Research Article
BibTex RIS Cite

Üniversite hastanesi bilgisayarlı tomografi bölümünde iş akışı ve kapasite seviyesinin modellemesi ve analizi

Year 2025, Issue: 71, 9 - 20, 30.08.2025
https://doi.org/10.18070/erciyesiibd.1556337

Abstract

Bu çalışma, bir üniversite hastanesinin radyoloji bölümünde Bilgisayarlı Tomografi (BT) hasta akışını ve kapasitesini tahmin etmeye yönelik Ayrık Olay Simülasyonu (DES) kullanarak operasyonel süreçleri optimize etmeyi amaçlamaktadır. Araştırmada, iki yıllık bir zaman diliminde toplanan veriler kullanılarak BT biriminde yaşanan darboğazlar, kaynak kullanım oranları ve hasta bekleme süreleri detaylı şekilde analiz edilmiştir. Arena Simülasyon Yazılımı ile geliştirilen model, mevcut sistemde kaynak yetersizliği ve uzun bekleme süreleri gibi operasyonel sorunları ortaya koymuştur. Çalışmada, mevcut duruma ek olarak, yeni cihaz alımı ve çalışma saatlerinin uzatılması gibi stratejik çözümler içeren 12 farklı senaryo test edilmiştir. Simülasyon sonuçları, ek cihaz kullanımı ve çalışma saatlerinin uzatılması ile hasta bekleme sürelerinde %50’ye varan azalmalar elde edilebileceğini göstermektedir. Bu kapsamda, çalışma BT hizmetlerinin yönetiminde karar destek süreçlerine katkıda bulunmakta ve kaynak planlamasının etkinliğini artırmaya yönelik somut öneriler sunmaktadır. Çalışmanın bulguları, ayrık olay simülasyonunun sağlık hizmetleri operasyonlarında verimlilik artışı sağlamak için kullanılabilecek etkili bir yöntem olduğunu göstermekte ve literatüre önemli katkılar sağlamaktadır.

References

  • Akbal, H., & Doğan, N. Ö. (2025). Lean Process Improvement in Healthcare: A Study Using Value Stream Mapping, Theory Of Constraints And Simulation. International Journal of Management Studies, 32(1), 164-182
  • AlShammeri, O., Saif, S. A., Shehri, H. A., Alasng, M., Qaddoura, F., Shehri, M. A., & Faraidy, K. A. (2022). Saudi heart association guidelines on best practices in the management of chronic coronary syndromes. Journal of the Saudi Heart Association, 34(3), 182-211.
  • Arı, A. (2024). Türki̇ye’de sağlik sektöründe asi̇metri̇k enformasyon ve sağlık çalışanlarına yöneli̇k şi̇ddet olgusu. Uluslararası Anadolu Sosyal Bilimler Dergisi, 8(4), 900-926.
  • Atalan, A., Dönmez, C., & Atalan, Y. (2018). Yüksek-eğitimli uzman hemşire i̇stihdamı ile acil servis kalitesinin yükseltilmesi için simülasyon uygulaması: türkiye sağlık sistemi. Marmara Fen Bilimleri Dergisi, 30(4), 318-338
  • Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. (2004). Discrete event system simulation (4th ed.). Upper Saddle River: Prentice Hall.
  • Cai, H., & Jun, J. (2018). Using discrete event simulation (des) to support performance-driven healthcare design. HERD: Health Environments Research &Amp; Design Journal, 12(3), 89-106.
  • Cao, B., Iredell, J. R., Middleton, P. G., & Young, N. (2023). Chest ct in covid‐19 patients: a clinical need. Journal of Medical Radiation Sciences, 70(1), 40-45.
  • Casas, P., Pi, X., Casanovas , J., & Jové, J. (2013). Definition of Virtual Reality Simulation Models Using Specification and Description Language Diagrams. SDL 2013: Model- Driven Dependability Engineering (s. 258–274). Springer.
  • Çekici, V., & Yüregir, H.O.(2021). Process optimization of the customer complaints handling system and a new customer oriented model proposal. Journal of the Faculty of Engineering and Architecture of Gazi University 36:2 (2021) 855-869.
  • Chahal, K., & Eldabi, T. (2011). Hybrid simulation and modes of governance in UK healthcare. Transform. Gov. People Process Policy., 5, 143–154.
  • Chen, M., Wu, K., Tsai, Y., & Jiang, B. C. (2021). Data analysis of ambient intelligence in a healthcare simulation system: a pilot study in high-end health screening process improvement. BMC Health Services Research, 21(1).
  • Cunha, G. M., Chernyak, V., Fowler, K. J., & Sirlin, C. B. (2021). Up-to-date role of ct/mri li-rads in hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 8, 513-527.
  • Devapriya, P., Strömblad, C. T., Bailey, M. D., Frazier, S., Bulger, J., Kemberling, S. T., & Wood, K. E. (2015). Stratbam: a discrete-event simulation model to support strategic hospital bed capacity decisions. Journal of Medical Systems, 39(10).
  • Dinwoodie, I., Endrerud, O. V., Hofmann, M., Martin, R., & Sperstad, I. B. (2015). Reference cases for verification of operation and maintenance simulation models for offshore wind farms. Wind Engineering, 39(1), 1-14.
  • Doğan, N. Ö., & Unutulmaz, O. (2016). Lean production in healthcare: a simulation-based value stream mapping in the physical therapy and rehabilitation department of a public hospital. Total Quality Management & Business Excellence, 27(1-2), 64-80.
  • Durmuş, A., & Özdemir, A. (2023, Cilt: 26 Sayı: 4, 1009 - 1032). Yoğun Bakım Ünitelerinde Hasta Akışının Değerlendirmesi: 3. Basamak Hastaneler İçin Simülasyon Modellemesi. Hacettepe Sağlık İdaresi Dergisi, 26(4), 1009-1032.
  • Durmuş, A., Özdemir, A., & Gökmen, N. (2023). Yoğun Bakım Ünitelerinde Kapasite Değerlendirmesi Ve Planlaması: 3. Basamak Hastaneler İçin Simülasyon Modellemesi. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(2), 599 - 620.
  • Erdemir, A., Mulugeta, L., Ku, J. P., Drach, A., Horner, M., Morrison, T. M., . . . Myers Jr., J. G. (2020). Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective. Journal of Translational Medicine.
  • Eslambolchi, A., Aghaghazvini, L., Gholamrezanezhad, A., Kavosi, H., & Radmard, A. R. (2020). Coronavirus disease 2019 (covid-19) in patients with systemic autoimmune diseases or vasculitis: radiologic presentation. Journal of Thrombosis and Thrombolysis, 51(2), 339-348.
  • Ferris, H., Joyce, M., & Hogan, J. (2016). Small group tutorials in radiology: a pilot study. MedEdPublish, 43.
  • Gillespie, J., McClean, S., FitzGibbons, F., Scotney, B., Dobbs, F., & Meenan, B. J. (2014). Do we need stochastic models for healthcare? The case of ICATS? J. Simul., 8, 293– 303.
  • Gullhav, A. N., Christiansen, M., Nygreen, B., Aarlott, M. M., Medhus, J. E., Skomsvoll, J. F., & Østbyhaug, P. O. (2018). Block scheduling at magnetic resonance imaging labs. Operations Research for Health Care, 18, 52-64.
  • Guo, X., & Su, S. (2016). Guo, X. and Su, S. (2016). Validation of dynamic simulation models on uncertainty. Proceedings of the 2016 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016). (s. 60-63). Atlantis Press.
  • Günöz, N. (2023). Analyzing the efficiency of health resources of health institutions in computer environment and calculating optimum values. İstatistik Ve Uygulamalı Bilimler Dergisi, (7), 43-63
  • Hotz, I., Hanisch, A., & Schulze, T. (2006). Simulation-Based Early Warning Systems as a Practical Approach for the Automotive Industry. Proceedings of the 2006 Winter Simulation Conference (s. 1962-1970). Monterey: IEEE.
  • Inci, O., Altuncı, Y. A., Can, Ö., Akarca, F. K., & Ersel, M. (2024). The Efficiency of Focused Assessment with Sonography for Trauma in Pediatric Patients with Blunt Torso Trauma. Journal of Emergencies, Trauma, and Shock, 17(1), 8-13.
  • Kama, A. and Doğan, N. (2020). Tedari̇k zi̇nci̇ri̇nde değer katmayan faali̇yetleri̇n ortadan kaldirilmasi: i̇malat sektöründe bi̇r değer akiş hari̇talama uygulamasi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 91-99.
  • Karadayı, M., Gökmen, Y., Kasap, L., & Tozan, H. (2019). Sağlıkta güncel simülasyon yaklaşımları: bir derleme çalışması. International Journal of Advances in Engineering and Pure Sciences, 31(1), 1-16
  • Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). New York,: McGraw Hill Higher Education.
  • Li, Y., Gou, L., & Jin, L. (2018). Simulation Research for Patient Capacity and Arrival Strategy on Sub-period Appointment in the Radiology Department of General Hospital. Proceedings of the Twelfth International Conference on Management Science and Engineering Managemen (s. Proceedings of the Twelfth International Conference on Management Science and Engineering Management). Springer.
  • Liam, C. K., Andarini, S., Lee, P., Ho, J. C., Chau, N. Q., & Tscheikuna, J. (2015). Lung cancer staging now and in the future. Respirology, 20(4), 526-534.
  • Lin, S., Li, W., Xia, Q., Ma, P., & Yang, M. (2018). A simulation model validation and calibration platform. Proceedings of the 9th EUROSIM 2017, (s. 687-693).
  • Lindsköld, L., Aspelin, P., Jacobsson, B., & Lundberg, N. (2008 ). The use of simulation in radiology. Radiol Manage., 30(3), 55-62.
  • Lindsköld, L., Wintell, M., Aspelin, P., & Lundberg, N. (2012). Simulation of radiology workflow and throughput. Radiol Manage., 34(4), 47-55.
  • Luo, L., Liu, H., Liao, H., Tang, S., Shi, Y., & Guo, H. (2016). Discrete event simulation models for ct examination queuing in west china hospital. Computational and Mathematical Methods in Medicine, 1-10.
  • Luo, L., Zhang, Y., Qing, F., Ding, H., Shi, Y., & Guo , H. (2018). A discrete event simulation approach for reserving capacity for emergency patients in the radiology department. BMC Health Services Research, 18, 1-11.
  • M., S., Al-Nasra, M., Abu Jadayil, W., Jaber, N., & Abu Jadayil, S. (2017). Evaluation of provided services at MRI department in a public hospital using discrete event simulation technique: A case study. Cogent Engineering, 4(1), 1-11.
  • Maass, K. L., Halter, E., Huschka, T. R., Sir, M. Y., Nordland, M. R., & Pasupathy, K. S. (2021). A discrete event simulation to evaluate impact of radiology process changes on emergency department computed tomography access. Journal of Evaluation in Clinical Practice, 28(1), 120-128.
  • Mh, W., Powell, E. A., & Pallmann, P. (2020). Use of high-fidelity simulation training for radiology healthcare professionals in the management of acute medical emergencies. The British Journal of Radiology, 94(1117), 1-18.
  • Nakajima, K., Kato, H., Yamashiro, T., Izumi, T., Takeuchi, I., Nakajim, H., & Utsunomiya, D. (2020). COVID-19 pneumonia: infection control protocol inside computed tomography suites. Jpn J Radiol., 38, 391–393.
  • Nakajima, K., Kato, H., Yamashiro, T., Izumi, T., Takeuchi, I., Nakajima , H., & Utsunomiya, D. (2020). Covid-19 pneumonia: infection control protocol inside computed tomography suites. Japanese Journal of Radiology, 38(5), 391-393.
  • Nawawi, M. K., Zulkepli, J., Khalid,, R., & Abidin, N. Z. (2021). Modeling in healthcare: selection of simulation types. Universal Journal of Public Health, 9(6), 401-409.
  • Nickel, S., & Schmidt, U. A. (2009). Process improvement in hospitals: a case study in a radiology department. Qual Manag Health Care., 18(4), 326-338.
  • Nur, S., Okuyan, C., Ataç, G., & Şahmaran, T. (2022). Effect of computerized tomography simulation education on student education: a distance education example. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(3), 965-976.
  • Onggo, B. S., & Karpat, O. (2012). Agent-based conceptual model representation using BPMN. Proceedings of the 2011 Winter Simulation Conference (WSC) (s. 671-682). Phoenix: IEEE.
  • Ordu, M., Demir, E., & Davari , S. (2021). A hybrid analytical model for an entire hospital resource optimisation. Soft Computing, 25, 11673–11690.
  • Patton, D., Avşar, P., Sayeh, A., Budri, A., O’Connor, T., Walsh, S., & Moore, Z. (tarih yok). A meta‐review of the impact of compression therapy on venous leg ulcer healing. International Wound Journal, 20(2), 430-447.
  • Pearce, M. S., Salotti, J., Little, M. P., McHugh, K., Lee, C., Kim, K. P., & González, A. B. (2012). Radiation exposure from ct scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet, 380(9840), 499-505.
  • Powell, J. H., & Mustafee, N. (2017). Widening requirements capture with soft methods: an investigation of hybrid m&s studies in health care. Journal of the Operational Research Society, 68(10), 1211-1222.
  • Primiero, G. (2019). A minimalist epistemology for agent-based simulations in the artificial sciences. Minds and Machines, 29(1), 127-148.
  • Rockwell Automation Arena v14, https://www.rockwellautomation.com/en-us/products/ software/arena-simulation.html
  • Rossetti, M.D. (2015). Simulation Modeling and Arena. Second edition. © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.New Jersey.USA.
  • Sarvan, S. and Efe, E. (2021). Use of simulation in newborn resuscitation education: systematic review. The Journal of Tepecik Education and Research Hospital, 31(2):133-41. doi:10.5222/terh.2021.03789
  • Shakoor, M., Qureshi, M. R., Jadayil, W., Jaber, N., & Al-Nasra, M. (2021). Evaluation of provided services at MRI department in a public hospital using discrete event simulation technique: A case study. International Journal of Healthcare Management, 14(4), 1303-1310. DOI: 10.1109/WSC.1998.744892
  • Shannon, R. E. (1998). Introduction to the art and science of simulation. In 1998 winter simulation conference (s. 7-14). Washington: IEEE. https://doi.org/10.1002/sys.21594
  • Sohier, H., Lamothe, P., Guermazi, S., Yagoubi, M., Ménégazzi, P., & Maddaloni, A. (2021). Improving simulation specification with mbse for better simulation validation and reuse. Systems Engineering, 24(6), 425-438. https://doi.org/10.1002/sys.21594
  • Sutter, R., Stoel, B. C., Buck, F. M., Andreisek, G., Morelli, J. N., Hodler, J., & Pfirrmann, C. W. (2015). Internal derangements of joints—past, present, and future. Investigative Radiology, 50(9), 601-614. DOI: 10.1097/RLI.0000000000000162
  • Teichgräber, U. K., Gillessen, C., & Neumann, F. (2003). Methoden des Prozessmanagements in der Radiologie [Methods of process management in radiology]. Rofo., 175(12), 1627-1633. DOI: 10.1055/s-2003-45331
  • Thorwarth, M., Rashwan, W., & Arisha, A. (2016). An analytical representation of flexible resource allocation in hospitals. Flex. Serv. Manuf. J., 28, 148–165. https://doi. org/10.1007/s10696-015-9216-4
  • Vieira, B., Demirtaş, D., Kamer, J. B., Hans, E. W., & Harten, W. H. (2019). Improving workflow control in radiotherapy using discrete-event simulation. BMC Medical Informatics and Decision Making, 19(1). https://doi.org/10.1186/s12911-019-0910-0
  • Winqvist, I., Näppä, U., Rönning, H., & Häggström, M. (2023). Reducing risks in complex care transitions in rural areas: a grounded theory. International Journal of Qualitative Studies on Health and Well-Being, 18(1), 1-14. https://doi.org/10.1080/17482631.20 23.2185964
  • Yacoub, A., Hamri, M. E., & Frydman, C. (2020). Dev-promela: modeling, verification, and validation of a video game by combining model-checking and simulation. Simulation, 96(11), 881-910. https://doi.org/10.1177/0037549720946
  • Zamani, Z. (2023). Discrete event simulation for clinic design. International Journal of Environment, Architecture, and Societies, 3(01), 1-16. DOI: 10.26418/ ijeas.2023.3.01.1-16

Modelling and analysis of patient flow and capacity level in the computed tomography department of a university hospital

Year 2025, Issue: 71, 9 - 20, 30.08.2025
https://doi.org/10.18070/erciyesiibd.1556337

Abstract

This study aims to optimise operational processes by using Discrete Event Simulation (DES) to predict Computed Tomography (CT) patient flow and capacity in the radiology department of a university hospital. In the study, the bottlenecks, resource utilisation rates and patient waiting times in the CT unit were analysed in detail using data collected over a two-year period. The model developed with Arena Simulation Software revealed operational problems such as lack of resources and long waiting times in the current system. In addition to the current situation, 12 different scenarios including strategic solutions such as purchasing new devices and extending working hours were tested in the study. Simulation results show that up to 50% reduction in patient waiting times can be achieved with the use of additional devices and extension of working hours. In this context, the study contributes to decision support processes in the management of IT services and provides concrete recommendations to improve the effectiveness of resource planning. The findings of the study show that discrete event simulation is an effective method that can be used to increase efficiency in healthcare operations and provides important contributions to the literature.

References

  • Akbal, H., & Doğan, N. Ö. (2025). Lean Process Improvement in Healthcare: A Study Using Value Stream Mapping, Theory Of Constraints And Simulation. International Journal of Management Studies, 32(1), 164-182
  • AlShammeri, O., Saif, S. A., Shehri, H. A., Alasng, M., Qaddoura, F., Shehri, M. A., & Faraidy, K. A. (2022). Saudi heart association guidelines on best practices in the management of chronic coronary syndromes. Journal of the Saudi Heart Association, 34(3), 182-211.
  • Arı, A. (2024). Türki̇ye’de sağlik sektöründe asi̇metri̇k enformasyon ve sağlık çalışanlarına yöneli̇k şi̇ddet olgusu. Uluslararası Anadolu Sosyal Bilimler Dergisi, 8(4), 900-926.
  • Atalan, A., Dönmez, C., & Atalan, Y. (2018). Yüksek-eğitimli uzman hemşire i̇stihdamı ile acil servis kalitesinin yükseltilmesi için simülasyon uygulaması: türkiye sağlık sistemi. Marmara Fen Bilimleri Dergisi, 30(4), 318-338
  • Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. (2004). Discrete event system simulation (4th ed.). Upper Saddle River: Prentice Hall.
  • Cai, H., & Jun, J. (2018). Using discrete event simulation (des) to support performance-driven healthcare design. HERD: Health Environments Research &Amp; Design Journal, 12(3), 89-106.
  • Cao, B., Iredell, J. R., Middleton, P. G., & Young, N. (2023). Chest ct in covid‐19 patients: a clinical need. Journal of Medical Radiation Sciences, 70(1), 40-45.
  • Casas, P., Pi, X., Casanovas , J., & Jové, J. (2013). Definition of Virtual Reality Simulation Models Using Specification and Description Language Diagrams. SDL 2013: Model- Driven Dependability Engineering (s. 258–274). Springer.
  • Çekici, V., & Yüregir, H.O.(2021). Process optimization of the customer complaints handling system and a new customer oriented model proposal. Journal of the Faculty of Engineering and Architecture of Gazi University 36:2 (2021) 855-869.
  • Chahal, K., & Eldabi, T. (2011). Hybrid simulation and modes of governance in UK healthcare. Transform. Gov. People Process Policy., 5, 143–154.
  • Chen, M., Wu, K., Tsai, Y., & Jiang, B. C. (2021). Data analysis of ambient intelligence in a healthcare simulation system: a pilot study in high-end health screening process improvement. BMC Health Services Research, 21(1).
  • Cunha, G. M., Chernyak, V., Fowler, K. J., & Sirlin, C. B. (2021). Up-to-date role of ct/mri li-rads in hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 8, 513-527.
  • Devapriya, P., Strömblad, C. T., Bailey, M. D., Frazier, S., Bulger, J., Kemberling, S. T., & Wood, K. E. (2015). Stratbam: a discrete-event simulation model to support strategic hospital bed capacity decisions. Journal of Medical Systems, 39(10).
  • Dinwoodie, I., Endrerud, O. V., Hofmann, M., Martin, R., & Sperstad, I. B. (2015). Reference cases for verification of operation and maintenance simulation models for offshore wind farms. Wind Engineering, 39(1), 1-14.
  • Doğan, N. Ö., & Unutulmaz, O. (2016). Lean production in healthcare: a simulation-based value stream mapping in the physical therapy and rehabilitation department of a public hospital. Total Quality Management & Business Excellence, 27(1-2), 64-80.
  • Durmuş, A., & Özdemir, A. (2023, Cilt: 26 Sayı: 4, 1009 - 1032). Yoğun Bakım Ünitelerinde Hasta Akışının Değerlendirmesi: 3. Basamak Hastaneler İçin Simülasyon Modellemesi. Hacettepe Sağlık İdaresi Dergisi, 26(4), 1009-1032.
  • Durmuş, A., Özdemir, A., & Gökmen, N. (2023). Yoğun Bakım Ünitelerinde Kapasite Değerlendirmesi Ve Planlaması: 3. Basamak Hastaneler İçin Simülasyon Modellemesi. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(2), 599 - 620.
  • Erdemir, A., Mulugeta, L., Ku, J. P., Drach, A., Horner, M., Morrison, T. M., . . . Myers Jr., J. G. (2020). Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective. Journal of Translational Medicine.
  • Eslambolchi, A., Aghaghazvini, L., Gholamrezanezhad, A., Kavosi, H., & Radmard, A. R. (2020). Coronavirus disease 2019 (covid-19) in patients with systemic autoimmune diseases or vasculitis: radiologic presentation. Journal of Thrombosis and Thrombolysis, 51(2), 339-348.
  • Ferris, H., Joyce, M., & Hogan, J. (2016). Small group tutorials in radiology: a pilot study. MedEdPublish, 43.
  • Gillespie, J., McClean, S., FitzGibbons, F., Scotney, B., Dobbs, F., & Meenan, B. J. (2014). Do we need stochastic models for healthcare? The case of ICATS? J. Simul., 8, 293– 303.
  • Gullhav, A. N., Christiansen, M., Nygreen, B., Aarlott, M. M., Medhus, J. E., Skomsvoll, J. F., & Østbyhaug, P. O. (2018). Block scheduling at magnetic resonance imaging labs. Operations Research for Health Care, 18, 52-64.
  • Guo, X., & Su, S. (2016). Guo, X. and Su, S. (2016). Validation of dynamic simulation models on uncertainty. Proceedings of the 2016 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016). (s. 60-63). Atlantis Press.
  • Günöz, N. (2023). Analyzing the efficiency of health resources of health institutions in computer environment and calculating optimum values. İstatistik Ve Uygulamalı Bilimler Dergisi, (7), 43-63
  • Hotz, I., Hanisch, A., & Schulze, T. (2006). Simulation-Based Early Warning Systems as a Practical Approach for the Automotive Industry. Proceedings of the 2006 Winter Simulation Conference (s. 1962-1970). Monterey: IEEE.
  • Inci, O., Altuncı, Y. A., Can, Ö., Akarca, F. K., & Ersel, M. (2024). The Efficiency of Focused Assessment with Sonography for Trauma in Pediatric Patients with Blunt Torso Trauma. Journal of Emergencies, Trauma, and Shock, 17(1), 8-13.
  • Kama, A. and Doğan, N. (2020). Tedari̇k zi̇nci̇ri̇nde değer katmayan faali̇yetleri̇n ortadan kaldirilmasi: i̇malat sektöründe bi̇r değer akiş hari̇talama uygulamasi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 91-99.
  • Karadayı, M., Gökmen, Y., Kasap, L., & Tozan, H. (2019). Sağlıkta güncel simülasyon yaklaşımları: bir derleme çalışması. International Journal of Advances in Engineering and Pure Sciences, 31(1), 1-16
  • Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). New York,: McGraw Hill Higher Education.
  • Li, Y., Gou, L., & Jin, L. (2018). Simulation Research for Patient Capacity and Arrival Strategy on Sub-period Appointment in the Radiology Department of General Hospital. Proceedings of the Twelfth International Conference on Management Science and Engineering Managemen (s. Proceedings of the Twelfth International Conference on Management Science and Engineering Management). Springer.
  • Liam, C. K., Andarini, S., Lee, P., Ho, J. C., Chau, N. Q., & Tscheikuna, J. (2015). Lung cancer staging now and in the future. Respirology, 20(4), 526-534.
  • Lin, S., Li, W., Xia, Q., Ma, P., & Yang, M. (2018). A simulation model validation and calibration platform. Proceedings of the 9th EUROSIM 2017, (s. 687-693).
  • Lindsköld, L., Aspelin, P., Jacobsson, B., & Lundberg, N. (2008 ). The use of simulation in radiology. Radiol Manage., 30(3), 55-62.
  • Lindsköld, L., Wintell, M., Aspelin, P., & Lundberg, N. (2012). Simulation of radiology workflow and throughput. Radiol Manage., 34(4), 47-55.
  • Luo, L., Liu, H., Liao, H., Tang, S., Shi, Y., & Guo, H. (2016). Discrete event simulation models for ct examination queuing in west china hospital. Computational and Mathematical Methods in Medicine, 1-10.
  • Luo, L., Zhang, Y., Qing, F., Ding, H., Shi, Y., & Guo , H. (2018). A discrete event simulation approach for reserving capacity for emergency patients in the radiology department. BMC Health Services Research, 18, 1-11.
  • M., S., Al-Nasra, M., Abu Jadayil, W., Jaber, N., & Abu Jadayil, S. (2017). Evaluation of provided services at MRI department in a public hospital using discrete event simulation technique: A case study. Cogent Engineering, 4(1), 1-11.
  • Maass, K. L., Halter, E., Huschka, T. R., Sir, M. Y., Nordland, M. R., & Pasupathy, K. S. (2021). A discrete event simulation to evaluate impact of radiology process changes on emergency department computed tomography access. Journal of Evaluation in Clinical Practice, 28(1), 120-128.
  • Mh, W., Powell, E. A., & Pallmann, P. (2020). Use of high-fidelity simulation training for radiology healthcare professionals in the management of acute medical emergencies. The British Journal of Radiology, 94(1117), 1-18.
  • Nakajima, K., Kato, H., Yamashiro, T., Izumi, T., Takeuchi, I., Nakajim, H., & Utsunomiya, D. (2020). COVID-19 pneumonia: infection control protocol inside computed tomography suites. Jpn J Radiol., 38, 391–393.
  • Nakajima, K., Kato, H., Yamashiro, T., Izumi, T., Takeuchi, I., Nakajima , H., & Utsunomiya, D. (2020). Covid-19 pneumonia: infection control protocol inside computed tomography suites. Japanese Journal of Radiology, 38(5), 391-393.
  • Nawawi, M. K., Zulkepli, J., Khalid,, R., & Abidin, N. Z. (2021). Modeling in healthcare: selection of simulation types. Universal Journal of Public Health, 9(6), 401-409.
  • Nickel, S., & Schmidt, U. A. (2009). Process improvement in hospitals: a case study in a radiology department. Qual Manag Health Care., 18(4), 326-338.
  • Nur, S., Okuyan, C., Ataç, G., & Şahmaran, T. (2022). Effect of computerized tomography simulation education on student education: a distance education example. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(3), 965-976.
  • Onggo, B. S., & Karpat, O. (2012). Agent-based conceptual model representation using BPMN. Proceedings of the 2011 Winter Simulation Conference (WSC) (s. 671-682). Phoenix: IEEE.
  • Ordu, M., Demir, E., & Davari , S. (2021). A hybrid analytical model for an entire hospital resource optimisation. Soft Computing, 25, 11673–11690.
  • Patton, D., Avşar, P., Sayeh, A., Budri, A., O’Connor, T., Walsh, S., & Moore, Z. (tarih yok). A meta‐review of the impact of compression therapy on venous leg ulcer healing. International Wound Journal, 20(2), 430-447.
  • Pearce, M. S., Salotti, J., Little, M. P., McHugh, K., Lee, C., Kim, K. P., & González, A. B. (2012). Radiation exposure from ct scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet, 380(9840), 499-505.
  • Powell, J. H., & Mustafee, N. (2017). Widening requirements capture with soft methods: an investigation of hybrid m&s studies in health care. Journal of the Operational Research Society, 68(10), 1211-1222.
  • Primiero, G. (2019). A minimalist epistemology for agent-based simulations in the artificial sciences. Minds and Machines, 29(1), 127-148.
  • Rockwell Automation Arena v14, https://www.rockwellautomation.com/en-us/products/ software/arena-simulation.html
  • Rossetti, M.D. (2015). Simulation Modeling and Arena. Second edition. © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.New Jersey.USA.
  • Sarvan, S. and Efe, E. (2021). Use of simulation in newborn resuscitation education: systematic review. The Journal of Tepecik Education and Research Hospital, 31(2):133-41. doi:10.5222/terh.2021.03789
  • Shakoor, M., Qureshi, M. R., Jadayil, W., Jaber, N., & Al-Nasra, M. (2021). Evaluation of provided services at MRI department in a public hospital using discrete event simulation technique: A case study. International Journal of Healthcare Management, 14(4), 1303-1310. DOI: 10.1109/WSC.1998.744892
  • Shannon, R. E. (1998). Introduction to the art and science of simulation. In 1998 winter simulation conference (s. 7-14). Washington: IEEE. https://doi.org/10.1002/sys.21594
  • Sohier, H., Lamothe, P., Guermazi, S., Yagoubi, M., Ménégazzi, P., & Maddaloni, A. (2021). Improving simulation specification with mbse for better simulation validation and reuse. Systems Engineering, 24(6), 425-438. https://doi.org/10.1002/sys.21594
  • Sutter, R., Stoel, B. C., Buck, F. M., Andreisek, G., Morelli, J. N., Hodler, J., & Pfirrmann, C. W. (2015). Internal derangements of joints—past, present, and future. Investigative Radiology, 50(9), 601-614. DOI: 10.1097/RLI.0000000000000162
  • Teichgräber, U. K., Gillessen, C., & Neumann, F. (2003). Methoden des Prozessmanagements in der Radiologie [Methods of process management in radiology]. Rofo., 175(12), 1627-1633. DOI: 10.1055/s-2003-45331
  • Thorwarth, M., Rashwan, W., & Arisha, A. (2016). An analytical representation of flexible resource allocation in hospitals. Flex. Serv. Manuf. J., 28, 148–165. https://doi. org/10.1007/s10696-015-9216-4
  • Vieira, B., Demirtaş, D., Kamer, J. B., Hans, E. W., & Harten, W. H. (2019). Improving workflow control in radiotherapy using discrete-event simulation. BMC Medical Informatics and Decision Making, 19(1). https://doi.org/10.1186/s12911-019-0910-0
  • Winqvist, I., Näppä, U., Rönning, H., & Häggström, M. (2023). Reducing risks in complex care transitions in rural areas: a grounded theory. International Journal of Qualitative Studies on Health and Well-Being, 18(1), 1-14. https://doi.org/10.1080/17482631.20 23.2185964
  • Yacoub, A., Hamri, M. E., & Frydman, C. (2020). Dev-promela: modeling, verification, and validation of a video game by combining model-checking and simulation. Simulation, 96(11), 881-910. https://doi.org/10.1177/0037549720946
  • Zamani, Z. (2023). Discrete event simulation for clinic design. International Journal of Environment, Architecture, and Societies, 3(01), 1-16. DOI: 10.26418/ ijeas.2023.3.01.1-16
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Research Articles
Authors

Alkan Durmuş 0000-0002-5806-9962

Abdurrahman İskender 0000-0001-8055-7869

Early Pub Date August 26, 2025
Publication Date August 30, 2025
Submission Date September 26, 2024
Acceptance Date April 11, 2025
Published in Issue Year 2025 Issue: 71

Cite

APA Durmuş, A., & İskender, A. (2025). Üniversite hastanesi bilgisayarlı tomografi bölümünde iş akışı ve kapasite seviyesinin modellemesi ve analizi. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(71), 9-20. https://doi.org/10.18070/erciyesiibd.1556337

33329Erciyes University Journal of Faculty of Economics and Administrative Sciences 33312

This work is licensed under the Creative Commons Attribution-NonCommercial-CreationDerivatives 4.0 International license.   35160