Review
BibTex RIS Cite
Year 2021, , 145 - 151, 30.06.2021
https://doi.org/10.35208/ert.860440

Abstract

References

  • [1]. B. Yıldız Fendoğlu, B. Koçer-Gümüşel, and P. Erkekoğlu, “A General Overview on Endocrine Disrupting Chemicals and Their Mechanism of Action”, Hacettepe University Journal of the Faculty of Pharmacy, Vol. 39 (1), pp. 30-43, 2019.
  • [2]. A.H. Bern,. “Hormones and Endocrine Glands of Fishes”, Science, 158, 455-462, 1967.
  • [3]. M. Kuru, Vertebrate Animals, 8th ed., Palme, Ankara. 2006.
  • [4]. H. Parlak, Ö. Çakal Arslan, M. Boyacıoğlu, and M.A. Karaarslan, Ecotoxicology. Ege University Press, İzmir. 2011.
  • [5]. B. Yurdakök, “Endocrin Disruptors”, Turkish Veterinarian Journal, 13(3-4), 84-98, 2013.
  • [6]. A. Bergman, J.J. Heindel, S. Jobling, K.A. Kidd, and R.T. Zoeller, State of the Science of Endocrine Distrupting Chemicals 2012, WHO and UNEP, 2012.
  • [7]. E. Ingre-Khans, M. Agerstrand, and C. Ruden, Endocrine disrupting chemicals in the marine environment. Department of Environmental Science and Analytical Chemistry (ACES) report 16, Stockholm University, 2017.
  • [8]. O. Kuzukıran, A. Filazi, P. Arslan, B. Yurdakök-Dikmen, İ. Şimşek, and Y. Turgut, “Kuzu Dokularında Endokrin Bozucu Klorlu Kimyasal Varlığının Gaz Kromatografi Kütle Spektrometrisi ile Saptanması ve Cinsiyetin Etkisi)”, Journal of Research in Veterinary Medicine, 38:2, 72-82, 2019.
  • [9]. O. Kuzukıran, A. Filazi, P. Arslan, B. Yurdakök-Dikmen,and U.N. Yazgan-Tavsanoğlu, “Determination of Persistent Organic Pollutants in Water and Sediment Samples from Kızılırmak River”, Kocatepe Veterinary Journal, 12(4), 430-436, 2019.
  • [10]. L.H. Keith, “Environmental Endocrine Disruptors”, Pure and Applied Chemistry, 70(12), 2319-2326, 1998.
  • [11]. S. Çetinkaya, “Endocrine disruptors and their effects on puberty”, Dicle Tıp Dergisi, 36(1), 59-66, 2009.
  • [12]. J. He, T. Peng, X. Yang, and H. Liu, “Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor”, Ecotoxicology and Environmental Safety, 148, 211-219, 2018.
  • [13]. E. Atmaca, “Effects of Pesticides on Aquatic Organisms”, Turkiye Klinikleri Journal of Veterinary Science Pharmacology and Toxicology-Special Topics, 2(2), 50-57, 2016.
  • [14]. A. Aksan, and A. Özdemi̇r, “ Endocrine Disruptors”, Hacettepe University Faculty of Health Sciences Journal, 3(2), 1-14, 2016.
  • [15]. E. Diamanti-Kandarakis, J.P. Bourguignon, L.C. Giudice, and R. Hauser, “Endocrine-disrupting chemicals: an endocrine society scientific statement”, Endocrine Reviews, 30(4), 293–342, 2009.
  • [16]. P. Erkekoğlu, and B. Koçer-Gümüşel, “Genotoxicity of phthalates”, Toxicology Mechanisms and Methods, 24(9), 616-626, 2014.
  • [17]. M. Nikinmaa, “An Introduction to Aquatic Toxicology”, Elsevier, 240, Oxford, UK. 2014.
  • [18]. N. Suzuki, A. Kambegawa, and A. Hattori, “Bisphenol A influences the plasma calcium level and inhibits calcitonin secretion in goldfish”, Zoological Science, 20(6), 745-748, 2003.
  • [19]. A. Tabata, N. Watanabe, I. Yamamoto, Y. Ohnishi, M. Itoh, T. Kamei, Y. Magara, and Y. Terao, “The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes)”, Water Science and Technology, 50(5), 125-132, 2004.
  • [20]. K. Van den Belt, R. Verheyen, and H. Witters, “Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens”, Ecotoxicological Environmental Safety, 56, 271-281, 2003.
  • [21]. P. Sohoni, C.R. Tyler, K. Hurd, J. Caunter, M. Hetheridge, T. Williams, C. Woods, M. Evans, R. Toy, M. Gargas, and J.P. Sumpter, “Reproductive effects of long-term exposure to Bisphenol A in the fathead minnow (Pimephales promelas)”, Environmental Science and Technology, 35, 2917-2925, 2001.
  • [22]. M. Calo, D. Alberghina, A. Bitto, E.R. Lauriano, and P. Lo Cascio, “Estrogenic followed by anti-estrogenic effects of PCBs exposure in juvenil fish (Sparus aurata)”, Food and Chemical Toxicology, 48, 2458-2463, 2010.
  • [23]. T.M. Uren-Webster, C. Lewis, A.L. Filby, G.C. Paull, and E.M. Santos, “Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish”, Aquatic Toxicology, 99(3), 360-369, 2010.
  • [24]. T. Ye, M. Kang, Q. Huang, C. Fang, Y. Chen, H. Shen, and S. Sijun Dong, “Exposure to DEHP and MEHP from hatching to adulthood causes reproductive dysfunction and endocrine disruption in marine medaka (Oryzias melastigma)”, Aquatic Toxicology, 146, 115-126, 2014.
  • [25]. J.E. Hose, J.N. Cross, S.G.S. Smith, and D. Dichi, “Reproductive impairment in a fish inhabiting a contaminated coastal environment off of Southern California”, Environmental Pollution, 57, 139-148, 1989.
  • [26]. H. Dutta, A. Nath, S. Adhikari, P. Roy, N. Singh, and J. Data Munshi, “Sublethal malathion induced changes in the ovary of an air-breathing fish, Heteropneustes fossilis: A histological study”, Hydrobiologica, 294, 215-218, 1994.
  • [27]. D.E. Tillitt, D.M. Papoulias, J.J. Whyte, and C.A. Richter, “Atrazine reduces reproduction in fathead minnow (Pimephales promelas)”, Aquatic Toxicology, 99, 149-159, 2010.
  • [28]. E.K. Muirhead, A.D. Skillman, S.E. Hook, and I.R. Schultz, “Oral exposure of PBDE-47 in fish: toxicokinetics and reproductive effects in Japanese Medaka (Oryzias latipes) and fathead minnows (Pimephales promelas)”, Environmental Science Technology, 40, 523-528, 2006.
  • [29]. R.V. Kuiper, A.D. Vethaak, R.F. Canton, H. Anselmo, M. Dubbeldam, E.J. van den Brandhof, P.E. Leonards, P.W. Wester, and M. van den Berg, “Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish (Danio rerio)”, Chemosphere, 73, 195–202, 2008.
  • [30]. S.C. Lerna, I.R. Schultz, N.L. Scholz, J.P. Incardona, and P. Swanson, “Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)”, Aquatic Toxicology, 82, 296-307, 2007.
  • [31]. S. Mukhi, L. Torres, and R. Patino, “Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios”, General and Comparative Endocrinology, 150, 486-494, 2007.
  • [32]. W.S. Hoar, and D.J. Randall, Fish Physiology Volume XI The Phsiology of Developing Fish Part A Eggs and Larvae. Academic Press Inc. Ltd, 546, London, UK. 1998.
  • [33]. S.D. Pastva, S.A. Villalobos, K. Kannan, and J.P. Giesy, “Morphological effects of Bisphenol-A on the early life stages of medaka (Oryzias latipes)”, Chemosphere, 45, 535-541, 2001.
  • [34]. M. Kishida, and G.V. Callard, “Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development”, Endocrinology, 142, 740-50, 2001.
  • [35]. F. Sanchez-Bayo, and K. Goka, “Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes)”, Aquatic Toxicology, 74(4), 285-293, 2005.
  • [36]. K.M. Almond, and L.D. Trombetta, “The effects of copperpyrithione, an antifouling agent, on developing zebrafish embryos”, Ecotoxicology, 25, 389-398, 2016.
  • [37]. X. Zhao, S. Wang, D. Li, H. You, and X. Ren, “Effects of perchlorate on BDE-47-induced alteration thyroid homone and gene expression of in the hypothalanus-pituitary-thyroid axis in zebrafish larvae”, Environmental Toxicology and Pharmacology, 36, 1176-1185, 2013.
  • [38]. M.K. Yeo, and M. Kang, “Photodecomposition of bisphenol A on nanometer-sized TiO2 thin film and the associated biological toxicity to zebrafish (Danio rerio) during and after photocatalysis”, Water Research, 40, 1906-1914, 2006.
  • [39]. M.D.C. Alveraz, and L.A. Fuimani, “Environmental levels of atrazine and its degradation products impair survival skills and growth of red drum larvae”, Aquatic Toxicology, 74, 229-241, 2005.
  • [40]. K. Nieves-Puigdoller, B.T. Bjornsson, and S. D.MsCormick, “Effects of hexazinone and atrazine on the physiology and endocrinology of smolt development in Atlantic salmon”, Aquatic Toxicology, 84, 27-37, 2007.
  • [41]. J.W. Park, J. Rinchard, F. Liu, T.A. Anderson, R.J. Kendall, and C.W. Theodorakis, “The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish”, Ecotoxicology and Environmental Safety, 63, 343-352, 2006.
  • [42]. G.R. Ackermann, J. Schwaiger, R.D. Negele, and K. Fent, “Effects of long-term nonylohenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout (Oncorhynchus mykiss)”, Aquatic Toxicology, 60(3-4), 203-221, 2002.
  • [43]. W. Zhang, L. Huang, and W.X. Wang, “Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure”, Journal of Hazardous Materials, 221-222, 162-169, 2012.
  • [44]. D. Chen, Z. Zhang, H. Yao, Y. Liang, H. Xing, and S. Xu, “ Effects of atrazine and chlorpyrifos on oxidative stress-induced autophagy in the immune organs of the common carp (Cyprinus carpio L.)”, Fish and Shellfish Immunology, 44, 12-20, 2015.
  • [45]. C.G. Furin, F.A. von Hippel, J.H. Postlethwait, C.L. Buck, W.A. Cresko, and T.M. O’Hara, “Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback”, General and Comparative Endocronology, 219, 24-35, 2015.
  • [46]. Md.K. Ahmed, Md. Habibullah-Al-Mamun, E. Parvin, M.S. Akter, and M.S. Khan, “Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus)”, Experimental and Toxicologic Pathology, 65, 903-909, 2013.
  • [47]. P.D. Noyes, S.C. Lema, L.J. Macaulay, N.K. Douglas, and H.M. Stapleton, “Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows”, Environmental Science Technology, 47(17), 10012-10021, 2013.
  • [48]. A.Ç. Günal, B. Erkmen, E. Paçal, P. Arslan, Z. Yildirim, and F. Erkoç, “Sub-lethal Effects of Imidacloprid on Nile Tilapia (Oreochromis niloticus)”, Water, Air, & Soil Pollution, 231, 4, 2020.
  • [49]. A. Gül, A.Ç. Benli, A. Ayhan, B.K. Memmi, M. Selvi, A. Sepici-Dinçel, G.Ç. Cakiroğullari, and F. Erkoç, “Sublethal propoxur toxicity to juvenile common carp (Cyprinus carpio L., 1758): biochemical, hematological, histopathological, and genotoxicity effects”, Environmental Toxicology and Chemistry, 31(9), 2085-2092, 2012.
  • [50]. J.W. Nicholas, G.A. Wedemeyer, F.L. Mayer, W.W. Dickoff, S.V. Gregory, W.T. Yasutake, and S.D. Smith, “Effects of freshwater exposure to arsenic trioxide on the parr-smolt transformation of coho salmon (Oncorhynchus kisutch)”, Enviromental Toxicology and Chemistry, 3, 143-149, 1984.
  • [51]. N. Pandey, and R. Bhatt, “Exiguobacterium mediated arsenic removal and its protective effect aganist arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata”, Toxicology Reports, 2, 1367-1375, 2015.
  • [52]. B.A. Tuulaikhuu, B. Bonet, and H. Guasch, “Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms”, Science of The Total Environment, 544, 467-475, 2016.
  • [53]. M. Selvi, T. Cavaş, A.Ç. Karasu Benli, B. Koçak Memmi, N. Cinkılıç, A.S. Dinçel, O. Vatan, D. Yılmaz, R. Sarıkaya, T. Zorlu, and F. Erkoç, “Sublethal toxicity of esbiothrin relationship with total antioxidant status and in vivo genotoxicity assessment in fish (Cyprinus carpio L., 1758) using the micronucleus test and comet assay”, Environmental Toxicology, 28(11), 644-651, 2013.
  • [54]. R. Akram, R. Iqbal, R. Hussain, F. Jabeen, and M. Ali, “Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations”, Environmental Pollution, 268(Part A),115896, 2021.
  • [55]. A. Sepici-Dincel, D. Sahin, A.Ç. Karasu Benli, R. Sarikaya, M. Selvi, F. Erkoc, and N. Altan, “Genotoxicity assessment of carp (Cyprinus carpio L.) fingerlings by tissue DNA damage and micronucleus test, after environmental exposure to fenitrothion”, Toxicology Mechanism and Methods, 21(5), 388-392, 2011.
  • [56]. C. Bolognesi, E. Perrone, P. Roggieri, D.M. Pampanin, A. Sciutto, “Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions”, Aquatic Toxicology, 78(1), 93-98, 2006.

The effects of endocrine disruptors on fish

Year 2021, , 145 - 151, 30.06.2021
https://doi.org/10.35208/ert.860440

Abstract

Nowadays, there are a lot of researches about the effects of endocrine disruptors on human and wildlife organisms. Endocrine disruptors are exogenous substances or substance mixtures that cause undesired effects in the organism or in future generations by altering the endocrine system of the exposed organism. Fish are exposed to endocrine disruptors in several ways including water, sediment, and diet. The toxic effects of endocrine disruptors on fish vary according to the exposure period, duration of exposure, chemical properties of the substances, and whether the exposed substance is single or mixed with other substances. Within the scope of this review, the classification of endocrine disruptors, their usage areas, their way of mixing into the aquatic ecosystem, and their toxic effects on fish will be explained.

References

  • [1]. B. Yıldız Fendoğlu, B. Koçer-Gümüşel, and P. Erkekoğlu, “A General Overview on Endocrine Disrupting Chemicals and Their Mechanism of Action”, Hacettepe University Journal of the Faculty of Pharmacy, Vol. 39 (1), pp. 30-43, 2019.
  • [2]. A.H. Bern,. “Hormones and Endocrine Glands of Fishes”, Science, 158, 455-462, 1967.
  • [3]. M. Kuru, Vertebrate Animals, 8th ed., Palme, Ankara. 2006.
  • [4]. H. Parlak, Ö. Çakal Arslan, M. Boyacıoğlu, and M.A. Karaarslan, Ecotoxicology. Ege University Press, İzmir. 2011.
  • [5]. B. Yurdakök, “Endocrin Disruptors”, Turkish Veterinarian Journal, 13(3-4), 84-98, 2013.
  • [6]. A. Bergman, J.J. Heindel, S. Jobling, K.A. Kidd, and R.T. Zoeller, State of the Science of Endocrine Distrupting Chemicals 2012, WHO and UNEP, 2012.
  • [7]. E. Ingre-Khans, M. Agerstrand, and C. Ruden, Endocrine disrupting chemicals in the marine environment. Department of Environmental Science and Analytical Chemistry (ACES) report 16, Stockholm University, 2017.
  • [8]. O. Kuzukıran, A. Filazi, P. Arslan, B. Yurdakök-Dikmen, İ. Şimşek, and Y. Turgut, “Kuzu Dokularında Endokrin Bozucu Klorlu Kimyasal Varlığının Gaz Kromatografi Kütle Spektrometrisi ile Saptanması ve Cinsiyetin Etkisi)”, Journal of Research in Veterinary Medicine, 38:2, 72-82, 2019.
  • [9]. O. Kuzukıran, A. Filazi, P. Arslan, B. Yurdakök-Dikmen,and U.N. Yazgan-Tavsanoğlu, “Determination of Persistent Organic Pollutants in Water and Sediment Samples from Kızılırmak River”, Kocatepe Veterinary Journal, 12(4), 430-436, 2019.
  • [10]. L.H. Keith, “Environmental Endocrine Disruptors”, Pure and Applied Chemistry, 70(12), 2319-2326, 1998.
  • [11]. S. Çetinkaya, “Endocrine disruptors and their effects on puberty”, Dicle Tıp Dergisi, 36(1), 59-66, 2009.
  • [12]. J. He, T. Peng, X. Yang, and H. Liu, “Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor”, Ecotoxicology and Environmental Safety, 148, 211-219, 2018.
  • [13]. E. Atmaca, “Effects of Pesticides on Aquatic Organisms”, Turkiye Klinikleri Journal of Veterinary Science Pharmacology and Toxicology-Special Topics, 2(2), 50-57, 2016.
  • [14]. A. Aksan, and A. Özdemi̇r, “ Endocrine Disruptors”, Hacettepe University Faculty of Health Sciences Journal, 3(2), 1-14, 2016.
  • [15]. E. Diamanti-Kandarakis, J.P. Bourguignon, L.C. Giudice, and R. Hauser, “Endocrine-disrupting chemicals: an endocrine society scientific statement”, Endocrine Reviews, 30(4), 293–342, 2009.
  • [16]. P. Erkekoğlu, and B. Koçer-Gümüşel, “Genotoxicity of phthalates”, Toxicology Mechanisms and Methods, 24(9), 616-626, 2014.
  • [17]. M. Nikinmaa, “An Introduction to Aquatic Toxicology”, Elsevier, 240, Oxford, UK. 2014.
  • [18]. N. Suzuki, A. Kambegawa, and A. Hattori, “Bisphenol A influences the plasma calcium level and inhibits calcitonin secretion in goldfish”, Zoological Science, 20(6), 745-748, 2003.
  • [19]. A. Tabata, N. Watanabe, I. Yamamoto, Y. Ohnishi, M. Itoh, T. Kamei, Y. Magara, and Y. Terao, “The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes)”, Water Science and Technology, 50(5), 125-132, 2004.
  • [20]. K. Van den Belt, R. Verheyen, and H. Witters, “Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens”, Ecotoxicological Environmental Safety, 56, 271-281, 2003.
  • [21]. P. Sohoni, C.R. Tyler, K. Hurd, J. Caunter, M. Hetheridge, T. Williams, C. Woods, M. Evans, R. Toy, M. Gargas, and J.P. Sumpter, “Reproductive effects of long-term exposure to Bisphenol A in the fathead minnow (Pimephales promelas)”, Environmental Science and Technology, 35, 2917-2925, 2001.
  • [22]. M. Calo, D. Alberghina, A. Bitto, E.R. Lauriano, and P. Lo Cascio, “Estrogenic followed by anti-estrogenic effects of PCBs exposure in juvenil fish (Sparus aurata)”, Food and Chemical Toxicology, 48, 2458-2463, 2010.
  • [23]. T.M. Uren-Webster, C. Lewis, A.L. Filby, G.C. Paull, and E.M. Santos, “Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish”, Aquatic Toxicology, 99(3), 360-369, 2010.
  • [24]. T. Ye, M. Kang, Q. Huang, C. Fang, Y. Chen, H. Shen, and S. Sijun Dong, “Exposure to DEHP and MEHP from hatching to adulthood causes reproductive dysfunction and endocrine disruption in marine medaka (Oryzias melastigma)”, Aquatic Toxicology, 146, 115-126, 2014.
  • [25]. J.E. Hose, J.N. Cross, S.G.S. Smith, and D. Dichi, “Reproductive impairment in a fish inhabiting a contaminated coastal environment off of Southern California”, Environmental Pollution, 57, 139-148, 1989.
  • [26]. H. Dutta, A. Nath, S. Adhikari, P. Roy, N. Singh, and J. Data Munshi, “Sublethal malathion induced changes in the ovary of an air-breathing fish, Heteropneustes fossilis: A histological study”, Hydrobiologica, 294, 215-218, 1994.
  • [27]. D.E. Tillitt, D.M. Papoulias, J.J. Whyte, and C.A. Richter, “Atrazine reduces reproduction in fathead minnow (Pimephales promelas)”, Aquatic Toxicology, 99, 149-159, 2010.
  • [28]. E.K. Muirhead, A.D. Skillman, S.E. Hook, and I.R. Schultz, “Oral exposure of PBDE-47 in fish: toxicokinetics and reproductive effects in Japanese Medaka (Oryzias latipes) and fathead minnows (Pimephales promelas)”, Environmental Science Technology, 40, 523-528, 2006.
  • [29]. R.V. Kuiper, A.D. Vethaak, R.F. Canton, H. Anselmo, M. Dubbeldam, E.J. van den Brandhof, P.E. Leonards, P.W. Wester, and M. van den Berg, “Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish (Danio rerio)”, Chemosphere, 73, 195–202, 2008.
  • [30]. S.C. Lerna, I.R. Schultz, N.L. Scholz, J.P. Incardona, and P. Swanson, “Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)”, Aquatic Toxicology, 82, 296-307, 2007.
  • [31]. S. Mukhi, L. Torres, and R. Patino, “Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios”, General and Comparative Endocrinology, 150, 486-494, 2007.
  • [32]. W.S. Hoar, and D.J. Randall, Fish Physiology Volume XI The Phsiology of Developing Fish Part A Eggs and Larvae. Academic Press Inc. Ltd, 546, London, UK. 1998.
  • [33]. S.D. Pastva, S.A. Villalobos, K. Kannan, and J.P. Giesy, “Morphological effects of Bisphenol-A on the early life stages of medaka (Oryzias latipes)”, Chemosphere, 45, 535-541, 2001.
  • [34]. M. Kishida, and G.V. Callard, “Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development”, Endocrinology, 142, 740-50, 2001.
  • [35]. F. Sanchez-Bayo, and K. Goka, “Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes)”, Aquatic Toxicology, 74(4), 285-293, 2005.
  • [36]. K.M. Almond, and L.D. Trombetta, “The effects of copperpyrithione, an antifouling agent, on developing zebrafish embryos”, Ecotoxicology, 25, 389-398, 2016.
  • [37]. X. Zhao, S. Wang, D. Li, H. You, and X. Ren, “Effects of perchlorate on BDE-47-induced alteration thyroid homone and gene expression of in the hypothalanus-pituitary-thyroid axis in zebrafish larvae”, Environmental Toxicology and Pharmacology, 36, 1176-1185, 2013.
  • [38]. M.K. Yeo, and M. Kang, “Photodecomposition of bisphenol A on nanometer-sized TiO2 thin film and the associated biological toxicity to zebrafish (Danio rerio) during and after photocatalysis”, Water Research, 40, 1906-1914, 2006.
  • [39]. M.D.C. Alveraz, and L.A. Fuimani, “Environmental levels of atrazine and its degradation products impair survival skills and growth of red drum larvae”, Aquatic Toxicology, 74, 229-241, 2005.
  • [40]. K. Nieves-Puigdoller, B.T. Bjornsson, and S. D.MsCormick, “Effects of hexazinone and atrazine on the physiology and endocrinology of smolt development in Atlantic salmon”, Aquatic Toxicology, 84, 27-37, 2007.
  • [41]. J.W. Park, J. Rinchard, F. Liu, T.A. Anderson, R.J. Kendall, and C.W. Theodorakis, “The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish”, Ecotoxicology and Environmental Safety, 63, 343-352, 2006.
  • [42]. G.R. Ackermann, J. Schwaiger, R.D. Negele, and K. Fent, “Effects of long-term nonylohenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout (Oncorhynchus mykiss)”, Aquatic Toxicology, 60(3-4), 203-221, 2002.
  • [43]. W. Zhang, L. Huang, and W.X. Wang, “Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure”, Journal of Hazardous Materials, 221-222, 162-169, 2012.
  • [44]. D. Chen, Z. Zhang, H. Yao, Y. Liang, H. Xing, and S. Xu, “ Effects of atrazine and chlorpyrifos on oxidative stress-induced autophagy in the immune organs of the common carp (Cyprinus carpio L.)”, Fish and Shellfish Immunology, 44, 12-20, 2015.
  • [45]. C.G. Furin, F.A. von Hippel, J.H. Postlethwait, C.L. Buck, W.A. Cresko, and T.M. O’Hara, “Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback”, General and Comparative Endocronology, 219, 24-35, 2015.
  • [46]. Md.K. Ahmed, Md. Habibullah-Al-Mamun, E. Parvin, M.S. Akter, and M.S. Khan, “Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus)”, Experimental and Toxicologic Pathology, 65, 903-909, 2013.
  • [47]. P.D. Noyes, S.C. Lema, L.J. Macaulay, N.K. Douglas, and H.M. Stapleton, “Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows”, Environmental Science Technology, 47(17), 10012-10021, 2013.
  • [48]. A.Ç. Günal, B. Erkmen, E. Paçal, P. Arslan, Z. Yildirim, and F. Erkoç, “Sub-lethal Effects of Imidacloprid on Nile Tilapia (Oreochromis niloticus)”, Water, Air, & Soil Pollution, 231, 4, 2020.
  • [49]. A. Gül, A.Ç. Benli, A. Ayhan, B.K. Memmi, M. Selvi, A. Sepici-Dinçel, G.Ç. Cakiroğullari, and F. Erkoç, “Sublethal propoxur toxicity to juvenile common carp (Cyprinus carpio L., 1758): biochemical, hematological, histopathological, and genotoxicity effects”, Environmental Toxicology and Chemistry, 31(9), 2085-2092, 2012.
  • [50]. J.W. Nicholas, G.A. Wedemeyer, F.L. Mayer, W.W. Dickoff, S.V. Gregory, W.T. Yasutake, and S.D. Smith, “Effects of freshwater exposure to arsenic trioxide on the parr-smolt transformation of coho salmon (Oncorhynchus kisutch)”, Enviromental Toxicology and Chemistry, 3, 143-149, 1984.
  • [51]. N. Pandey, and R. Bhatt, “Exiguobacterium mediated arsenic removal and its protective effect aganist arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata”, Toxicology Reports, 2, 1367-1375, 2015.
  • [52]. B.A. Tuulaikhuu, B. Bonet, and H. Guasch, “Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms”, Science of The Total Environment, 544, 467-475, 2016.
  • [53]. M. Selvi, T. Cavaş, A.Ç. Karasu Benli, B. Koçak Memmi, N. Cinkılıç, A.S. Dinçel, O. Vatan, D. Yılmaz, R. Sarıkaya, T. Zorlu, and F. Erkoç, “Sublethal toxicity of esbiothrin relationship with total antioxidant status and in vivo genotoxicity assessment in fish (Cyprinus carpio L., 1758) using the micronucleus test and comet assay”, Environmental Toxicology, 28(11), 644-651, 2013.
  • [54]. R. Akram, R. Iqbal, R. Hussain, F. Jabeen, and M. Ali, “Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations”, Environmental Pollution, 268(Part A),115896, 2021.
  • [55]. A. Sepici-Dincel, D. Sahin, A.Ç. Karasu Benli, R. Sarikaya, M. Selvi, F. Erkoc, and N. Altan, “Genotoxicity assessment of carp (Cyprinus carpio L.) fingerlings by tissue DNA damage and micronucleus test, after environmental exposure to fenitrothion”, Toxicology Mechanism and Methods, 21(5), 388-392, 2011.
  • [56]. C. Bolognesi, E. Perrone, P. Roggieri, D.M. Pampanin, A. Sciutto, “Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions”, Aquatic Toxicology, 78(1), 93-98, 2006.
There are 56 citations in total.

Details

Primary Language English
Subjects Ecology, Environmental Sciences
Journal Section Review
Authors

Pınar Arslan 0000-0001-5910-2835

Saniye Cevher Özeren 0000-0002-8509-0548

Begüm Yurdakök Dikmen 0000-0002-0385-3602

Publication Date June 30, 2021
Submission Date January 13, 2021
Acceptance Date May 9, 2021
Published in Issue Year 2021

Cite

APA Arslan, P., Özeren, S. C., & Yurdakök Dikmen, B. (2021). The effects of endocrine disruptors on fish. Environmental Research and Technology, 4(2), 145-151. https://doi.org/10.35208/ert.860440
AMA Arslan P, Özeren SC, Yurdakök Dikmen B. The effects of endocrine disruptors on fish. ERT. June 2021;4(2):145-151. doi:10.35208/ert.860440
Chicago Arslan, Pınar, Saniye Cevher Özeren, and Begüm Yurdakök Dikmen. “The Effects of Endocrine Disruptors on Fish”. Environmental Research and Technology 4, no. 2 (June 2021): 145-51. https://doi.org/10.35208/ert.860440.
EndNote Arslan P, Özeren SC, Yurdakök Dikmen B (June 1, 2021) The effects of endocrine disruptors on fish. Environmental Research and Technology 4 2 145–151.
IEEE P. Arslan, S. C. Özeren, and B. Yurdakök Dikmen, “The effects of endocrine disruptors on fish”, ERT, vol. 4, no. 2, pp. 145–151, 2021, doi: 10.35208/ert.860440.
ISNAD Arslan, Pınar et al. “The Effects of Endocrine Disruptors on Fish”. Environmental Research and Technology 4/2 (June 2021), 145-151. https://doi.org/10.35208/ert.860440.
JAMA Arslan P, Özeren SC, Yurdakök Dikmen B. The effects of endocrine disruptors on fish. ERT. 2021;4:145–151.
MLA Arslan, Pınar et al. “The Effects of Endocrine Disruptors on Fish”. Environmental Research and Technology, vol. 4, no. 2, 2021, pp. 145-51, doi:10.35208/ert.860440.
Vancouver Arslan P, Özeren SC, Yurdakök Dikmen B. The effects of endocrine disruptors on fish. ERT. 2021;4(2):145-51.