Research Article
BibTex RIS Cite
Year 2022, , 94 - 100, 31.03.2022
https://doi.org/10.35208/ert.1026602

Abstract

References

  • G.S. Cumming, A. Buerkert, E.M Hoffmann, E. Schlecht, S. von Cramon-Taubadel and T. Tscharntke, Implications of agricultural transitions and urbanization for ecosystem services. Nature, Vol. 515 No. 7525, pp: 50-57 2014.
  • D. Yılmaz and Ö. Işınkaralar , "Climate Action Plans Under Climate-Resilient Urban Policies", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 2, pp. 140-147, Dec. 2021
  • D. Yılmaz and Ö. Işınkaralar , "How Can Natural Environment Scoring Tool (Nest) be Adapted for Urban Parks?", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 2, pp. 127-139, Dec. 2021
  • Barinova, G. M., Gaeva, D. V., & Krasnov, E. V. (2020). Hazardous Chemicals and Air, Water, and Soil Pollution and Contamination. Good Health and Well-Being, 255-266. https://doi.org/10.1007/978-3-319-95681-7_48
  • Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C., ... & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366-381. https://doi.org/10.1038/s43017-020-0061-y
  • Zhong, X., Joimel, S., Schwartz, C., & Sterckeman, T. (2021). Assessing the future trends of soil trace metal contents in French urban gardens. Environmental Science and Pollution Research, 1-18. https://doi.org/10.1007/s11356-021-15679-4
  • Baker, A. R., Kanakidou, M., Nenes, A., Myriokefalitakis, S., Croot, P. L., Duce, R. A., ... & Turner, D. R. (2021). Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry. Science Advances, 7(28), eabd8800. DOI: 10.1126/sciadv.abd8800
  • Mikhailova, E. A., Post, G. C., Cope, M. P., Post, C. J., Schlautman, M. A., & Zhang, L. (2019). Quantifying and mapping atmospheric potassium deposition for soil ecosystem services assessment in the United States. Frontiers in Environmental Science, 7, 74. https://doi.org/10.3389/fenvs.2019.00074
  • Hafsi, C., Debez, A., & Abdelly, C. (2014). Potassium deficiency in plants: effects and signaling cascades. Acta Physiologiae Plantarum, 36(5), 1055-1070. DOI 10.1007/s11738-014-1491-2
  • Britto, D. T., & Kronzucker, H. J. (2008). Cellular mechanisms of potassium transport in plants. Physiologia Plantarum, 133(4), 637-650. https://doi.org/10.1111/j.1399-3054.2008.01067.x
  • Nieves‐Cordones, M., Ródenas, R., Lara, A., Martínez, V., & Rubio, F. (2019). The combination of K+ deficiency with other environmental stresses: what is the outcome?. Physiologia plantarum, 165(2), 264-276. https://doi.org/10.1111/ppl.12827
  • Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia plantarum, 151(3), 257-279. https://doi.org/10.1111/ppl.12165
  • Römheld, V., & Kirkby, E. A. (2010). Research on potassium in agriculture: needs and prospects. Plant and soil, 335(1), 155-180. https://doi.org/10.1007/s11104-010-0520-1
  • Sardans, J., & Peñuelas, J. (2015). Potassium: a neglected nutrient in global change. Global Ecology and Biogeography, 24(3), 261-275. https://doi.org/10.1111/geb.12259
  • Mikhailova, E., Cope, M., Groshans, G., Post, C., Schlautman, M., and Zhang, L. (2018). Contribution of atmospheric deposition to soil provisioning ecosystem services in the contiguous United States: Part 1. Calcium. ProScience 5, 58–68. doi: 10.14644/dust.2018.010
  • A.N.M. Roseli, T.F. Ying and N. Osman, Changes in Leaf Thickness, Chlorophyll Content, and Gas Exchange of a Landscape Tree, Xanthostemon chrysanthus, Treated with Paclobutrazol and Potassium Nitrate. Arboriculture & Urban Forestry, Vol.47(2), 2021.
  • M. Wang, Q. Zheng, Q. Shen and S. Guo, The critical role of potassium in plant stress response. International journal of molecular sciences, Vol. 14(4), pp: 7370-7390, 2013.
  • P. Shults, P. Nzokou and I. Koc, Nitrogen contributions of alley cropped Trifolium pratense may sustain short rotation woody crop yields on marginal lands. Nutrient Cycling in Agroecosystems, Vol. 117(2), pp: 261-272, 2020.
  • Koc, Using Cedrus atlantica’s annual rings as a biomonitor in observing the changes of Ni and Co concentrations in the atmosphere. Environmental Science and Pollution Research, 1-7, 2021a.
  • J. Guo, Y. Jia, H. Chen, L. Zhang, J. Yang, J. Zhang and Y. Zhou, Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific reports, Vol. 9(1), pp: 1-12, 2019.
  • D.K. Jaiswal, J.P. Verma, S Prakash, V.S. Meena and R.S. Meena, Potassium as an important plant nutrient in sustainable agriculture: a state of the art. Potassium solubilizing microorganisms for sustainable agriculture, 21-29, 2016.
  • A. Wakeel, M. Farooq, M. Qadir and S. Schubert, Potassium substitution by sodium in plants. Critical reviews in plant sciences, Vol. 30(4), pp: 401-413, 2011.
  • Xing, Y., Bubier, J., Moore, T., Murphy, M., Basiliko, N., Wendel, S., & Blodau, C. (2011). The fate of 15 N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry, 103(1), 281-296. https://doi.org/10.1007/s10533-010-9463-0
  • Zörb, C., Senbayram, M., & Peiter, E. (2014). Potassium in agriculture–status and perspectives. Journal of plant physiology, 171(9), 656-669. https://doi.org/10.1016/j.jplph.2013.08.008
  • Dibb, D. W., & Thompson Jr, W. R. (1985). Interaction of potassium with other nutrients. Potassium in agriculture, 515-533. https://doi.org/10.2134/1985.potassium.c22
  • Manning, D. A. (2010). Mineral sources of potassium for plant nutrition. A review. Agronomy for sustainable development, 30(2), 281-294. https://doi.org/10.1051/agro/2009023
  • Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils, 13th addition.
  • Bilias, F., and Barbayiannis, N. (2019). Potassium availability: an approach using thermodynamic parameters derived from quantity-intensity relationships. Geoderma 338, 355–364. doi: 10.1016/j.geoderma.2018.12.026
  • Bruteig, I. E. (1993). The epiphytic lichen Hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environmental monitoring and assessment, 26(1), 27-47. https://doi.org/10.1007/BF00555060
  • Schulz, H., Popp, P., Huhn, G., Stärk, H. J., & Schüürmann, G. (1999). Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Science of the Total Environment, 232(1-2), 49-58. https://doi.org/10.1016/S0048-9697(99)00109-6
  • Morselli, L., Bernardi, E., Vassura, I., Passarini, F., & Tesini, E. (2008). Chemical composition of wet and dry atmospheric depositions in an urban environment: local, regional and long-range influences. Journal of atmospheric chemistry, 59(3), 151-170. DOI 10.1007/s10874-008-9099-9
  • A Isinkaralar, K., & Erdem, R. (2021). Landscape Plants as Biomonitors for Magnesium Concentration in Some Species. International Journal of Progressive Sciences and Technologies, 29(2), 468-473.
  • Ghoma, W. E. O., Sevik, H., & Isinkaralar, K. (2022). Using indoor plants as biomonitors for detection of toxic metals by tobacco smoke. Air Quality, Atmosphere & Health, https://doi. org/10.1007/s11869-021-01146-z.
  • K. Işınkaralar and R. Erdem , "Changes of Calcium Content on Some Trees in Kocaeli", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 2, pp. 148-154, Dec. 2021
  • M. Çetin , H. Şevik , A. Türkyılmaz and K. Işınkaralar , "Using Abies’s Needles as Biomonitors of Recent Heavy Metal Accumulation", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 1, pp. 1-6, Jun. 2021
  • Mahowald, N. M., Scanza, R., Brahney, J., Goodale, C. L., Hess, P. G., Moore, J. K., & Neff, J. (2017). Aerosol deposition impacts on land and ocean carbon cycles. Current Climate Change Reports, 3(1), 16-31. DOI 10.1007/s40641-017-0056-z
  • Wolterbeek, B. (2002). Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environmental pollution, 120(1), 11-21. https://doi.org/10.1016/S0269-7491(02)00124-0
  • USEPA E (1996) Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. United States Environmental Protection Agency, Washington, DC USA.
  • Nemzer, B., Al-Taher, F., & Abshiru, N. (2020). Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food chemistry, 320, 126621. https://doi.org/10.1016/j.foodchem.2020.126621
  • Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environmental pollution, 114(3), 471-492. https://doi.org/10.1016/S0269-7491(00)00224-4
  • A. Turkyilmaz, H. Sevik, K. Isinkaralar and M. Cetin, Using Acer platanoides annual rings to monitor the amount of heavy metals accumulated in air. Environ Monit Assess Vol.190, pp: 578, 2018a.
  • B. Aricak, M. Cetin, R. Erdem, H. Sevik and H. Cometen, The change of some heavy metal concentrations in Scotch pine (Pinus sylvestris) depending on traffic density, organelle and washing, Applied Ecology and Environmental Research, Vol. 17(3), pp: 6723-6734, 2019.
  • D. Güney, E. Seyis, F. Atar, A. Bayraktar and İ. Turna, Effects of some nitrogen-fixing plants on seedling growth of scotch pine, Turkish Journal of Forestry, Vol. 20(4), pp: 284-289, 2019b.
  • D. Güney, Z. Yahyaoglu, A. Bayraktar, F. Atar and I. Turna, Genetic diversity of Picea orientalis (L.) Link populations in Turkey. Šumarski list, Vol. 143(11-12), pp: 539-547, 2019a.
  • H. Sevik, M. Cetin, H.U. Ozel, H.B. Ozel, M.M.M. Mossi and I.Z. Cetin, Determination of Pb and Mg accumulation in some of the landscape plants in shrub forms. Environmental Science and Pollution Research, Vol. 27(2), pp: 2423-2431, 2020b.
  • T. Karacocuk, H. Sevik, K. Isinkaralar, A. Turkyilmaz and M. Cetin, The change of Cr and Mn concentrations in selected plants in Samsun city center depending on traffic density. Landscape and Ecological Engineering, Vol. 18(1), pp: 75-83, 2022.
  • D.S. Savas, H. Sevik, K. Isinkaralar, A. Turkyilmaz and M. Cetin, The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environ Sci Pollut Res, https://doi.org/10.1007/s11356-021-14826-1, 2021
  • A. Turkyilmaz, M. Cetin, H. Sevik, K. Isinkaralar and E.A.A. Saleh, Variation of heavy metal accumulation in certain landscaping plants due to traffic density. Environment, Development and Sustainability, Vol. 22(3), pp: 2385-2398, 2020.
  • H. Sevik, The Variation of Chrome Consantration in Some Landscape Plants Due to Species, Organ and Traffic Density. Turkish Journal of Agriculture-Food Science and Technology, Vol. 9(3), pp: 595-600, 2021.

The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor

Year 2022, , 94 - 100, 31.03.2022
https://doi.org/10.35208/ert.1026602

Abstract

Minimizing air, water, and soil pollution are very important for a sustainable environment. Particularly, ensuring the continuity of soil fertility without deteriorating the soil structure is very important. This objective can be achieved only by determining the physical, biological, and chemical properties of atmospheric deposition and taking the required measures in agricultural lands. Trees and plants reflect the soil quality and especially they take both beneficial and harmful materials in their bodies owing to Saharan dust and using fossil fuel. Among them, nutrient elements have specific importance since it was determined that many factors including texture, irrigation method, organic matter, lime concentration, plant species and age, pH, and ion balance play effective roles in the growth or degradation of plants’ productivity. Being one of the major nutrient elements taken by plants, potassium (K+) is of vital importance for trees and plants. Its concentration, which varies depending on the species of plant, is influenced by the mutual interaction between tree development and environmental/genetic factors. The scope of this study was to evaluate and rank the contribution of atmospheric potassium (K+) deposition flows to organs of Robinia pseudoacacia L., Cupressus arizonica G., and Platanus orientalis L. trees as biomonitors.

References

  • G.S. Cumming, A. Buerkert, E.M Hoffmann, E. Schlecht, S. von Cramon-Taubadel and T. Tscharntke, Implications of agricultural transitions and urbanization for ecosystem services. Nature, Vol. 515 No. 7525, pp: 50-57 2014.
  • D. Yılmaz and Ö. Işınkaralar , "Climate Action Plans Under Climate-Resilient Urban Policies", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 2, pp. 140-147, Dec. 2021
  • D. Yılmaz and Ö. Işınkaralar , "How Can Natural Environment Scoring Tool (Nest) be Adapted for Urban Parks?", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 2, pp. 127-139, Dec. 2021
  • Barinova, G. M., Gaeva, D. V., & Krasnov, E. V. (2020). Hazardous Chemicals and Air, Water, and Soil Pollution and Contamination. Good Health and Well-Being, 255-266. https://doi.org/10.1007/978-3-319-95681-7_48
  • Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C., ... & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366-381. https://doi.org/10.1038/s43017-020-0061-y
  • Zhong, X., Joimel, S., Schwartz, C., & Sterckeman, T. (2021). Assessing the future trends of soil trace metal contents in French urban gardens. Environmental Science and Pollution Research, 1-18. https://doi.org/10.1007/s11356-021-15679-4
  • Baker, A. R., Kanakidou, M., Nenes, A., Myriokefalitakis, S., Croot, P. L., Duce, R. A., ... & Turner, D. R. (2021). Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry. Science Advances, 7(28), eabd8800. DOI: 10.1126/sciadv.abd8800
  • Mikhailova, E. A., Post, G. C., Cope, M. P., Post, C. J., Schlautman, M. A., & Zhang, L. (2019). Quantifying and mapping atmospheric potassium deposition for soil ecosystem services assessment in the United States. Frontiers in Environmental Science, 7, 74. https://doi.org/10.3389/fenvs.2019.00074
  • Hafsi, C., Debez, A., & Abdelly, C. (2014). Potassium deficiency in plants: effects and signaling cascades. Acta Physiologiae Plantarum, 36(5), 1055-1070. DOI 10.1007/s11738-014-1491-2
  • Britto, D. T., & Kronzucker, H. J. (2008). Cellular mechanisms of potassium transport in plants. Physiologia Plantarum, 133(4), 637-650. https://doi.org/10.1111/j.1399-3054.2008.01067.x
  • Nieves‐Cordones, M., Ródenas, R., Lara, A., Martínez, V., & Rubio, F. (2019). The combination of K+ deficiency with other environmental stresses: what is the outcome?. Physiologia plantarum, 165(2), 264-276. https://doi.org/10.1111/ppl.12827
  • Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia plantarum, 151(3), 257-279. https://doi.org/10.1111/ppl.12165
  • Römheld, V., & Kirkby, E. A. (2010). Research on potassium in agriculture: needs and prospects. Plant and soil, 335(1), 155-180. https://doi.org/10.1007/s11104-010-0520-1
  • Sardans, J., & Peñuelas, J. (2015). Potassium: a neglected nutrient in global change. Global Ecology and Biogeography, 24(3), 261-275. https://doi.org/10.1111/geb.12259
  • Mikhailova, E., Cope, M., Groshans, G., Post, C., Schlautman, M., and Zhang, L. (2018). Contribution of atmospheric deposition to soil provisioning ecosystem services in the contiguous United States: Part 1. Calcium. ProScience 5, 58–68. doi: 10.14644/dust.2018.010
  • A.N.M. Roseli, T.F. Ying and N. Osman, Changes in Leaf Thickness, Chlorophyll Content, and Gas Exchange of a Landscape Tree, Xanthostemon chrysanthus, Treated with Paclobutrazol and Potassium Nitrate. Arboriculture & Urban Forestry, Vol.47(2), 2021.
  • M. Wang, Q. Zheng, Q. Shen and S. Guo, The critical role of potassium in plant stress response. International journal of molecular sciences, Vol. 14(4), pp: 7370-7390, 2013.
  • P. Shults, P. Nzokou and I. Koc, Nitrogen contributions of alley cropped Trifolium pratense may sustain short rotation woody crop yields on marginal lands. Nutrient Cycling in Agroecosystems, Vol. 117(2), pp: 261-272, 2020.
  • Koc, Using Cedrus atlantica’s annual rings as a biomonitor in observing the changes of Ni and Co concentrations in the atmosphere. Environmental Science and Pollution Research, 1-7, 2021a.
  • J. Guo, Y. Jia, H. Chen, L. Zhang, J. Yang, J. Zhang and Y. Zhou, Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific reports, Vol. 9(1), pp: 1-12, 2019.
  • D.K. Jaiswal, J.P. Verma, S Prakash, V.S. Meena and R.S. Meena, Potassium as an important plant nutrient in sustainable agriculture: a state of the art. Potassium solubilizing microorganisms for sustainable agriculture, 21-29, 2016.
  • A. Wakeel, M. Farooq, M. Qadir and S. Schubert, Potassium substitution by sodium in plants. Critical reviews in plant sciences, Vol. 30(4), pp: 401-413, 2011.
  • Xing, Y., Bubier, J., Moore, T., Murphy, M., Basiliko, N., Wendel, S., & Blodau, C. (2011). The fate of 15 N-nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry, 103(1), 281-296. https://doi.org/10.1007/s10533-010-9463-0
  • Zörb, C., Senbayram, M., & Peiter, E. (2014). Potassium in agriculture–status and perspectives. Journal of plant physiology, 171(9), 656-669. https://doi.org/10.1016/j.jplph.2013.08.008
  • Dibb, D. W., & Thompson Jr, W. R. (1985). Interaction of potassium with other nutrients. Potassium in agriculture, 515-533. https://doi.org/10.2134/1985.potassium.c22
  • Manning, D. A. (2010). Mineral sources of potassium for plant nutrition. A review. Agronomy for sustainable development, 30(2), 281-294. https://doi.org/10.1051/agro/2009023
  • Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils, 13th addition.
  • Bilias, F., and Barbayiannis, N. (2019). Potassium availability: an approach using thermodynamic parameters derived from quantity-intensity relationships. Geoderma 338, 355–364. doi: 10.1016/j.geoderma.2018.12.026
  • Bruteig, I. E. (1993). The epiphytic lichen Hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environmental monitoring and assessment, 26(1), 27-47. https://doi.org/10.1007/BF00555060
  • Schulz, H., Popp, P., Huhn, G., Stärk, H. J., & Schüürmann, G. (1999). Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Science of the Total Environment, 232(1-2), 49-58. https://doi.org/10.1016/S0048-9697(99)00109-6
  • Morselli, L., Bernardi, E., Vassura, I., Passarini, F., & Tesini, E. (2008). Chemical composition of wet and dry atmospheric depositions in an urban environment: local, regional and long-range influences. Journal of atmospheric chemistry, 59(3), 151-170. DOI 10.1007/s10874-008-9099-9
  • A Isinkaralar, K., & Erdem, R. (2021). Landscape Plants as Biomonitors for Magnesium Concentration in Some Species. International Journal of Progressive Sciences and Technologies, 29(2), 468-473.
  • Ghoma, W. E. O., Sevik, H., & Isinkaralar, K. (2022). Using indoor plants as biomonitors for detection of toxic metals by tobacco smoke. Air Quality, Atmosphere & Health, https://doi. org/10.1007/s11869-021-01146-z.
  • K. Işınkaralar and R. Erdem , "Changes of Calcium Content on Some Trees in Kocaeli", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 2, pp. 148-154, Dec. 2021
  • M. Çetin , H. Şevik , A. Türkyılmaz and K. Işınkaralar , "Using Abies’s Needles as Biomonitors of Recent Heavy Metal Accumulation", Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 1, pp. 1-6, Jun. 2021
  • Mahowald, N. M., Scanza, R., Brahney, J., Goodale, C. L., Hess, P. G., Moore, J. K., & Neff, J. (2017). Aerosol deposition impacts on land and ocean carbon cycles. Current Climate Change Reports, 3(1), 16-31. DOI 10.1007/s40641-017-0056-z
  • Wolterbeek, B. (2002). Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environmental pollution, 120(1), 11-21. https://doi.org/10.1016/S0269-7491(02)00124-0
  • USEPA E (1996) Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. United States Environmental Protection Agency, Washington, DC USA.
  • Nemzer, B., Al-Taher, F., & Abshiru, N. (2020). Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food chemistry, 320, 126621. https://doi.org/10.1016/j.foodchem.2020.126621
  • Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environmental pollution, 114(3), 471-492. https://doi.org/10.1016/S0269-7491(00)00224-4
  • A. Turkyilmaz, H. Sevik, K. Isinkaralar and M. Cetin, Using Acer platanoides annual rings to monitor the amount of heavy metals accumulated in air. Environ Monit Assess Vol.190, pp: 578, 2018a.
  • B. Aricak, M. Cetin, R. Erdem, H. Sevik and H. Cometen, The change of some heavy metal concentrations in Scotch pine (Pinus sylvestris) depending on traffic density, organelle and washing, Applied Ecology and Environmental Research, Vol. 17(3), pp: 6723-6734, 2019.
  • D. Güney, E. Seyis, F. Atar, A. Bayraktar and İ. Turna, Effects of some nitrogen-fixing plants on seedling growth of scotch pine, Turkish Journal of Forestry, Vol. 20(4), pp: 284-289, 2019b.
  • D. Güney, Z. Yahyaoglu, A. Bayraktar, F. Atar and I. Turna, Genetic diversity of Picea orientalis (L.) Link populations in Turkey. Šumarski list, Vol. 143(11-12), pp: 539-547, 2019a.
  • H. Sevik, M. Cetin, H.U. Ozel, H.B. Ozel, M.M.M. Mossi and I.Z. Cetin, Determination of Pb and Mg accumulation in some of the landscape plants in shrub forms. Environmental Science and Pollution Research, Vol. 27(2), pp: 2423-2431, 2020b.
  • T. Karacocuk, H. Sevik, K. Isinkaralar, A. Turkyilmaz and M. Cetin, The change of Cr and Mn concentrations in selected plants in Samsun city center depending on traffic density. Landscape and Ecological Engineering, Vol. 18(1), pp: 75-83, 2022.
  • D.S. Savas, H. Sevik, K. Isinkaralar, A. Turkyilmaz and M. Cetin, The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environ Sci Pollut Res, https://doi.org/10.1007/s11356-021-14826-1, 2021
  • A. Turkyilmaz, M. Cetin, H. Sevik, K. Isinkaralar and E.A.A. Saleh, Variation of heavy metal accumulation in certain landscaping plants due to traffic density. Environment, Development and Sustainability, Vol. 22(3), pp: 2385-2398, 2020.
  • H. Sevik, The Variation of Chrome Consantration in Some Landscape Plants Due to Species, Organ and Traffic Density. Turkish Journal of Agriculture-Food Science and Technology, Vol. 9(3), pp: 595-600, 2021.
There are 49 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Kaan Işınkaralar 0000-0003-1850-7515

Ramazan Erdem 0000-0002-5243-5685

Publication Date March 31, 2022
Submission Date November 21, 2021
Acceptance Date January 31, 2022
Published in Issue Year 2022

Cite

APA Işınkaralar, K., & Erdem, R. (2022). The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. Environmental Research and Technology, 5(1), 94-100. https://doi.org/10.35208/ert.1026602
AMA Işınkaralar K, Erdem R. The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. ERT. March 2022;5(1):94-100. doi:10.35208/ert.1026602
Chicago Işınkaralar, Kaan, and Ramazan Erdem. “The Effect of Atmospheric Deposition on Potassium Accumulation in Several Tree Species As a Biomonitor”. Environmental Research and Technology 5, no. 1 (March 2022): 94-100. https://doi.org/10.35208/ert.1026602.
EndNote Işınkaralar K, Erdem R (March 1, 2022) The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. Environmental Research and Technology 5 1 94–100.
IEEE K. Işınkaralar and R. Erdem, “The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor”, ERT, vol. 5, no. 1, pp. 94–100, 2022, doi: 10.35208/ert.1026602.
ISNAD Işınkaralar, Kaan - Erdem, Ramazan. “The Effect of Atmospheric Deposition on Potassium Accumulation in Several Tree Species As a Biomonitor”. Environmental Research and Technology 5/1 (March 2022), 94-100. https://doi.org/10.35208/ert.1026602.
JAMA Işınkaralar K, Erdem R. The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. ERT. 2022;5:94–100.
MLA Işınkaralar, Kaan and Ramazan Erdem. “The Effect of Atmospheric Deposition on Potassium Accumulation in Several Tree Species As a Biomonitor”. Environmental Research and Technology, vol. 5, no. 1, 2022, pp. 94-100, doi:10.35208/ert.1026602.
Vancouver Işınkaralar K, Erdem R. The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. ERT. 2022;5(1):94-100.