Research Article
BibTex RIS Cite

Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell

Year 2021, , 108 - 115, 31.03.2021
https://doi.org/10.35208/ert.881517

Abstract

Grapes are among the most widely grown fruits globally, with a third of the overall production used in winemaking. Both red and white winemaking processes generate significant amounts of solid organic waste such as grape marc that requires proper disposal. Grape marc, a natural plant product containing abundantly lignocellulosic compounds, is a promising raw material for production of renewable energy. In this study, the grape marc was used as an anode nutrient in the membrane-less microbial fuel cell (ML-MFC) system, and the electricity generation capacity of the grape marc as an environmentally friendly energy source was investigated in detail. The maximum power density produced in the ML-MFC reactor was determined as 274.9 mW m-2, and the total internal resistance was 309.5 Ω. Cyclic voltammetry results showed the presence of electroactive microorganisms on the surface of the anode electrode provided a high biological activity. The presence of elliptical and round-shaped microorganisms on the anode electrode surface was observed. Quantitative polymerase chain reaction (qPCR) analyzes have shown that grape marc supports bacterial growth on the electrode surface.

Supporting Institution

-

Project Number

-

References

  • [1] J. Kassongo, E. Shahsavari, A.S. Ball, "Renewable energy from the solid-state anaerobic digestion of grape marc and cheese whey at high treatment capacity", Biomass and Bioenergy, 143, 105880, 2020.
  • [2] M. Bustamante, R. Moral, C. Paredes, A. Pérez-Espinosa, J. Moreno-Caselles, M. Pérez-Murcia, "Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry", Waste management, 28(2), 372-380, 2008.
  • [3] C. Schönnenbeck, G. Trouvé, M. Valente, P. Garra, J. Brilhac, "Combustion tests of grape marc in a multi-fuel domestic boiler", Fuel, 180, 324-331, 2016.
  • [4] J. Kassongo, E. Shahsavari, A.S. Ball, "Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation", Molecules, 25(23), 5754, 2020.
  • [5] R.A. Muhlack, R. Potumarthi, D.W. Jeffery, "Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products", Waste management, 72, 99-118, 2018.
  • [6] D. Ying, C. Chuanyu, H. Bin, X. Yueen, Z. Xuejuan, C. Yingxu, W. Weixiang, "Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China", Waste management, 32(2), 317-326, 2012.
  • [7] T.H. Makadia, E. Shahsavari, E.M. Adetutu, P.J. Sheppard, A.S. Ball, "Effect of anaerobic co-digestion of grape marc and winery wastewater on energy production", Australian Journal of Crop Science, 10(1), 57, 2016.
  • [8] M. Bustamante, C. Paredes, R. Moral, J. Moreno-Caselles, A. Pérez-Espinosa, M. Pérez-Murcia, "Uses of winery and distillery effluents in agriculture: characterisation of nutrient and hazardous components", Water Science and Technology, 51(1), 145-151, 2005.
  • [9] K.P. Mosse, A.F. Patti, E.W. Christen, T.R. Cavagnaro, "Winery wastewater inhibits seed germination and vegetative growth of common crop species", Journal of hazardous materials, 180(1-3), 63-70, 2010.
  • [10] H. Javier, S.J. Ángel, G. Aida, G.M. del Carmen, M.M. de los Ángeles, "Revalorization of grape marc waste from liqueur wine: biomethanization", Journal of Chemical Technology & Biotechnology, 94(5), 1499-1508, 2019.
  • [11] X. Melamane, R. Tandlich, J. Burgess, "Anaerobic digestion of fungally pre-treated wine distillery wastewater", African Journal of Biotechnology, 6(17), 2007.
  • [12] K.R. Corbin, Y.S. Hsieh, N.S. Betts, C.S. Byrt, M. Henderson, J. Stork, S. DeBolt, G.B. Fincher, R.A. Burton, "Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification", Bioresource Technology, 193, 76-83, 2015.
  • [13] F.-M. Pellera, E. Gidarakos, "Chemical pretreatment of lignocellulosic agroindustrial waste for methane production", Waste management, 71, 689-703, 2018.
  • [14] Y. Chen, J.J. Cheng, K.S. Creamer, "Inhibition of anaerobic digestion process: a review", Bioresource technology, 99(10), 4044-4064, 2008.
  • [15] J. Mata-Alvarez, J. Dosta, S. Macé, S. Astals, "Codigestion of solid wastes: a review of its uses and perspectives including modeling", Critical reviews in biotechnology, 31(2), 99-111, 2011.
  • [16] P. Guo, W.L. Saw, P.J. Van Eyk, E.B. Stechel, R. De Nys, P.J. Ashman, G.J. Nathan, "Gasification reactivity and physicochemical properties of the chars from raw and torrefied wood, grape marc, and macroalgae", Energy & Fuels, 31(3), 2246-2259, 2017.
  • [17] M. Miranda, J. Arranz, S. Román, S. Rojas, I. Montero, M. López, J. Cruz, "Characterization of grape pomace and pyrenean oak pellets", Fuel processing technology, 92(2), 278-283, 2011.
  • [18] C. Marculescu, S. Ciuta, "Wine industry waste thermal processing for derived fuel properties improvement", Renewable energy, 57, 645-652, 2013.
  • [19] C. Da Ros, C. Cavinato, D. Bolzonella, P. Pavan, "Renewable energy from thermophilic anaerobic digestion of winery residue: Preliminary evidence from batch and continuous lab-scale trials", Biomass and Bioenergy, 91, 150-159, 2016.
  • [20] E. Taşkan, S. Bulak, B. Taşkan, M. Şaşmaz, E. Gürtekin, A. Bayri, "Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması", Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(2), 319-326.
  • [21] C.E. Reimers, L.M. Tender, S. Fertig, W. Wang, "Harvesting energy from the marine sediment− water interface", Environmental science & technology, 35(1), 192-195, 2001.
  • [22] J. Prasad, R.K. Tripathi, "Scale-up and control the voltage of sediment microbial fuel cell for charging a cell phone", Biosensors and Bioelectronics, 172, 112767, 2020.
  • [23] R.M. Allen, H.P. Bennetto, "Microbial fuel-cells", Applied biochemistry and biotechnology, 39(1), 27-40, 1993.
  • [24] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, "Microbial fuel cells: methodology and technology", Environmental science & technology, 40(17), 5181-5192, 2006.
  • [25] Y. Liang, H. Zhai, B. Liu, M. Ji, J. Li, "Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells", Science of The Total Environment, 713, 136483, 2020. [26] X. Yang, S. Chen, "Microorganisms in Sediment Microbial Fuel Cells: Ecological Niche, Microbial Response, and Environmental Function", Science of The Total Environment, 144145, 2020.
  • [27] X. Cao, H.-l. Song, C.-y. Yu, X.-n. Li, "Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell", Bioresource Technology, 189, 87-93, 2015.
  • [28] P. Xu, E. Xiao, D. Xu, J. Li, Y. Zhang, Z. Dai, Q. Zhou, Z. Wu, "Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination", Environmental technology, 39(9), 1144-1157, 2018.
  • [29] E. Abazarian, R. Gheshlaghi, M.A. Mahdavi, "Impact of light/dark cycle on electrical and electrochemical characteristics of algal cathode sediment microbial fuel cells", Journal of Power Sources, 475, 228686, 2020.
  • [30] E. Taşkan, S. Bulak, B. Taşkan, M. Şaşmaz, S. El Abed, A. El Abed, "Nitinol as a suitable anode material for electricity generation in microbial fuel cells", Bioelectrochemistry, 128, 118-125, 2019.
  • [31] Ş. Topcu, E. Taşkan, "Effect of the tetracycline antibiotics on performance and microbial community of microbial fuel cell", Bioprocess and Biosystems Engineering, 1-11, 2020.
  • [32] W.P. Liu, X.F. Yin, J.J. Lu, G.B. Liang, Y.M. Chen, "Copper recovery from copper-containing wastewater through treating membraneless microbial fuel cell and its electricity production", Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 27(3), 648-654, 2017.
  • [33] J.M. Morris, S. Jin, "Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells", Journal of Hazardous Materials, 213-214, 474-477, 2012.
  • [34] G.J.C. Bartolome, B.E. Piojo, A.P.L. Palugod, R.L. Patata, “Design and Performance of a Single-Chamber Membraneless Sediment Microbial Fuel Cell for Bioenergy Generation”, 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ), 1-6, 2019.
  • [35] B. Taşkan, E. Taşkan, H. Hasar, "Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode", Environmental Progress and Sustainable Energy, 39(5), 2020.
  • [36] J. Hou, Z. Liu, Y. Li, S. Yang, Y. Zhou, "A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs", Bioprocess and Biosystems Engineering, 38(5), 881-888, 2015.
  • [37] E. Taskan, H. Hasar, "Comprehensive comparison of a new tin-coated copper mesh and a graphite plate electrode as an anode material in microbial fuel cell", Applied biochemistry and biotechnology, 175(4), 2300-2308, 2015.
  • [38] V. Yousefi, D. Mohebbi-Kalhori, A. Samimi, M. Salari, "Effect of separator electrode assembly (SEA) design and mode of operation on the performance of continuous tubular microbial fuel cells (MFCs)", International Journal of Hydrogen Energy, 41(1), 597-606, 2016.
  • [39] V.R. Nimje, C.-C. Chen, H.-R. Chen, C.-Y. Chen, M.-J. Tseng, K.-C. Cheng, R.-C. Shih, Y.-F. Chang, "A single-chamber microbial fuel cell without an air cathode", International journal of molecular sciences, 13(3), 3933-3948, 2012.
  • [40] J. Hou, Z. Liu, P. Zhang, "A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes", Journal of Power Sources, 224, 139-144, 2013.
  • [41] M. Siegert, M.D. Yates, A.M. Spormann, B.E. Logan, "Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells", ACS sustainable chemistry & engineering, 3(7), 1668-1676, 2015.
  • [42] J. Chen, X. Liu, J. Zheng, B. Zhang, H. Lu, Z. Chi, G. Pan, L. Li, J. Zheng, X. Zhang, J. Wang, X. Yu, "Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China", Applied Soil Ecology, 71, 33-44, 2013.
Year 2021, , 108 - 115, 31.03.2021
https://doi.org/10.35208/ert.881517

Abstract

Project Number

-

References

  • [1] J. Kassongo, E. Shahsavari, A.S. Ball, "Renewable energy from the solid-state anaerobic digestion of grape marc and cheese whey at high treatment capacity", Biomass and Bioenergy, 143, 105880, 2020.
  • [2] M. Bustamante, R. Moral, C. Paredes, A. Pérez-Espinosa, J. Moreno-Caselles, M. Pérez-Murcia, "Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry", Waste management, 28(2), 372-380, 2008.
  • [3] C. Schönnenbeck, G. Trouvé, M. Valente, P. Garra, J. Brilhac, "Combustion tests of grape marc in a multi-fuel domestic boiler", Fuel, 180, 324-331, 2016.
  • [4] J. Kassongo, E. Shahsavari, A.S. Ball, "Co-Digestion of Grape Marc and Cheese Whey at High Total Solids Holds Potential for Sustained Bioenergy Generation", Molecules, 25(23), 5754, 2020.
  • [5] R.A. Muhlack, R. Potumarthi, D.W. Jeffery, "Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products", Waste management, 72, 99-118, 2018.
  • [6] D. Ying, C. Chuanyu, H. Bin, X. Yueen, Z. Xuejuan, C. Yingxu, W. Weixiang, "Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China", Waste management, 32(2), 317-326, 2012.
  • [7] T.H. Makadia, E. Shahsavari, E.M. Adetutu, P.J. Sheppard, A.S. Ball, "Effect of anaerobic co-digestion of grape marc and winery wastewater on energy production", Australian Journal of Crop Science, 10(1), 57, 2016.
  • [8] M. Bustamante, C. Paredes, R. Moral, J. Moreno-Caselles, A. Pérez-Espinosa, M. Pérez-Murcia, "Uses of winery and distillery effluents in agriculture: characterisation of nutrient and hazardous components", Water Science and Technology, 51(1), 145-151, 2005.
  • [9] K.P. Mosse, A.F. Patti, E.W. Christen, T.R. Cavagnaro, "Winery wastewater inhibits seed germination and vegetative growth of common crop species", Journal of hazardous materials, 180(1-3), 63-70, 2010.
  • [10] H. Javier, S.J. Ángel, G. Aida, G.M. del Carmen, M.M. de los Ángeles, "Revalorization of grape marc waste from liqueur wine: biomethanization", Journal of Chemical Technology & Biotechnology, 94(5), 1499-1508, 2019.
  • [11] X. Melamane, R. Tandlich, J. Burgess, "Anaerobic digestion of fungally pre-treated wine distillery wastewater", African Journal of Biotechnology, 6(17), 2007.
  • [12] K.R. Corbin, Y.S. Hsieh, N.S. Betts, C.S. Byrt, M. Henderson, J. Stork, S. DeBolt, G.B. Fincher, R.A. Burton, "Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification", Bioresource Technology, 193, 76-83, 2015.
  • [13] F.-M. Pellera, E. Gidarakos, "Chemical pretreatment of lignocellulosic agroindustrial waste for methane production", Waste management, 71, 689-703, 2018.
  • [14] Y. Chen, J.J. Cheng, K.S. Creamer, "Inhibition of anaerobic digestion process: a review", Bioresource technology, 99(10), 4044-4064, 2008.
  • [15] J. Mata-Alvarez, J. Dosta, S. Macé, S. Astals, "Codigestion of solid wastes: a review of its uses and perspectives including modeling", Critical reviews in biotechnology, 31(2), 99-111, 2011.
  • [16] P. Guo, W.L. Saw, P.J. Van Eyk, E.B. Stechel, R. De Nys, P.J. Ashman, G.J. Nathan, "Gasification reactivity and physicochemical properties of the chars from raw and torrefied wood, grape marc, and macroalgae", Energy & Fuels, 31(3), 2246-2259, 2017.
  • [17] M. Miranda, J. Arranz, S. Román, S. Rojas, I. Montero, M. López, J. Cruz, "Characterization of grape pomace and pyrenean oak pellets", Fuel processing technology, 92(2), 278-283, 2011.
  • [18] C. Marculescu, S. Ciuta, "Wine industry waste thermal processing for derived fuel properties improvement", Renewable energy, 57, 645-652, 2013.
  • [19] C. Da Ros, C. Cavinato, D. Bolzonella, P. Pavan, "Renewable energy from thermophilic anaerobic digestion of winery residue: Preliminary evidence from batch and continuous lab-scale trials", Biomass and Bioenergy, 91, 150-159, 2016.
  • [20] E. Taşkan, S. Bulak, B. Taşkan, M. Şaşmaz, E. Gürtekin, A. Bayri, "Mikrobiyal Yakıt Hücresinde Grafen Kaplı Nikel-Titanyum (NiTi) Alaşımının Anot Elektrotu Olarak Kullanılması", Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(2), 319-326.
  • [21] C.E. Reimers, L.M. Tender, S. Fertig, W. Wang, "Harvesting energy from the marine sediment− water interface", Environmental science & technology, 35(1), 192-195, 2001.
  • [22] J. Prasad, R.K. Tripathi, "Scale-up and control the voltage of sediment microbial fuel cell for charging a cell phone", Biosensors and Bioelectronics, 172, 112767, 2020.
  • [23] R.M. Allen, H.P. Bennetto, "Microbial fuel-cells", Applied biochemistry and biotechnology, 39(1), 27-40, 1993.
  • [24] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, "Microbial fuel cells: methodology and technology", Environmental science & technology, 40(17), 5181-5192, 2006.
  • [25] Y. Liang, H. Zhai, B. Liu, M. Ji, J. Li, "Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells", Science of The Total Environment, 713, 136483, 2020. [26] X. Yang, S. Chen, "Microorganisms in Sediment Microbial Fuel Cells: Ecological Niche, Microbial Response, and Environmental Function", Science of The Total Environment, 144145, 2020.
  • [27] X. Cao, H.-l. Song, C.-y. Yu, X.-n. Li, "Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell", Bioresource Technology, 189, 87-93, 2015.
  • [28] P. Xu, E. Xiao, D. Xu, J. Li, Y. Zhang, Z. Dai, Q. Zhou, Z. Wu, "Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination", Environmental technology, 39(9), 1144-1157, 2018.
  • [29] E. Abazarian, R. Gheshlaghi, M.A. Mahdavi, "Impact of light/dark cycle on electrical and electrochemical characteristics of algal cathode sediment microbial fuel cells", Journal of Power Sources, 475, 228686, 2020.
  • [30] E. Taşkan, S. Bulak, B. Taşkan, M. Şaşmaz, S. El Abed, A. El Abed, "Nitinol as a suitable anode material for electricity generation in microbial fuel cells", Bioelectrochemistry, 128, 118-125, 2019.
  • [31] Ş. Topcu, E. Taşkan, "Effect of the tetracycline antibiotics on performance and microbial community of microbial fuel cell", Bioprocess and Biosystems Engineering, 1-11, 2020.
  • [32] W.P. Liu, X.F. Yin, J.J. Lu, G.B. Liang, Y.M. Chen, "Copper recovery from copper-containing wastewater through treating membraneless microbial fuel cell and its electricity production", Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 27(3), 648-654, 2017.
  • [33] J.M. Morris, S. Jin, "Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells", Journal of Hazardous Materials, 213-214, 474-477, 2012.
  • [34] G.J.C. Bartolome, B.E. Piojo, A.P.L. Palugod, R.L. Patata, “Design and Performance of a Single-Chamber Membraneless Sediment Microbial Fuel Cell for Bioenergy Generation”, 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ), 1-6, 2019.
  • [35] B. Taşkan, E. Taşkan, H. Hasar, "Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode", Environmental Progress and Sustainable Energy, 39(5), 2020.
  • [36] J. Hou, Z. Liu, Y. Li, S. Yang, Y. Zhou, "A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs", Bioprocess and Biosystems Engineering, 38(5), 881-888, 2015.
  • [37] E. Taskan, H. Hasar, "Comprehensive comparison of a new tin-coated copper mesh and a graphite plate electrode as an anode material in microbial fuel cell", Applied biochemistry and biotechnology, 175(4), 2300-2308, 2015.
  • [38] V. Yousefi, D. Mohebbi-Kalhori, A. Samimi, M. Salari, "Effect of separator electrode assembly (SEA) design and mode of operation on the performance of continuous tubular microbial fuel cells (MFCs)", International Journal of Hydrogen Energy, 41(1), 597-606, 2016.
  • [39] V.R. Nimje, C.-C. Chen, H.-R. Chen, C.-Y. Chen, M.-J. Tseng, K.-C. Cheng, R.-C. Shih, Y.-F. Chang, "A single-chamber microbial fuel cell without an air cathode", International journal of molecular sciences, 13(3), 3933-3948, 2012.
  • [40] J. Hou, Z. Liu, P. Zhang, "A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes", Journal of Power Sources, 224, 139-144, 2013.
  • [41] M. Siegert, M.D. Yates, A.M. Spormann, B.E. Logan, "Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells", ACS sustainable chemistry & engineering, 3(7), 1668-1676, 2015.
  • [42] J. Chen, X. Liu, J. Zheng, B. Zhang, H. Lu, Z. Chi, G. Pan, L. Li, J. Zheng, X. Zhang, J. Wang, X. Yu, "Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China", Applied Soil Ecology, 71, 33-44, 2013.
There are 41 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Banu Taşkan 0000-0001-7751-1165

Project Number -
Publication Date March 31, 2021
Submission Date February 16, 2021
Acceptance Date March 3, 2021
Published in Issue Year 2021

Cite

APA Taşkan, B. (2021). Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell. Environmental Research and Technology, 4(1), 108-115. https://doi.org/10.35208/ert.881517
AMA Taşkan B. Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell. ERT. March 2021;4(1):108-115. doi:10.35208/ert.881517
Chicago Taşkan, Banu. “Investigation of Electricity Generation Performance of Grape Marc in Membrane-Less Microbial Fuel Cell”. Environmental Research and Technology 4, no. 1 (March 2021): 108-15. https://doi.org/10.35208/ert.881517.
EndNote Taşkan B (March 1, 2021) Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell. Environmental Research and Technology 4 1 108–115.
IEEE B. Taşkan, “Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell”, ERT, vol. 4, no. 1, pp. 108–115, 2021, doi: 10.35208/ert.881517.
ISNAD Taşkan, Banu. “Investigation of Electricity Generation Performance of Grape Marc in Membrane-Less Microbial Fuel Cell”. Environmental Research and Technology 4/1 (March 2021), 108-115. https://doi.org/10.35208/ert.881517.
JAMA Taşkan B. Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell. ERT. 2021;4:108–115.
MLA Taşkan, Banu. “Investigation of Electricity Generation Performance of Grape Marc in Membrane-Less Microbial Fuel Cell”. Environmental Research and Technology, vol. 4, no. 1, 2021, pp. 108-15, doi:10.35208/ert.881517.
Vancouver Taşkan B. Investigation of electricity generation performance of grape marc in membrane-less microbial fuel cell. ERT. 2021;4(1):108-15.