring ethical committee approval, the relevant document must be submitted to the journal. Details regarding the ethical approval (name of the ethics committee, approval document number, and date) must be included in the manuscript.
Changes to authorship (e.g., adding or removing authors, altering the order of authors) cannot be proposed after the review process has commenced.
Ethical Responsibilities of Reviewers
Accept review assignments only in areas where they have sufficient expertise.
Agree to review manuscripts in a timely and unbiased manner.
Ensure confidentiality of the reviewed manuscript and not disclose any information about it, during or after the review process, beyond what is already published.
Refrain from using information obtained during the review process for personal or third-party benefit.
Notify the journal editor if plagiarism or other ethical violations are suspected in the manuscript.
Conduct reviews objectively and avoid conflicts of interest. If a conflict exists, the reviewer should decline the review.
Use polite and constructive language during the review process and avoid personal comments.
Publication Policy
The Journal of Erciyes University Faculty of Economics and Administrative Sciences is a free, open-access, peer-reviewed academic journal that has been in publication since 1981. The journal welcomes submissions in Turkish and English within the fields of economics, business administration, public finance, political science, public administration, and international relations.

No submission or publication fees are charged by the journal.
Every submitted manuscript undergoes a double-blind peer review process and similarity/plagiarism checks via iThenticate.
Submissions must be original and not previously published, accepted for publication, or under review elsewhere.
Articles published in the journal can be cited under the Open Access Policy and Creative Commons license, provided proper attribution is given.
The journal is published three times a year, in April, August, and December. It includes original, high-quality, and scientifically supported research articles and reviews in its listed fields. Academic studies unrelated to these disciplines or their theoretical and empirical foundations are not accepted. The journal's languages are Turkish and English.

Submissions are first subject to a preliminary review for format and content. Manuscripts not meeting the journal's standards are rejected by the editorial board. Manuscripts deemed suitable proceed to the peer review stage.

Each submission is sent to at least two expert reviewers. If both reviews are favorable, the article is approved for publication. In cases where one review is positive and the other negative, the editorial board decides based on the reviews or may send the manuscript to a third reviewer.

Articles published in the journal are open access and can be cited under the Creative Commons license, provided proper attribution is made.