Research Article
BibTex RIS Cite
Year 2021, , 140 - 144, 30.06.2021
https://doi.org/10.35208/ert.845761

Abstract

Supporting Institution

Sakarya Üniversitesi

References

  • [1]. OECD-FAO, OECD-FAO Agricultural Outlook 2016–2025: Meats, 2016.
  • [2]. http://www.besd-bir.org/istatistikler, İSTATİSTİKLER - BESD-BİR Beyaz Et Sanayicileri ve Damızlıkçıları Birliği Derneği, (accessed February 18, 2020).
  • [3]. I.H. Franke-Whittle, H. Insam, Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review, Crit. Rev. Microbiol. 39 139–151,2013.
  • [4]. G.S. Mittal, Treatment of wastewater from abattoirs before land application - A review, Bioresour. Technol. 97,1119–1135, 2006.
  • [5]. C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis, J. Environ. Manage. 182,651–666, 2016.
  • [6]. I. Ruiz, M.C. Veiga, P. de Santiago, R. Blázquez, Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter, Bioresour. Technol. 60, 251–258,1997.
  • [7]. R. Davarnejad, S. Nasiri, Slaughterhouse wastewater treatment using an advanced oxidation process: Optimization study, Environ. Pollut. 223, 1–10, 2017.
  • [8]. W. Cao, M. Mehrvar, Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes, Chem. Eng. Res. Des. 89, 1136–1143, 2011.
  • [9]. D.I. Massé, L. Masse, The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors, Bioresour. Technol. 76,91–98, 2001.
  • [10]. A.R. Rajab, M.R. Salim, J. Sohaili, A.N. Anuar, Salmiati, S.K. Lakkaboyana, Performance of integrated anaerobic/aerobic sequencing batch reactor treating poultry slaughterhouse wastewater, Chem. Eng. J. 313 967–974,2017.
  • [11]. K.V. Naderi, C.F. Bustillo-Lecompte, M. Mehrvar, M.J. Abdekhodaie, Combined UV-C/H 2 O 2 -VUV processes for the treatment of an actual slaughterhouse wastewater, J. Environ. Sci. Heal. Part B. 52, 314–325, 2017.
  • [12]. L.Barsanti, P. Gualtieri, Algae: anatomy, biochemistry, and biotechnology, 44-0924-44-0924,2013.
  • [13]. C.U. Ugwu, H. Aoyagi, H. Uchiyama, Photobioreactors for mass cultivation of algae, Bioresour. Technol. 99,4021–4028,2008. [14]. B. Bitton, L. Lustigman, Algae biotechnology, 2821, 189 – 203, 1991.
  • [15]. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, R. Ruan, Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant, Appl. Biochem. Biotechnol. 162,1174–1186, 2010.
  • [16]. T.E. Murphy, H. Berberoĝlu, Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective, J. Quant. Spectrosc. Radiat. Transf. 112,2826–2834,2011. [17]. R.N. Singh, S. Sharma, Development of suitable photobioreactor for algae production - A review, Renew. Sustain. Energy Rev. 16, 2347–2353, 2012. [18]. APHA, 2540 SOLIDS (2017), in: Stand. Methods Exam. Water Wastewater, 23rd ed., 2017.
  • [19]. C.M. Drapcho, D.E. Brune, The partitioned aquaculture system: Impact of design and environmental parameters on algal productivity and photosynthetic oxygen production, Aquac. Eng. 21,151–168 ,2000.
  • [20]. D. Amrei, P.F. shariati, A Novel Open Raceway Pond Design for Microalgae Growth and Nutrients Removal from Treated Slaughterhouse Wastewater, 4,103–110,2018
  • [21]. Q. Lu, W. Zhou, M. Min, X. Ma, C. Chandra, Y.T.T. Doan, Y. Ma, H. Zheng, S. Cheng, R. Griffith, P. Chen, C. Chen, P.E. Urriola, G.C. Shurson, H.R. Gislerød, R. Ruan, Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production, Bioresour. Technol. 198, 189–197,2015.
  • [22]. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, R. Ruan, Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Appl. Biochem. Biotechnol. 162 ,1174–1186,2010.
  • [23]. R. Azam, R. Kothari, H.M. Singh, S. Ahmad, V. Ashokkumar, V. V Tyagi, Production of algal biomass for its biochemical profile using slaughterhouse wastewater for treatment under axenic conditions,306,123116 ,2020.
  • [24]. E. Taşkan, Performance of mixed algae for treatment of slaughterhouse wastewater and microbial community analysis, Environ. Sci. Pollut. Res. 23,20474–20482,2016
  • [25]. D. Hernández, B. Riaño, M. Coca, M. Solana, A. Bertucco, M.C. García-González, Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications, Chem. Eng. J. 285, 449–458,2016.
  • [26]. Z. Kadhim, Evaluation of Microalgae for Secondary and Tertiary Wastewater Treatment, Master in Applied Science, Department of Civil and Environmental Engineering Carleton University, 2014.
  • [27]. K. Larsdotter, Wastewater Treatment with Microalgae-A Literature Review, VATTEN, 62,31–38, 2006.
  • [28]. M.T. Myint, A. Ghassemi, N. Nirmalakhandan, A generic stoichiometric equation for microalgae-microorganism nexus by using clarified domestic wastewater as growth medium, Desalin. Water Treat. 51, 6632–6640, 2013.
  • [29]. Y. Su, A. Mennerich, B. Urban, Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture, Water Res. 45,3351–3358, 2011.
  • [30]. P.G. Stephenson, C.M. Moore, M.J. Terry, M. V. Zubkov, T.S. Bibby, Improving photosynthesis for algal biofuels: Toward a green revolution, Trends Biotechnol. 29, 615–623,2011.
  • [31]. A. Otondo, B. Kokabian, S. Stuart-Dahl, V.G. Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris, J. Environ. Chem. Eng. 6, 3213–3222, 2018.
  • [32]. S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, Cultivation of Chlorella pyrenoidosa in soybean processing wastewater, Bioresour. Technol. 102, 9884–9890, 2011.

Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit

Year 2021, , 140 - 144, 30.06.2021
https://doi.org/10.35208/ert.845761

Abstract

Meat and meat products are some of the primary consumption products required for the continuation of life. The world population accessed over 7.5 billion that means the demand for food is increasing every day. Slaughterhouses and integrated meat facilities are being rapidly developed and established to meet meat and meat product requirements. In slaughterhouse poultry plants, high amounts of water are utilized for the meatpacking process. The poultry slaughterhouse wastewaters contain high levels of organic solids such as fat, blood, suspended matter, and dissolved protein, which can be treated using physical, chemical, and biological treatment methods. In this study, the treatment of poultry slaughterhouse wastewater preliminarily treated by dissolved air flotation, with microalgae culture (Chlorella Vulgaris) development, unlike traditional treatments, was investigated. Chemical oxygen demand and total suspended solids parameters for wastewater treatment have been monitored for 15 days of incubation. 0.8, 4, 8, 12, and 20% by volume algae were applied for slaughterhouse wastewater, and the optimum amount of algal inoculation was determined after 15 days. When the removal efficiencies were examined, the most appropriate amount of inoculation rate with 76 % chemical oxygen demand removal and 87% algal growth (as total suspended solids) was selected as 12%.

References

  • [1]. OECD-FAO, OECD-FAO Agricultural Outlook 2016–2025: Meats, 2016.
  • [2]. http://www.besd-bir.org/istatistikler, İSTATİSTİKLER - BESD-BİR Beyaz Et Sanayicileri ve Damızlıkçıları Birliği Derneği, (accessed February 18, 2020).
  • [3]. I.H. Franke-Whittle, H. Insam, Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review, Crit. Rev. Microbiol. 39 139–151,2013.
  • [4]. G.S. Mittal, Treatment of wastewater from abattoirs before land application - A review, Bioresour. Technol. 97,1119–1135, 2006.
  • [5]. C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis, J. Environ. Manage. 182,651–666, 2016.
  • [6]. I. Ruiz, M.C. Veiga, P. de Santiago, R. Blázquez, Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter, Bioresour. Technol. 60, 251–258,1997.
  • [7]. R. Davarnejad, S. Nasiri, Slaughterhouse wastewater treatment using an advanced oxidation process: Optimization study, Environ. Pollut. 223, 1–10, 2017.
  • [8]. W. Cao, M. Mehrvar, Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes, Chem. Eng. Res. Des. 89, 1136–1143, 2011.
  • [9]. D.I. Massé, L. Masse, The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors, Bioresour. Technol. 76,91–98, 2001.
  • [10]. A.R. Rajab, M.R. Salim, J. Sohaili, A.N. Anuar, Salmiati, S.K. Lakkaboyana, Performance of integrated anaerobic/aerobic sequencing batch reactor treating poultry slaughterhouse wastewater, Chem. Eng. J. 313 967–974,2017.
  • [11]. K.V. Naderi, C.F. Bustillo-Lecompte, M. Mehrvar, M.J. Abdekhodaie, Combined UV-C/H 2 O 2 -VUV processes for the treatment of an actual slaughterhouse wastewater, J. Environ. Sci. Heal. Part B. 52, 314–325, 2017.
  • [12]. L.Barsanti, P. Gualtieri, Algae: anatomy, biochemistry, and biotechnology, 44-0924-44-0924,2013.
  • [13]. C.U. Ugwu, H. Aoyagi, H. Uchiyama, Photobioreactors for mass cultivation of algae, Bioresour. Technol. 99,4021–4028,2008. [14]. B. Bitton, L. Lustigman, Algae biotechnology, 2821, 189 – 203, 1991.
  • [15]. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, R. Ruan, Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant, Appl. Biochem. Biotechnol. 162,1174–1186, 2010.
  • [16]. T.E. Murphy, H. Berberoĝlu, Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective, J. Quant. Spectrosc. Radiat. Transf. 112,2826–2834,2011. [17]. R.N. Singh, S. Sharma, Development of suitable photobioreactor for algae production - A review, Renew. Sustain. Energy Rev. 16, 2347–2353, 2012. [18]. APHA, 2540 SOLIDS (2017), in: Stand. Methods Exam. Water Wastewater, 23rd ed., 2017.
  • [19]. C.M. Drapcho, D.E. Brune, The partitioned aquaculture system: Impact of design and environmental parameters on algal productivity and photosynthetic oxygen production, Aquac. Eng. 21,151–168 ,2000.
  • [20]. D. Amrei, P.F. shariati, A Novel Open Raceway Pond Design for Microalgae Growth and Nutrients Removal from Treated Slaughterhouse Wastewater, 4,103–110,2018
  • [21]. Q. Lu, W. Zhou, M. Min, X. Ma, C. Chandra, Y.T.T. Doan, Y. Ma, H. Zheng, S. Cheng, R. Griffith, P. Chen, C. Chen, P.E. Urriola, G.C. Shurson, H.R. Gislerød, R. Ruan, Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production, Bioresour. Technol. 198, 189–197,2015.
  • [22]. L. Wang, M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, R. Ruan, Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Appl. Biochem. Biotechnol. 162 ,1174–1186,2010.
  • [23]. R. Azam, R. Kothari, H.M. Singh, S. Ahmad, V. Ashokkumar, V. V Tyagi, Production of algal biomass for its biochemical profile using slaughterhouse wastewater for treatment under axenic conditions,306,123116 ,2020.
  • [24]. E. Taşkan, Performance of mixed algae for treatment of slaughterhouse wastewater and microbial community analysis, Environ. Sci. Pollut. Res. 23,20474–20482,2016
  • [25]. D. Hernández, B. Riaño, M. Coca, M. Solana, A. Bertucco, M.C. García-González, Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications, Chem. Eng. J. 285, 449–458,2016.
  • [26]. Z. Kadhim, Evaluation of Microalgae for Secondary and Tertiary Wastewater Treatment, Master in Applied Science, Department of Civil and Environmental Engineering Carleton University, 2014.
  • [27]. K. Larsdotter, Wastewater Treatment with Microalgae-A Literature Review, VATTEN, 62,31–38, 2006.
  • [28]. M.T. Myint, A. Ghassemi, N. Nirmalakhandan, A generic stoichiometric equation for microalgae-microorganism nexus by using clarified domestic wastewater as growth medium, Desalin. Water Treat. 51, 6632–6640, 2013.
  • [29]. Y. Su, A. Mennerich, B. Urban, Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture, Water Res. 45,3351–3358, 2011.
  • [30]. P.G. Stephenson, C.M. Moore, M.J. Terry, M. V. Zubkov, T.S. Bibby, Improving photosynthesis for algal biofuels: Toward a green revolution, Trends Biotechnol. 29, 615–623,2011.
  • [31]. A. Otondo, B. Kokabian, S. Stuart-Dahl, V.G. Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris, J. Environ. Chem. Eng. 6, 3213–3222, 2018.
  • [32]. S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, Cultivation of Chlorella pyrenoidosa in soybean processing wastewater, Bioresour. Technol. 102, 9884–9890, 2011.
There are 29 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Meryem Aksu 0000-0003-0678-7150

Pınar Nazire Tanattı 0000-0002-2904-7334

Büşra Erden 0000-0002-4519-2531

İsmail Ayhan Şengil 0000-0002-1858-3369

Publication Date June 30, 2021
Submission Date December 23, 2020
Acceptance Date May 9, 2021
Published in Issue Year 2021

Cite

APA Aksu, M., Tanattı, P. N., Erden, B., Şengil, İ. A. (2021). Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit. Environmental Research and Technology, 4(2), 140-144. https://doi.org/10.35208/ert.845761
AMA Aksu M, Tanattı PN, Erden B, Şengil İA. Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit. ERT. June 2021;4(2):140-144. doi:10.35208/ert.845761
Chicago Aksu, Meryem, Pınar Nazire Tanattı, Büşra Erden, and İsmail Ayhan Şengil. “Investigation of Microalgal Treatment for Poultry Slaughterhouse Wastewater After the Dissolved Air Flotation Unit”. Environmental Research and Technology 4, no. 2 (June 2021): 140-44. https://doi.org/10.35208/ert.845761.
EndNote Aksu M, Tanattı PN, Erden B, Şengil İA (June 1, 2021) Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit. Environmental Research and Technology 4 2 140–144.
IEEE M. Aksu, P. N. Tanattı, B. Erden, and İ. A. Şengil, “Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit”, ERT, vol. 4, no. 2, pp. 140–144, 2021, doi: 10.35208/ert.845761.
ISNAD Aksu, Meryem et al. “Investigation of Microalgal Treatment for Poultry Slaughterhouse Wastewater After the Dissolved Air Flotation Unit”. Environmental Research and Technology 4/2 (June 2021), 140-144. https://doi.org/10.35208/ert.845761.
JAMA Aksu M, Tanattı PN, Erden B, Şengil İA. Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit. ERT. 2021;4:140–144.
MLA Aksu, Meryem et al. “Investigation of Microalgal Treatment for Poultry Slaughterhouse Wastewater After the Dissolved Air Flotation Unit”. Environmental Research and Technology, vol. 4, no. 2, 2021, pp. 140-4, doi:10.35208/ert.845761.
Vancouver Aksu M, Tanattı PN, Erden B, Şengil İA. Investigation of microalgal treatment for poultry slaughterhouse wastewater after the dissolved air flotation unit. ERT. 2021;4(2):140-4.