Review
BibTex RIS Cite
Year 2020, , 182 - 186, 31.12.2020
https://doi.org/10.35208/ert.788183

Abstract

References

  • [1] P. Pinyou, V. Blay, L. M. Muresan, T. Noguer, “Enzyme-modified electrodes for biosensors and biofuel cells”, Materials Horizons, Vol. 6(7), pp. 1336-1358, 2019.
  • [2] A. Kisieliute, A. Popov, R. M. Apetrei, G. Cârâc, I. Morkvenaite-Vilkonciene, A. Ramanaviciene, A. Ramanavicius, “Towards microbial biofuel cells: Improvement of charge transfer by self-modification of microoganisms with conducting polymer–Polypyrrole”, Chemical Engineering Journal, Vol. 356, pp. 1014-1021, 2019.
  • [3] M. Nishizawa, Carbon Nanotube-Based Enzymatic Biofuel Cells. “In Nanocarbons for Energy Conversion: Supramolecular Approaches”, Vol. 351-370. Springer, Cham. 2019
  • [4] R. A. Escalona-Villalpando, K. Hasan, R. D. Milton, A. Moreno-Zuria, L. G. Arriaga, S. D. Minteer, J. Ledesma-García, “Performance comparison of different configurations of Glucose/O2 microfluidic biofuel cell stack”, Journal of Power Sources, Vol. 414, pp 150-157. 2019.
  • [5 ] A. Sharma, G. Singh, S. K. Arya, “Biofuel cell nanodevices”, International Journal of Hydrogen Energy, 2020. [6] S. Hao, X. Sun, H. Zhang, J. Zhai, S. Dong, “Recent development of biofuel cell based self-powered biosensors”, Journal of Materials Chemistry B. 2020.
  • [7] M. Goor, S. Menkin, E. Peled, “High power direct methanol fuel cell for mobility and portable applications”, International Journal of Hydrogen Energy, vol. 44(5), pp. 3138-3143, 2019.
  • [8] J. Li, Y. Yu, D. Chen, G. Liu, D. Li, H. S. Lee, Y. Feng, “Hydrophilic graphene aerogel anodes enhance the performance of microbial electrochemical systems”, Bioresource Technology, vol. 304, pp. 12290, 2020.
  • [9] J. Yang, S. Cheng, C. Li, Y. Sun, H. Huang, “Shear Stress Affected Biofilm Structure and Consequently Current Generation of Bioanode in Microbial Electrochemical Systems (MESs)”. Frontiers in microbiology, vol. 10, pp. 398. (2019).
  • [10] J. Yang, Cheng, Li, P., Huang, H., Cen, K. “Sensitivity to oxygen in microbial electrochemical systems biofilms” iScience, vol. 13, pp. 163-172, 2019.
  • [11] B. Liu, H. Zhai, Y. Liang, Ji, M., R. “Wang Increased power production and removal efficiency of polycyclic aromatic hydrocarbons by plant pumps in sediment microbial electrochemical systems: A preliminary study,” Journal of hazardous materials, vol. 380, pp. 120896, 2019.
  • [12] Q. Yang, F. Zhang, J. Zhan C. Gao, M. Liu, “Perchlorate removal in microbial electrochemical systems with iron/carbon electrodes”, Frontiers in chemistry, vol. 7, pp. 19, 2019.
  • [13] A. Hagen, H. Langnickel, X. Sun, “Operation of solid oxide fuel cells with alternative hydrogen carriers”. International Journal of Hydrogen Energy, vol. 44(33), pp. 18382-18392, 2019.
  • [14] Pandey, “Biomass based bio-electro fuel cells based on carbon electrodes: an alternative source of renewable energy”, SN Applied Sciences, vol. 1(5), pp. 408, 2019.
  • [15] Y. H. Kwok, Y. Wang, M. Wu, F. Li, Y. Zhang, H. Zhang, D. Y. C. Leung, “A dual fuel microfluidic fuel cell utilizing solar energy and methanol”, Journal of Power Sources, vol. 409, pp. 58-65, 2019.
  • [16] B. Tanç, H. T. Arat, E. Baltacıoğlu, K. Aydın, “Overview of the next quarter century vision of hydrogen fuel cell electric vehicles”, International Journal of Hydrogen Energy, vol. 44(20), pp. 10120-10128, 2019.
  • [17] Y. B. Vogel, J. J. Gooding, S. Ciampi, “Light-addressable electrochemistry at semiconductor electrodes: Redox imaging, mask-free lithography and spatially resolved chemical and biological sensing”, Chemical Society Reviews, vol. 48(14), pp. 3723-3739, 2019.
  • [18] D. Ivnitski, B. Branch, P. Atanassov, C. Apblett, “Glucose oxidase anode for biofuel cell based on direct electron transfer”, Electrochemistry communications, vol. 8(8), pp. 1204-1210, 2006.
  • [19] Y. Kamitaka, S.Tsujimura, N. Setoyama, T. Kajino, K. Kano, “Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis”, Physical Chemistry Chemical Physics, vol. 9(15), pp. 1793-1801, 2007.
  • [4] C. Santoro, J. Winfield, P. Theodosiou, I. Ieropoulos, “Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design”, Bioresource technology reports, vol. 7, pp. 100297, 2019.
  • [20] M. Pontié, E. Jaspard, C. Friant, J. Kilani, A. Fix-Tailler, C. Innocent,... P. Y. Pontalier A sustainable fungal microbial fuel cell (FMFC) for the bioremediation of acetaminophen (APAP) and its main by-product (PAP) and energy production from biomass. Biocatalysis and Agricultural Biotechnology, vol. 22, pp. 101376, 2019.
  • [21] A. Y. Cetinkaya, O. K. Ozdemir, E. O. Koroglu, A. Hasimoglu, B. Ozkaya, “The development of catalytic performance by coating Pt–Ni on CMI7000 membrane as a cathode of a microbial fuel cell”,Bioresource technology, vol. 195, pp. 188-193, 2015.
  • [22] A. Y. Cetinkaya, O. K. Ozdemir, A. Demir, B. Ozkaya, “Electricity production and characterization of high-strength industrial wastewaters in microbial fuel cell”. Applied biochemistry and biotechnology, vol. 182(2), pp. 468-481, 2017.
  • [23] S. K. Butti, G. Velvizhi, M. L. Sulonen, J. M. Haavisto, E. O. Koroglu, A. Y. Cetinkaya,... A. Verma “Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling”, Renewable and Sustainable Energy Reviews, vol. 53, pp. 462-476, 2016.
  • [24] Y. Zhang, M. Liu, M. Zhou, H. Yang, L. Liang, T. Gu, “Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges”, Renewable and Sustainable Energy Reviews, vol.103, pp. 13-29, 2019.
  • [25] M. I. San-Martín, A., Sotres, R. M., Alonso, J., Díaz-Marcos, A., Morán, A. Escapa, “Assessing anodic microbial populations and membrane ageing in a pilot microbial electrolysis cell”. International Journal of Hydrogen Energy, vol. 44(32), pp. 17304-17315, 2019.
  • [26] M. H. Do, H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen Y. Liu M., Kumar, “Microbial fuel cell-based biosensor for online monitoring wastewater quality: A critical review.” Science of The Total Environment, vol.135612. 2019.
  • [26] K, Guo, A, Prévoteau, K. Rabaey, “A novel tubular microbial electrolysis cell for high rate hydrogen production”. Journal of Power Sources, vol. 356, pp. 484-490, 2017.
  • [27] Zhen, X, Lu, G. Kumar, P, Bakonyi, K. Xu, Y. Zhao, “Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives”, Progress in Energy and Combustion Science, 63, 119-145, 2017.
  • [28] Y, Li, J, Styczynski, Y, Huang, Z. Xu, J. McCutcheon, B. Li, Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC). Journal of Power Sources, vol. 356, pp. 529-538, 2017.
  • [29] C. Santoro, F. B, Abad, A. Serov, M. Kodali, K. J. Howe, F. Soavi, P. Atanassov, “Supercapacitive microbial desalination cells: new class of power generating devices for reduction of salinity content” Applied energy, vol. 208, pp. 25-36, 2017.
  • [30] A. Kadier, Y. Simayi, M. S. Kalil, P. Abdeshahian, A. A. Hamid, “A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas”, Renewable Energy, vol. 71, pp. 466-472, 2014.
  • [31] A. C. Sophia, V. M. Bhalambaal, E. C. Lima, M. Thirunavoukkarasu, “Microbial desalination cell technology: contribution to sustainable waste water treatment process, current status and future applications”, Journal of Environmental Chemical Engineering, vol. 4(3), pp. 3468-3478, 2016.
  • [32] H. M. Saeed, G. A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A. A. Fara, A. Aidan. “Microbial desalination cell technology: a review and a case study”. Desalination, vol. 359, pp. 1-13, 2015.
  • [33] S. M. Iskander, J. T. Novak, Z. He, “Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell”. Bioresource technology, vol. 255, pp. 76-82, 2018.

Bio-electroactive fuel cells and their applications

Year 2020, , 182 - 186, 31.12.2020
https://doi.org/10.35208/ert.788183

Abstract

Bio-electroactive fuel cells are systems that produce useful products from renewable sources without causing environmental pollution and treating waste. In this study, general design properties, operation mechanisms, application areas, and historical advancement of the bio-electroactive fuel cell was reviewed. Electricity generating microbial fuel cells offer new opportunities as with hydrogen and methane-producing microbial electrolysis cells due to their attractive variety of electroactive microorganisms and operating situations. This article provides an up-to-date review for Bio-electroactive fuel cells and outlines instructions for future studies.

References

  • [1] P. Pinyou, V. Blay, L. M. Muresan, T. Noguer, “Enzyme-modified electrodes for biosensors and biofuel cells”, Materials Horizons, Vol. 6(7), pp. 1336-1358, 2019.
  • [2] A. Kisieliute, A. Popov, R. M. Apetrei, G. Cârâc, I. Morkvenaite-Vilkonciene, A. Ramanaviciene, A. Ramanavicius, “Towards microbial biofuel cells: Improvement of charge transfer by self-modification of microoganisms with conducting polymer–Polypyrrole”, Chemical Engineering Journal, Vol. 356, pp. 1014-1021, 2019.
  • [3] M. Nishizawa, Carbon Nanotube-Based Enzymatic Biofuel Cells. “In Nanocarbons for Energy Conversion: Supramolecular Approaches”, Vol. 351-370. Springer, Cham. 2019
  • [4] R. A. Escalona-Villalpando, K. Hasan, R. D. Milton, A. Moreno-Zuria, L. G. Arriaga, S. D. Minteer, J. Ledesma-García, “Performance comparison of different configurations of Glucose/O2 microfluidic biofuel cell stack”, Journal of Power Sources, Vol. 414, pp 150-157. 2019.
  • [5 ] A. Sharma, G. Singh, S. K. Arya, “Biofuel cell nanodevices”, International Journal of Hydrogen Energy, 2020. [6] S. Hao, X. Sun, H. Zhang, J. Zhai, S. Dong, “Recent development of biofuel cell based self-powered biosensors”, Journal of Materials Chemistry B. 2020.
  • [7] M. Goor, S. Menkin, E. Peled, “High power direct methanol fuel cell for mobility and portable applications”, International Journal of Hydrogen Energy, vol. 44(5), pp. 3138-3143, 2019.
  • [8] J. Li, Y. Yu, D. Chen, G. Liu, D. Li, H. S. Lee, Y. Feng, “Hydrophilic graphene aerogel anodes enhance the performance of microbial electrochemical systems”, Bioresource Technology, vol. 304, pp. 12290, 2020.
  • [9] J. Yang, S. Cheng, C. Li, Y. Sun, H. Huang, “Shear Stress Affected Biofilm Structure and Consequently Current Generation of Bioanode in Microbial Electrochemical Systems (MESs)”. Frontiers in microbiology, vol. 10, pp. 398. (2019).
  • [10] J. Yang, Cheng, Li, P., Huang, H., Cen, K. “Sensitivity to oxygen in microbial electrochemical systems biofilms” iScience, vol. 13, pp. 163-172, 2019.
  • [11] B. Liu, H. Zhai, Y. Liang, Ji, M., R. “Wang Increased power production and removal efficiency of polycyclic aromatic hydrocarbons by plant pumps in sediment microbial electrochemical systems: A preliminary study,” Journal of hazardous materials, vol. 380, pp. 120896, 2019.
  • [12] Q. Yang, F. Zhang, J. Zhan C. Gao, M. Liu, “Perchlorate removal in microbial electrochemical systems with iron/carbon electrodes”, Frontiers in chemistry, vol. 7, pp. 19, 2019.
  • [13] A. Hagen, H. Langnickel, X. Sun, “Operation of solid oxide fuel cells with alternative hydrogen carriers”. International Journal of Hydrogen Energy, vol. 44(33), pp. 18382-18392, 2019.
  • [14] Pandey, “Biomass based bio-electro fuel cells based on carbon electrodes: an alternative source of renewable energy”, SN Applied Sciences, vol. 1(5), pp. 408, 2019.
  • [15] Y. H. Kwok, Y. Wang, M. Wu, F. Li, Y. Zhang, H. Zhang, D. Y. C. Leung, “A dual fuel microfluidic fuel cell utilizing solar energy and methanol”, Journal of Power Sources, vol. 409, pp. 58-65, 2019.
  • [16] B. Tanç, H. T. Arat, E. Baltacıoğlu, K. Aydın, “Overview of the next quarter century vision of hydrogen fuel cell electric vehicles”, International Journal of Hydrogen Energy, vol. 44(20), pp. 10120-10128, 2019.
  • [17] Y. B. Vogel, J. J. Gooding, S. Ciampi, “Light-addressable electrochemistry at semiconductor electrodes: Redox imaging, mask-free lithography and spatially resolved chemical and biological sensing”, Chemical Society Reviews, vol. 48(14), pp. 3723-3739, 2019.
  • [18] D. Ivnitski, B. Branch, P. Atanassov, C. Apblett, “Glucose oxidase anode for biofuel cell based on direct electron transfer”, Electrochemistry communications, vol. 8(8), pp. 1204-1210, 2006.
  • [19] Y. Kamitaka, S.Tsujimura, N. Setoyama, T. Kajino, K. Kano, “Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis”, Physical Chemistry Chemical Physics, vol. 9(15), pp. 1793-1801, 2007.
  • [4] C. Santoro, J. Winfield, P. Theodosiou, I. Ieropoulos, “Supercapacitive paper based microbial fuel cell: High current/power production within a low cost design”, Bioresource technology reports, vol. 7, pp. 100297, 2019.
  • [20] M. Pontié, E. Jaspard, C. Friant, J. Kilani, A. Fix-Tailler, C. Innocent,... P. Y. Pontalier A sustainable fungal microbial fuel cell (FMFC) for the bioremediation of acetaminophen (APAP) and its main by-product (PAP) and energy production from biomass. Biocatalysis and Agricultural Biotechnology, vol. 22, pp. 101376, 2019.
  • [21] A. Y. Cetinkaya, O. K. Ozdemir, E. O. Koroglu, A. Hasimoglu, B. Ozkaya, “The development of catalytic performance by coating Pt–Ni on CMI7000 membrane as a cathode of a microbial fuel cell”,Bioresource technology, vol. 195, pp. 188-193, 2015.
  • [22] A. Y. Cetinkaya, O. K. Ozdemir, A. Demir, B. Ozkaya, “Electricity production and characterization of high-strength industrial wastewaters in microbial fuel cell”. Applied biochemistry and biotechnology, vol. 182(2), pp. 468-481, 2017.
  • [23] S. K. Butti, G. Velvizhi, M. L. Sulonen, J. M. Haavisto, E. O. Koroglu, A. Y. Cetinkaya,... A. Verma “Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling”, Renewable and Sustainable Energy Reviews, vol. 53, pp. 462-476, 2016.
  • [24] Y. Zhang, M. Liu, M. Zhou, H. Yang, L. Liang, T. Gu, “Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges”, Renewable and Sustainable Energy Reviews, vol.103, pp. 13-29, 2019.
  • [25] M. I. San-Martín, A., Sotres, R. M., Alonso, J., Díaz-Marcos, A., Morán, A. Escapa, “Assessing anodic microbial populations and membrane ageing in a pilot microbial electrolysis cell”. International Journal of Hydrogen Energy, vol. 44(32), pp. 17304-17315, 2019.
  • [26] M. H. Do, H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen Y. Liu M., Kumar, “Microbial fuel cell-based biosensor for online monitoring wastewater quality: A critical review.” Science of The Total Environment, vol.135612. 2019.
  • [26] K, Guo, A, Prévoteau, K. Rabaey, “A novel tubular microbial electrolysis cell for high rate hydrogen production”. Journal of Power Sources, vol. 356, pp. 484-490, 2017.
  • [27] Zhen, X, Lu, G. Kumar, P, Bakonyi, K. Xu, Y. Zhao, “Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives”, Progress in Energy and Combustion Science, 63, 119-145, 2017.
  • [28] Y, Li, J, Styczynski, Y, Huang, Z. Xu, J. McCutcheon, B. Li, Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC). Journal of Power Sources, vol. 356, pp. 529-538, 2017.
  • [29] C. Santoro, F. B, Abad, A. Serov, M. Kodali, K. J. Howe, F. Soavi, P. Atanassov, “Supercapacitive microbial desalination cells: new class of power generating devices for reduction of salinity content” Applied energy, vol. 208, pp. 25-36, 2017.
  • [30] A. Kadier, Y. Simayi, M. S. Kalil, P. Abdeshahian, A. A. Hamid, “A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas”, Renewable Energy, vol. 71, pp. 466-472, 2014.
  • [31] A. C. Sophia, V. M. Bhalambaal, E. C. Lima, M. Thirunavoukkarasu, “Microbial desalination cell technology: contribution to sustainable waste water treatment process, current status and future applications”, Journal of Environmental Chemical Engineering, vol. 4(3), pp. 3468-3478, 2016.
  • [32] H. M. Saeed, G. A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A. A. Fara, A. Aidan. “Microbial desalination cell technology: a review and a case study”. Desalination, vol. 359, pp. 1-13, 2015.
  • [33] S. M. Iskander, J. T. Novak, Z. He, “Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell”. Bioresource technology, vol. 255, pp. 76-82, 2018.
There are 34 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Review
Authors

Afşin Çetinkaya 0000-0001-8071-6444

Sadullah Levent Kuzu 0000-0002-2251-3400

Ahmet Demir 0000-0001-6902-5626

Publication Date December 31, 2020
Submission Date August 31, 2020
Acceptance Date October 4, 2020
Published in Issue Year 2020

Cite

APA Çetinkaya, A., Kuzu, S. L., & Demir, A. (2020). Bio-electroactive fuel cells and their applications. Environmental Research and Technology, 3(4), 182-186. https://doi.org/10.35208/ert.788183
AMA Çetinkaya A, Kuzu SL, Demir A. Bio-electroactive fuel cells and their applications. ERT. December 2020;3(4):182-186. doi:10.35208/ert.788183
Chicago Çetinkaya, Afşin, Sadullah Levent Kuzu, and Ahmet Demir. “Bio-Electroactive Fuel Cells and Their Applications”. Environmental Research and Technology 3, no. 4 (December 2020): 182-86. https://doi.org/10.35208/ert.788183.
EndNote Çetinkaya A, Kuzu SL, Demir A (December 1, 2020) Bio-electroactive fuel cells and their applications. Environmental Research and Technology 3 4 182–186.
IEEE A. Çetinkaya, S. L. Kuzu, and A. Demir, “Bio-electroactive fuel cells and their applications”, ERT, vol. 3, no. 4, pp. 182–186, 2020, doi: 10.35208/ert.788183.
ISNAD Çetinkaya, Afşin et al. “Bio-Electroactive Fuel Cells and Their Applications”. Environmental Research and Technology 3/4 (December 2020), 182-186. https://doi.org/10.35208/ert.788183.
JAMA Çetinkaya A, Kuzu SL, Demir A. Bio-electroactive fuel cells and their applications. ERT. 2020;3:182–186.
MLA Çetinkaya, Afşin et al. “Bio-Electroactive Fuel Cells and Their Applications”. Environmental Research and Technology, vol. 3, no. 4, 2020, pp. 182-6, doi:10.35208/ert.788183.
Vancouver Çetinkaya A, Kuzu SL, Demir A. Bio-electroactive fuel cells and their applications. ERT. 2020;3(4):182-6.