Review
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 3, 158 - 170, 30.09.2019
https://doi.org/10.35208/ert.553536

Abstract

References

  • [1]. R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T. Nejat Veziroglu, and S.I. Allakhverdiev, “Review: biofuel production from plant and algal biomass,” International Journal of Hydrogen Energy, Vol. 41(39), pp. 17257-17273, 2016.
  • [2]. K.L. Man, and K.T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, Vol. 30(3), pp. 673-690, 2012.
  • [3]. D. Song, J. Fu, and D. Shi, “Exploitation of oil-bearing microalgae for biodiesel,” Chinese Journal of Biotechnology, Vol. 24(3), pp. 341-348, 2008.
  • [4]. M.K. Lam, and K.T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, Vol. 30(3), pp. 673-690, 2012.
  • [5]. Y. Chisti, “Biodiesel from microalgae beats bioethanol,” Trends in Biotechnology, Vol. 26(3), pp. 126-131, 2008.
  • [6]. Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, Vol. 25(3), pp. 294-306, 2007.
  • [7]. A. Banerjee, R. Sharma, and Y. Chisti, “Botryococcus braunii: a renewable source of hydrocarbons and other chemicals,” Critical Reviews in Biotechnology, Vol. 22(3), pp. 245-279, 2002.
  • [8]. S.H. Ho, X. Ye, T. Hasunuma, J.S. Chang, and A. Kondo, “Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review,” Biotechnology Advances, Vol. 32(8), pp. 1448-1459, 2014.
  • [9]. V. Amanor-Boadu, P.H. Pfromm, and R. Nelson, “Economic feasibility of algal biodiesel under alternative public policies,” Renewable Energy, Vol. 67, pp. 136-142, 2014.
  • [10].C. Santander, P.A. Robles, L.A. Cisternas, and M. Rivas, “Technical–economic feasibility study of the installation of biodiesel from microalgae crops in the Atacama Desert of Chile,” Fuel Processing Technology, Vol. 125, pp. 267-276, 2002.
  • [11]. H.S. Kwak, J.Y.H. Kim, H.M. Woo, E. Jin, B.K. Min, and S.J. Sim, “Synergistic effect of multiple stress conditions for improving microalgal lipid production,” Algal Research, Vol. 19, pp. 215-224, 2016.
  • [12].B. Singh, A. Guldhe, I. Rawat, and F. Bux, “Towards a sustainable approach for development of biodiesel from plant and microalgae,” Reneweble and Sustainable Energy Reviews, Vol. 29, pp. 216–245, 2014.
  • [13].A.J. Klok, D.E. Martens, R.H. Wijffels, and P.P. Lamers, “Simultaneous growth and neutral lipid accumulation in microalgae,” Bioresource Technology, Vol. 134, pp. 233–243, 2013.
  • [14].W.H. Leong, J.W. Lim, M.K. Lam, Y. Uemura, Y.C. Ho, “Third generation biofuels: A nutritional perspective in enhancing microbial lipid production,” Renewable and Sustainable Energy Reviews, Vol. 91, pp. 950-961, 2018.
  • [15].P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, “Commercial applications of microalgae,” Journal of Bioscience and Bioengineering, Vol. 101(2), pp. 87–96, 2006.
  • [16].G. Sibi, V. Shetty, and K. Mokashi, “Enhanced lipid productivity approaches in microalgae as an alternative for fossil fuels-A review,” Journal of Energy Institute, Vol. 89(3), pp. 330-334, 2016.
  • [17].R.R. Narala, S. Garg, K.K. Sharma, S.R. Thomas-Hall, M. Deme, Y. Li, and P.M. Schenk, “Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system,” Frontiers in Energy Research, Vol. 4(29), pp. 1-10, 2016.
  • [18].L. Barsanti, P. Gualtieri, Algae: Anatomy, Biochemistry, and Biotechnology, CRC Press, United States, 2014.
  • [19].C.C. Fu, T.C. Hung, J.Y. Chen, C.H. Su, and W.T. Wu, “Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction,” Bioresource Technology, Vol. 101(22), pp. 8750–8754, 2010.
  • [20]. G. Petkov, and G. Garcia, “Which are fatty acids of the green alga Chlorella?” Biochemical Systematics and Ecology, Vol. 35(5), pp. 281–285, 2007.
  • [21]. T.M. Mata, A.C. Melo, M. Simões, and N.S. Caetano, “Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus,” Bioresource Technology, Vol. 107, pp. 151–158, 2012.
  • [22]. C.J. Zhu, Y.K. Lee, and T.M. Chao, “Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1,” Journal of Applied Phycology, Vol. 9(5), pp. 451–457, 1997.
  • [23]. X. Wu, E.M. Joyce, and T.J. Mason, “The effects of ultrasound on cyanobacteria,” Harmful Algae, Vol. 10(6), pp. 738-743, 2011.
  • [24]. V. Ördög, W.A. Stirk, P. Bálint, J. van Staden, and C. Lovász, “Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures,” Journal of Applied Phycology, Vol. 24(4), pp. 907–914, 2012.
  • [25]. K. Chojnacka, and F.J. Marquez-Rocha, “Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae,” Biotechnology, Vol. 3(1), pp. 21–34, 2004.
  • [26]. N. Rashid, M.S. Ur Rehman, M. Sadiq, T. Mahmood, and J.I. Han, “Current status, issues and developments in microalgae derived biodiesel production,” Reneweble and Sustainable Energy Reviews, Vol. 40, pp. 760–78, 2014.
  • [27]. G.Q. Chen, and F. Chen, “Growing phototrophic cells without light,” Biotechnology Letters, Vol. 28(9), pp. 607–616, 2006.
  • [28]. S. Bellou, M.N. Baeshen, A.M. Elazzazy, D. Aggeli, F. Sayegh, and G. Aggelis, “Microalgal lipids biochemistry and biotechnological perspectives,” Biotechnology Advances, Vol. 32(8), pp. 1476–1493, 2014.
  • [29]. G.H. Huang, F. Chen, D. Wei, X.W. Zhang, and G. Chen, “Biodiesel production by microalgal biotechnology,” Applied Energy, Vol. 87(1), pp. 38–46, 2010.
  • [30]. M. Chen, H. Tang, H. Ma, T.C. Holland, K.Y.S. Ng, and S.O. Salley, “Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta,” Bioresource Technology, Vol. 102(2), pp. 1649–1655, 2011.
  • [31]. Y. Liang, N. Sarkany, and Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions,” Biotechnology Letters, Vol. 31(7), pp. 1043–1049, 2009.
  • [32]. J.R. Benavente-Valdés, C. Aguilar, J.C. Contreras-Esquivel, A. Méndez-Zavala, and J. Montañez, “Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species,” Biotechnology Reports, Vol. 10, pp. 117-125, 2016.
  • [33]. L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, and Z. Yuan, “Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment,” Water Research, Vol. 47(13), pp. 4294–4302, 2013.
  • [34]. Y. Ma, X. Gao, Q. Wang, and Y. Liu, “Biodiesels from microbial oils: Opportunity and challenges,” Bioresource Technology, Vol. 263, pp. 631-641, 2018.
  • [35]. K. Singh, D. Kaloni, S. Gaur, S. Kushwaha, and G. Mathur, “Current research and perspectives on microalgae- derived biodiesel,” Biofuels, DOI: 10.1080/17597269.2017.1278932, 2017.
  • [36]. B. Chen, C. Wan, M.A. Mehmood, J.S. Chang, and F. Bai, “Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review,” Bioresource Technology, Vol. 244(Pt 2), pp. 1198-1206, 2017.
  • [37]. Y.S. Shin, H.I. Choi, J.W. Choi, J.S. Lee, Y.J. Sung, and S.J. Sim, “Multilateral approach on enhancing economic viability of lipid production from microalgae: A review,” Bioresource Technology, Vol. 258, pp. 335-344, 2018.
  • [38]. P.G. Roessler, “Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica,” Plant Physiology, Vol. 92, pp. 73–78, 1990.
  • [39]. K. Tsukahara, and S. Sawayama, “Liquid Fuel Production using Microalgae,” Journal of the Japan Petroleum Institute, Vol. 48(5), pp. 251-259, 2005.
  • [40]. KEMA Inc, Algae-to-energy opportunities in Louisiana: a market potential report. (Louisiana Economic Development, 2009.
  • [41]. P.S. Nigam, and A. Singh, “Production of liquid biofuels from renewable resources,” Progress in Energy and Combustion Science, Vol. 37(1), pp. 52-68, 2011.[42]. M.K. Lam, and K.T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, Vol. 30(3), pp. 673–90, 2012.[43]. B. Sajjadi, W.Y. Chen, A.A.A. Raman, and S. Ibrahim, “Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition,” Renewable and Sustainable Energy Reviews, Vol. 97, pp. 200-232, 2018.
  • [44]. P.J.I.B. Williams, and L.M.L. Laurens, “Microalgae as biodiesel & biomass feedstocks: review and analysis of the biochemistry, energetics & economics,” Energy & Environmental Science, Vol. 3(5), pp. 554–590, 2010.
  • [45]. A. Sukenik, Y. Yamaguchi, and A. Livne, “Alterations in lipid molecular species of the marine eustigma tophyte Nannochloropsis sp.,” Journal of Phycology, Vol. 29(5), pp. 620–626, 1993.[46]. C.M. Torres, S.D. Ríos, C. Torras, J. Salvadó, J.M. Mateo-Sanz, and L. Jiménez, “Microalgae- based biodiesel: a multicriteria analysis of the production process using realistic scenarios,” Bioresource Technology, Vol. 147, pp. 7–16, 2013.
  • [47]. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances,” The Plant Journal, Vol. 54(4), pp. 621–639, 2008.
  • [48]. M. Olofsson, T. Lamela, E. Nilsson, J.P. Bergé, V. del Pino, P. Uronen, and C. Legrand, “Seasonal variation of lipids and fatty acids of the microalgae nannochloropsis oculata grown in outdoor large-scale photobioreactors,” Energies, Vol. 5(12), pp.1577–1592, 2012.
  • [49]. G. Soydemir, “Characterization and evaluation of lipids of microalgae grown in wastewater,” D. Eng. thesis, Gebze Technical University, Istanbul, Turkey, Ap. 2016.[50]. N. Moazami, A. Ashori, R. Ranjbar, M. Tangestani, R. Eghtesadi, and A.S. Nejad, “Large-scale biodiesel production using microalgae biomass of Nannochloropsis,” Biomass Bioenergy, Vol. 39, pp. 449–453, 2012.
  • [51]. M. Çelikkol Türkmani, “Chlorella protothecoides mikroalg türünün yetiştirilmesinde baca gazının etkisi,” M. Eng. thesis, Yıldız Technical University, Istanbul, Turkey, Feb. 2016.
  • [52]. Z. Wen, and M.B. Johnson, “Microalgae as a feedstock for biofuel production,” Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Publication 442-886, Blacksburg, VA; 2009.[53]. S. Mishra, K. Anand, and P.S. Mehta, “Predicting the cetane number of biodiesel fuels from their fatty acid methyl ester composition,” Energy Fuels, Vol. 30(12), pp. 10425–10434, 2016.[54]. B. Kuepker, Commission E, editor. European renewable energy policy. Brussels: European Commission, p. 1–10, 2015.
  • [55]. M.J. Griffiths, and S.T.L. Harrison, “Lipid productivity as a key characteristic for choosing algal species for biodiesel production,” Journal of Applied Phycology, Vol. 21(5), pp. 493-507, 2009.
  • [56]. B. Liam, and P. Owende, “Biofuels from microalgae. A review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, Vol. 14(2), pp. 557-577, 2010.
  • [57]. Q. Hu, C.W. Zhang, and M. Sommerfeld, “Biodiesel from Algae: Lessons Learned Over the Past 60 Years and Future Perspectives,” Juneau, Alaska: Annual Meeting of the Phycological Society of America, Journal of Phsicology, Vol. 42(1), pp. 40–41, 2006.
  • [58]. Y. Jiang, T. Yoshida, and A. Quigg, “Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae,” Plant Physiology and Biochemistry, Vol. 54, pp. 70–77, 2012.
  • [59]. C. Adams, V. Godfrey, B. Wahlen, L. Seefeldt, and B. Bugbee, “Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae,” Bioresource Technology, Vol. 131, pp. 188–194, 2013.
  • [60]. Z. Liu, G. Wang, and B. Zhou, “Effect of iron on growth and lipid accumulation in Chlorella vulgaris,” Bioresource Technology, Vol. 99(11), pp. 4717–4722, 2008.
  • [61]. L. Wang, Y. Li, M. Sommerfeld, Q. Hu, “A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid,” Bioresource Technology, Vol. 129, pp. 289−295, 2008.
  • [62]. E.B. D’Alessandro, and N.R. Antoniosi Filho, “Concepts and studies on lipid and pigments of microalgae: A review,” Renewable and Sustainable Energy Reviews, Vol. 58, pp. 832-841, 2016.
  • [63]. E.W. Becker, Microalgae: Biotechnology and Microbiology. Cambridge University Press, 1994.
  • [64]. G. Zhao, J. Yu, F. Jiang, X. Zhang, and T.W. Tan, “The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda,” Bioresource Technology, Vol. 114, pp. 466-471,2012.
  • [65]. X. Li, H. Hu, K. Gan, and Y. Sun, “Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp.,” Bioresource Technology, Vol. 101(14), pp. 5494-5500, 2010.
  • [66]. L.F. Rios, B.C. Klein, L.F. Luz, R.M. Filho, and M.R.W. Maciel, “Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp.,” Applied Biochemistry and Biotechnology, Vol. 175(1), pp. 469-476, 2014.
  • [67]. S.S. Ho, C.Y. Chen, and J.S. Chang, “Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N,” Bioresource Technology, Vol. 113, pp. 244–252, 2012.
  • [68]. Y. Li, D. Han, M. Sommerfeld, and Q. Hu, “Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions,” Bioresource Technology, Vol. 102(1), pp. 123–129, 2011.
  • [69]. T. Řezenka and M. Temina, “Natural Microbial UV Radiation Filters – Mycosporine-like Amino Acids,” Folia Microbiology, Vol. 49(4), pp. 1-14, 2004.
  • [70]. R.S. Gour, A. Chawla, H. Singh, R.S. Chauhan, and A. Kant, “Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock,” PLoS ONE, 11(5): e0155321. doi:10.1371/journal.pone.0155321.
  • [71]. M. Lürling, “Effect of grazing-associated infochemicals on growth and morphological development in Scenedesmus acutus (chlorophyceae),” Journal of Phycology, Vol. 34, pp. 578–586, 1998.
  • [72]. I. Pancha, K. Chokshi, B. George, T. Ghosh, C. Paliwal, R. Maurya, and S. Mishra, “Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077,” Bioresource Technology, Vol. 156, pp. 146-154, 2014.
  • [73]. X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli, and J.R. Vale´ro, “Wastewater sludge as raw material for microbial oils production,” Applied Energy, Vol. 135, pp. 192–201, 2014.
  • [74]. M.T. Madigan, J.M. Martinko, P.V. Dunlap, and D.P. Clark, Brock: Biology of Microorganisms. Pearson Benjamin Cummings Inc, 2009.
  • [75]. R. Yadavalli, R.S. Ramogapol, and C.S. Rao, “Lipid Accumilation Studies in Chlorella pyreniodosa Using Customized Photobioreactor-Effect of Nitrogen Source, Light Intensity and Mode of Operation,” International Journal of Engineering Research and Application, Vol. 2(3), pp. 2446-2453, 2012.
  • [76]. H. Wu, and X. Miau, “Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels,” Bioresource Technology, Vol. 170, pp. 421-427, 2014.[77]. N. Yu, L.T.J. Dieu, S. Harvey, and D.-Y. Lee, “Optimization of process configuration and strain selection for microalgae-based biodiesel production,” Bioresource Technology, Vol. 193, pp. 25–34, 2015.[78]. R. Praveenkumar, K. Shameera, G. Mahalakshmi, M.A. Akbarsha, and N. Thajuddin, “Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production,” Biomass Bioenergy, Vol. 37 (Supplement C), pp. 60–66, 2012.[79]. C. Adams, V. Godfrey, B. Wahlen, L. Seefeldt, and B. Bugbee, “Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae,” Bioresource Technology, Vol. 131, pp. 188–194, 2013.
  • [80]. X. Li, H.Y. Hu, K. Gan, S. Ying-xue, “Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp.,” Bioresource Technology, Vol. 101(14), pp. 5494–5500, 2010.
  • [81]. S. Nagarajan, S.K. Chou, S. Cao, C. Wu, and Z. Zhou, “An updated comprehensive techno-economic analysis of algae biodiesel,” Bioresource Technology, Vol. 145, pp. 150–156, 2013.
  • [82]. L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M.R. Tredici, “Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor,” Biotechnology and Bioengineering, Vol. 102(1), pp. 100-112, 2009.
  • [83]. J. Vymazal, Algae and Element Cycling in Wetlands, Lewis Publishers, Boca Raton, FL, 1995 (689 pp.).
  • [84]. F. Bona, A. Capuzzo, M. Franchino, and M.E. Maffei, “Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans,” Algal Research, Vol. 5, pp. 1–6, 2014.
  • [85]. J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. Close-Out report. National Renewable Energy Lab, Department of Energy, Golden, Colorado, U.S.A. Report number NREL/TP-580-24190, 1998.
  • [86]. M. Arumugam, A. Agarwal, C.A. Arya, and A. Ahmed, “Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus,” Bioresource Technology, Vol. 131, pp. 246–249, 2013.
  • [87]. A. Converti, A.A. Casazza, E.Y. Ortiz, P. Perego, and M.D. Borghi, “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production,” Chemical Engineering and Processing, Vol. 48(6), pp. 1146–1151, 2009.
  • [88]. D. Simionata, M.A. Block, N.L. Rocca, J. Jouhet, E. Marechal, and G. Finazzi, “The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylgylcerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus,” E.C Journal ASMorg, Vol. 12(5), pp. 665-676, 2013.
  • [89]. P.J. Schnurr, G.S. Espie, and D.G. Alleni “Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation” Bioresource Technology, Vol. 136, pp. 337-344, 2013.
  • [90]. P.G. Roessler, “Environmental-control of glycerolipid metabolism in microalgae- commercial implications and future-research directions,” Journal of Phycology, Vol. 26, pp. 393–399, 1990.
  • [91]. Y. Li, J. Mu, D. Chen, F. Han, H. Xu, F. Kong, F. Xie, and B. Feng, “Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation,” Bioresource Technology, Vol. 148, pp. 283–92, 2013.
  • [92]. G.Q. Chen, Y. Jiang, and F. Chen, “Salt-induced alterations in lipid composition of diatom Nitzschia Laevis (Bacillariophyceae) under heterotrophic culture condition(1),” Journal of Phycology, Vol. 44, pp. 1309–1314, 2008.
  • [93]. G. Breuer, P.P. Lamers, D.E. Martens, R.B. Draaisma, and R.H. Wijffels, “The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains,” Bioresource Technology, Vol. 124, pp. 217-226, 2012.
  • [94]. N.R. Boyle, and J.A. Morgan, “Flux balance analysis of pri- mary metabolism in Chlamydomonas reinhardtii,” BMC Systems Biology, 3, 4, 2009.
  • [95]. G. Breuer, P.P. Lamers, D.E. Martens, R.B. Draaisma, and R.H. Wijffels, “Effect of light in- tensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus,” Bioresource Technology, Vol. 143, pp. 1–9, 2013.
  • [96]. R.H. Wijffels, and M.J. Barbosa, “An outlook on microalgal biofuels,” Science, Vol. 329(5993), pp. 796–799, 2010.
  • [97]. A. Toledo-Cervantes, M. Morales, E. Novelo, and S. Revah, “Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus,” Bioresource Technology, Vol. 130, pp. 652–658, 2013.
  • [98]. E. Eustance, S. Badvipour, J.T. Wray, and M.R. Sommerfeld, “Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors," Journal of Applied Phycology, Vol. 28, pp. 1471–1483, 2016.
  • [99]. S.H. Ho, C.Y. Chen, and J.S. Chang, “Effect of light intensity and nitrogen starvation CO2 fixation and lipid/carbonhydrate production of an indigenous microalgae Scenedesmus obliquus CNW-N,” Bioresource Technology, Vol. 113, pp. 244-252, 2012.
  • [100]. N. Agirman, and A.K. Cetin, “Effect of nitrogen limitation on growth, total lipid accumulation and protein amount in Scenedesmus acutus as biofuel reactor candidate,” Natural Science and Discovery, Vol. 3(3), pp. 33-38, 2017.
  • [101]. Y.H. Wu, Y. Yu, X. Li, H.Y. Hu, Z.F. Su, “Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition,” Bioresour. Technol. 112 (2012) 193–198.
  • [102]. L. Wang, Y. Li, M. Sommerfeld, and Q. Hu, “A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid,” Bioresource Technology, Vol. 129, pp. 289–295, 2013.

The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp.

Year 2019, Volume: 2 Issue: 3, 158 - 170, 30.09.2019
https://doi.org/10.35208/ert.553536

Abstract

Microalgal lipid is a major
natural feedstock for biodiesel production. However, microalgae-based biofuel
technology comes with obstacles to production, such as high investment and
operating costs. To overcome these problems, nowadays some strategies have been
used during cultivation stage of the microalgae for enhancing biomass and
accumulate lipids and carbohydrates which could be used for biofuel production.
The most common methods applied to microalgae are classified as nutrient stress
and changes in growth conditions that lead to increase the lipid content in the
species without decreasing the growth rate of their potential strains or by
simultaneously increasing both of these.
Scenedesmus
sp.
are considered to be the most appropriate microalgae to culture commercially
due to their high biomass, lipid and carbohydrate yield. The purpose of this
review was to describe nutrient stress strategy to develop biofuels as a
sustainable alternative to fossil fuels and, in particular, with respect to
nitrogen nutrient limitations, the lipid yield and biomass development in
Scenedesmus sp. microalgae. The nitrogen
starvation/limitation strategy that will increase the general economic
feasibility of microalgal lipid production and affect the fatty acid
composition was presented.

References

  • [1]. R.A. Voloshin, M.V. Rodionova, S.K. Zharmukhamedov, T. Nejat Veziroglu, and S.I. Allakhverdiev, “Review: biofuel production from plant and algal biomass,” International Journal of Hydrogen Energy, Vol. 41(39), pp. 17257-17273, 2016.
  • [2]. K.L. Man, and K.T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, Vol. 30(3), pp. 673-690, 2012.
  • [3]. D. Song, J. Fu, and D. Shi, “Exploitation of oil-bearing microalgae for biodiesel,” Chinese Journal of Biotechnology, Vol. 24(3), pp. 341-348, 2008.
  • [4]. M.K. Lam, and K.T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, Vol. 30(3), pp. 673-690, 2012.
  • [5]. Y. Chisti, “Biodiesel from microalgae beats bioethanol,” Trends in Biotechnology, Vol. 26(3), pp. 126-131, 2008.
  • [6]. Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, Vol. 25(3), pp. 294-306, 2007.
  • [7]. A. Banerjee, R. Sharma, and Y. Chisti, “Botryococcus braunii: a renewable source of hydrocarbons and other chemicals,” Critical Reviews in Biotechnology, Vol. 22(3), pp. 245-279, 2002.
  • [8]. S.H. Ho, X. Ye, T. Hasunuma, J.S. Chang, and A. Kondo, “Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review,” Biotechnology Advances, Vol. 32(8), pp. 1448-1459, 2014.
  • [9]. V. Amanor-Boadu, P.H. Pfromm, and R. Nelson, “Economic feasibility of algal biodiesel under alternative public policies,” Renewable Energy, Vol. 67, pp. 136-142, 2014.
  • [10].C. Santander, P.A. Robles, L.A. Cisternas, and M. Rivas, “Technical–economic feasibility study of the installation of biodiesel from microalgae crops in the Atacama Desert of Chile,” Fuel Processing Technology, Vol. 125, pp. 267-276, 2002.
  • [11]. H.S. Kwak, J.Y.H. Kim, H.M. Woo, E. Jin, B.K. Min, and S.J. Sim, “Synergistic effect of multiple stress conditions for improving microalgal lipid production,” Algal Research, Vol. 19, pp. 215-224, 2016.
  • [12].B. Singh, A. Guldhe, I. Rawat, and F. Bux, “Towards a sustainable approach for development of biodiesel from plant and microalgae,” Reneweble and Sustainable Energy Reviews, Vol. 29, pp. 216–245, 2014.
  • [13].A.J. Klok, D.E. Martens, R.H. Wijffels, and P.P. Lamers, “Simultaneous growth and neutral lipid accumulation in microalgae,” Bioresource Technology, Vol. 134, pp. 233–243, 2013.
  • [14].W.H. Leong, J.W. Lim, M.K. Lam, Y. Uemura, Y.C. Ho, “Third generation biofuels: A nutritional perspective in enhancing microbial lipid production,” Renewable and Sustainable Energy Reviews, Vol. 91, pp. 950-961, 2018.
  • [15].P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, “Commercial applications of microalgae,” Journal of Bioscience and Bioengineering, Vol. 101(2), pp. 87–96, 2006.
  • [16].G. Sibi, V. Shetty, and K. Mokashi, “Enhanced lipid productivity approaches in microalgae as an alternative for fossil fuels-A review,” Journal of Energy Institute, Vol. 89(3), pp. 330-334, 2016.
  • [17].R.R. Narala, S. Garg, K.K. Sharma, S.R. Thomas-Hall, M. Deme, Y. Li, and P.M. Schenk, “Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system,” Frontiers in Energy Research, Vol. 4(29), pp. 1-10, 2016.
  • [18].L. Barsanti, P. Gualtieri, Algae: Anatomy, Biochemistry, and Biotechnology, CRC Press, United States, 2014.
  • [19].C.C. Fu, T.C. Hung, J.Y. Chen, C.H. Su, and W.T. Wu, “Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction,” Bioresource Technology, Vol. 101(22), pp. 8750–8754, 2010.
  • [20]. G. Petkov, and G. Garcia, “Which are fatty acids of the green alga Chlorella?” Biochemical Systematics and Ecology, Vol. 35(5), pp. 281–285, 2007.
  • [21]. T.M. Mata, A.C. Melo, M. Simões, and N.S. Caetano, “Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus,” Bioresource Technology, Vol. 107, pp. 151–158, 2012.
  • [22]. C.J. Zhu, Y.K. Lee, and T.M. Chao, “Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1,” Journal of Applied Phycology, Vol. 9(5), pp. 451–457, 1997.
  • [23]. X. Wu, E.M. Joyce, and T.J. Mason, “The effects of ultrasound on cyanobacteria,” Harmful Algae, Vol. 10(6), pp. 738-743, 2011.
  • [24]. V. Ördög, W.A. Stirk, P. Bálint, J. van Staden, and C. Lovász, “Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures,” Journal of Applied Phycology, Vol. 24(4), pp. 907–914, 2012.
  • [25]. K. Chojnacka, and F.J. Marquez-Rocha, “Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae,” Biotechnology, Vol. 3(1), pp. 21–34, 2004.
  • [26]. N. Rashid, M.S. Ur Rehman, M. Sadiq, T. Mahmood, and J.I. Han, “Current status, issues and developments in microalgae derived biodiesel production,” Reneweble and Sustainable Energy Reviews, Vol. 40, pp. 760–78, 2014.
  • [27]. G.Q. Chen, and F. Chen, “Growing phototrophic cells without light,” Biotechnology Letters, Vol. 28(9), pp. 607–616, 2006.
  • [28]. S. Bellou, M.N. Baeshen, A.M. Elazzazy, D. Aggeli, F. Sayegh, and G. Aggelis, “Microalgal lipids biochemistry and biotechnological perspectives,” Biotechnology Advances, Vol. 32(8), pp. 1476–1493, 2014.
  • [29]. G.H. Huang, F. Chen, D. Wei, X.W. Zhang, and G. Chen, “Biodiesel production by microalgal biotechnology,” Applied Energy, Vol. 87(1), pp. 38–46, 2010.
  • [30]. M. Chen, H. Tang, H. Ma, T.C. Holland, K.Y.S. Ng, and S.O. Salley, “Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta,” Bioresource Technology, Vol. 102(2), pp. 1649–1655, 2011.
  • [31]. Y. Liang, N. Sarkany, and Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions,” Biotechnology Letters, Vol. 31(7), pp. 1043–1049, 2009.
  • [32]. J.R. Benavente-Valdés, C. Aguilar, J.C. Contreras-Esquivel, A. Méndez-Zavala, and J. Montañez, “Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species,” Biotechnology Reports, Vol. 10, pp. 117-125, 2016.
  • [33]. L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, and Z. Yuan, “Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment,” Water Research, Vol. 47(13), pp. 4294–4302, 2013.
  • [34]. Y. Ma, X. Gao, Q. Wang, and Y. Liu, “Biodiesels from microbial oils: Opportunity and challenges,” Bioresource Technology, Vol. 263, pp. 631-641, 2018.
  • [35]. K. Singh, D. Kaloni, S. Gaur, S. Kushwaha, and G. Mathur, “Current research and perspectives on microalgae- derived biodiesel,” Biofuels, DOI: 10.1080/17597269.2017.1278932, 2017.
  • [36]. B. Chen, C. Wan, M.A. Mehmood, J.S. Chang, and F. Bai, “Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review,” Bioresource Technology, Vol. 244(Pt 2), pp. 1198-1206, 2017.
  • [37]. Y.S. Shin, H.I. Choi, J.W. Choi, J.S. Lee, Y.J. Sung, and S.J. Sim, “Multilateral approach on enhancing economic viability of lipid production from microalgae: A review,” Bioresource Technology, Vol. 258, pp. 335-344, 2018.
  • [38]. P.G. Roessler, “Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica,” Plant Physiology, Vol. 92, pp. 73–78, 1990.
  • [39]. K. Tsukahara, and S. Sawayama, “Liquid Fuel Production using Microalgae,” Journal of the Japan Petroleum Institute, Vol. 48(5), pp. 251-259, 2005.
  • [40]. KEMA Inc, Algae-to-energy opportunities in Louisiana: a market potential report. (Louisiana Economic Development, 2009.
  • [41]. P.S. Nigam, and A. Singh, “Production of liquid biofuels from renewable resources,” Progress in Energy and Combustion Science, Vol. 37(1), pp. 52-68, 2011.[42]. M.K. Lam, and K.T. Lee, “Microalgae biofuels: a critical review of issues, problems and the way forward,” Biotechnology Advances, Vol. 30(3), pp. 673–90, 2012.[43]. B. Sajjadi, W.Y. Chen, A.A.A. Raman, and S. Ibrahim, “Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition,” Renewable and Sustainable Energy Reviews, Vol. 97, pp. 200-232, 2018.
  • [44]. P.J.I.B. Williams, and L.M.L. Laurens, “Microalgae as biodiesel & biomass feedstocks: review and analysis of the biochemistry, energetics & economics,” Energy & Environmental Science, Vol. 3(5), pp. 554–590, 2010.
  • [45]. A. Sukenik, Y. Yamaguchi, and A. Livne, “Alterations in lipid molecular species of the marine eustigma tophyte Nannochloropsis sp.,” Journal of Phycology, Vol. 29(5), pp. 620–626, 1993.[46]. C.M. Torres, S.D. Ríos, C. Torras, J. Salvadó, J.M. Mateo-Sanz, and L. Jiménez, “Microalgae- based biodiesel: a multicriteria analysis of the production process using realistic scenarios,” Bioresource Technology, Vol. 147, pp. 7–16, 2013.
  • [47]. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances,” The Plant Journal, Vol. 54(4), pp. 621–639, 2008.
  • [48]. M. Olofsson, T. Lamela, E. Nilsson, J.P. Bergé, V. del Pino, P. Uronen, and C. Legrand, “Seasonal variation of lipids and fatty acids of the microalgae nannochloropsis oculata grown in outdoor large-scale photobioreactors,” Energies, Vol. 5(12), pp.1577–1592, 2012.
  • [49]. G. Soydemir, “Characterization and evaluation of lipids of microalgae grown in wastewater,” D. Eng. thesis, Gebze Technical University, Istanbul, Turkey, Ap. 2016.[50]. N. Moazami, A. Ashori, R. Ranjbar, M. Tangestani, R. Eghtesadi, and A.S. Nejad, “Large-scale biodiesel production using microalgae biomass of Nannochloropsis,” Biomass Bioenergy, Vol. 39, pp. 449–453, 2012.
  • [51]. M. Çelikkol Türkmani, “Chlorella protothecoides mikroalg türünün yetiştirilmesinde baca gazının etkisi,” M. Eng. thesis, Yıldız Technical University, Istanbul, Turkey, Feb. 2016.
  • [52]. Z. Wen, and M.B. Johnson, “Microalgae as a feedstock for biofuel production,” Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Publication 442-886, Blacksburg, VA; 2009.[53]. S. Mishra, K. Anand, and P.S. Mehta, “Predicting the cetane number of biodiesel fuels from their fatty acid methyl ester composition,” Energy Fuels, Vol. 30(12), pp. 10425–10434, 2016.[54]. B. Kuepker, Commission E, editor. European renewable energy policy. Brussels: European Commission, p. 1–10, 2015.
  • [55]. M.J. Griffiths, and S.T.L. Harrison, “Lipid productivity as a key characteristic for choosing algal species for biodiesel production,” Journal of Applied Phycology, Vol. 21(5), pp. 493-507, 2009.
  • [56]. B. Liam, and P. Owende, “Biofuels from microalgae. A review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, Vol. 14(2), pp. 557-577, 2010.
  • [57]. Q. Hu, C.W. Zhang, and M. Sommerfeld, “Biodiesel from Algae: Lessons Learned Over the Past 60 Years and Future Perspectives,” Juneau, Alaska: Annual Meeting of the Phycological Society of America, Journal of Phsicology, Vol. 42(1), pp. 40–41, 2006.
  • [58]. Y. Jiang, T. Yoshida, and A. Quigg, “Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae,” Plant Physiology and Biochemistry, Vol. 54, pp. 70–77, 2012.
  • [59]. C. Adams, V. Godfrey, B. Wahlen, L. Seefeldt, and B. Bugbee, “Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae,” Bioresource Technology, Vol. 131, pp. 188–194, 2013.
  • [60]. Z. Liu, G. Wang, and B. Zhou, “Effect of iron on growth and lipid accumulation in Chlorella vulgaris,” Bioresource Technology, Vol. 99(11), pp. 4717–4722, 2008.
  • [61]. L. Wang, Y. Li, M. Sommerfeld, Q. Hu, “A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid,” Bioresource Technology, Vol. 129, pp. 289−295, 2008.
  • [62]. E.B. D’Alessandro, and N.R. Antoniosi Filho, “Concepts and studies on lipid and pigments of microalgae: A review,” Renewable and Sustainable Energy Reviews, Vol. 58, pp. 832-841, 2016.
  • [63]. E.W. Becker, Microalgae: Biotechnology and Microbiology. Cambridge University Press, 1994.
  • [64]. G. Zhao, J. Yu, F. Jiang, X. Zhang, and T.W. Tan, “The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda,” Bioresource Technology, Vol. 114, pp. 466-471,2012.
  • [65]. X. Li, H. Hu, K. Gan, and Y. Sun, “Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp.,” Bioresource Technology, Vol. 101(14), pp. 5494-5500, 2010.
  • [66]. L.F. Rios, B.C. Klein, L.F. Luz, R.M. Filho, and M.R.W. Maciel, “Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp.,” Applied Biochemistry and Biotechnology, Vol. 175(1), pp. 469-476, 2014.
  • [67]. S.S. Ho, C.Y. Chen, and J.S. Chang, “Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N,” Bioresource Technology, Vol. 113, pp. 244–252, 2012.
  • [68]. Y. Li, D. Han, M. Sommerfeld, and Q. Hu, “Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions,” Bioresource Technology, Vol. 102(1), pp. 123–129, 2011.
  • [69]. T. Řezenka and M. Temina, “Natural Microbial UV Radiation Filters – Mycosporine-like Amino Acids,” Folia Microbiology, Vol. 49(4), pp. 1-14, 2004.
  • [70]. R.S. Gour, A. Chawla, H. Singh, R.S. Chauhan, and A. Kant, “Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock,” PLoS ONE, 11(5): e0155321. doi:10.1371/journal.pone.0155321.
  • [71]. M. Lürling, “Effect of grazing-associated infochemicals on growth and morphological development in Scenedesmus acutus (chlorophyceae),” Journal of Phycology, Vol. 34, pp. 578–586, 1998.
  • [72]. I. Pancha, K. Chokshi, B. George, T. Ghosh, C. Paliwal, R. Maurya, and S. Mishra, “Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077,” Bioresource Technology, Vol. 156, pp. 146-154, 2014.
  • [73]. X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli, and J.R. Vale´ro, “Wastewater sludge as raw material for microbial oils production,” Applied Energy, Vol. 135, pp. 192–201, 2014.
  • [74]. M.T. Madigan, J.M. Martinko, P.V. Dunlap, and D.P. Clark, Brock: Biology of Microorganisms. Pearson Benjamin Cummings Inc, 2009.
  • [75]. R. Yadavalli, R.S. Ramogapol, and C.S. Rao, “Lipid Accumilation Studies in Chlorella pyreniodosa Using Customized Photobioreactor-Effect of Nitrogen Source, Light Intensity and Mode of Operation,” International Journal of Engineering Research and Application, Vol. 2(3), pp. 2446-2453, 2012.
  • [76]. H. Wu, and X. Miau, “Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels,” Bioresource Technology, Vol. 170, pp. 421-427, 2014.[77]. N. Yu, L.T.J. Dieu, S. Harvey, and D.-Y. Lee, “Optimization of process configuration and strain selection for microalgae-based biodiesel production,” Bioresource Technology, Vol. 193, pp. 25–34, 2015.[78]. R. Praveenkumar, K. Shameera, G. Mahalakshmi, M.A. Akbarsha, and N. Thajuddin, “Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production,” Biomass Bioenergy, Vol. 37 (Supplement C), pp. 60–66, 2012.[79]. C. Adams, V. Godfrey, B. Wahlen, L. Seefeldt, and B. Bugbee, “Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae,” Bioresource Technology, Vol. 131, pp. 188–194, 2013.
  • [80]. X. Li, H.Y. Hu, K. Gan, S. Ying-xue, “Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp.,” Bioresource Technology, Vol. 101(14), pp. 5494–5500, 2010.
  • [81]. S. Nagarajan, S.K. Chou, S. Cao, C. Wu, and Z. Zhou, “An updated comprehensive techno-economic analysis of algae biodiesel,” Bioresource Technology, Vol. 145, pp. 150–156, 2013.
  • [82]. L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M.R. Tredici, “Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor,” Biotechnology and Bioengineering, Vol. 102(1), pp. 100-112, 2009.
  • [83]. J. Vymazal, Algae and Element Cycling in Wetlands, Lewis Publishers, Boca Raton, FL, 1995 (689 pp.).
  • [84]. F. Bona, A. Capuzzo, M. Franchino, and M.E. Maffei, “Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans,” Algal Research, Vol. 5, pp. 1–6, 2014.
  • [85]. J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. Close-Out report. National Renewable Energy Lab, Department of Energy, Golden, Colorado, U.S.A. Report number NREL/TP-580-24190, 1998.
  • [86]. M. Arumugam, A. Agarwal, C.A. Arya, and A. Ahmed, “Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus,” Bioresource Technology, Vol. 131, pp. 246–249, 2013.
  • [87]. A. Converti, A.A. Casazza, E.Y. Ortiz, P. Perego, and M.D. Borghi, “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production,” Chemical Engineering and Processing, Vol. 48(6), pp. 1146–1151, 2009.
  • [88]. D. Simionata, M.A. Block, N.L. Rocca, J. Jouhet, E. Marechal, and G. Finazzi, “The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylgylcerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus,” E.C Journal ASMorg, Vol. 12(5), pp. 665-676, 2013.
  • [89]. P.J. Schnurr, G.S. Espie, and D.G. Alleni “Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation” Bioresource Technology, Vol. 136, pp. 337-344, 2013.
  • [90]. P.G. Roessler, “Environmental-control of glycerolipid metabolism in microalgae- commercial implications and future-research directions,” Journal of Phycology, Vol. 26, pp. 393–399, 1990.
  • [91]. Y. Li, J. Mu, D. Chen, F. Han, H. Xu, F. Kong, F. Xie, and B. Feng, “Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation,” Bioresource Technology, Vol. 148, pp. 283–92, 2013.
  • [92]. G.Q. Chen, Y. Jiang, and F. Chen, “Salt-induced alterations in lipid composition of diatom Nitzschia Laevis (Bacillariophyceae) under heterotrophic culture condition(1),” Journal of Phycology, Vol. 44, pp. 1309–1314, 2008.
  • [93]. G. Breuer, P.P. Lamers, D.E. Martens, R.B. Draaisma, and R.H. Wijffels, “The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains,” Bioresource Technology, Vol. 124, pp. 217-226, 2012.
  • [94]. N.R. Boyle, and J.A. Morgan, “Flux balance analysis of pri- mary metabolism in Chlamydomonas reinhardtii,” BMC Systems Biology, 3, 4, 2009.
  • [95]. G. Breuer, P.P. Lamers, D.E. Martens, R.B. Draaisma, and R.H. Wijffels, “Effect of light in- tensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus,” Bioresource Technology, Vol. 143, pp. 1–9, 2013.
  • [96]. R.H. Wijffels, and M.J. Barbosa, “An outlook on microalgal biofuels,” Science, Vol. 329(5993), pp. 796–799, 2010.
  • [97]. A. Toledo-Cervantes, M. Morales, E. Novelo, and S. Revah, “Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus,” Bioresource Technology, Vol. 130, pp. 652–658, 2013.
  • [98]. E. Eustance, S. Badvipour, J.T. Wray, and M.R. Sommerfeld, “Biomass productivity of two Scenedesmus strains cultivated semi-continuously in outdoor raceway ponds and flat-panel photobioreactors," Journal of Applied Phycology, Vol. 28, pp. 1471–1483, 2016.
  • [99]. S.H. Ho, C.Y. Chen, and J.S. Chang, “Effect of light intensity and nitrogen starvation CO2 fixation and lipid/carbonhydrate production of an indigenous microalgae Scenedesmus obliquus CNW-N,” Bioresource Technology, Vol. 113, pp. 244-252, 2012.
  • [100]. N. Agirman, and A.K. Cetin, “Effect of nitrogen limitation on growth, total lipid accumulation and protein amount in Scenedesmus acutus as biofuel reactor candidate,” Natural Science and Discovery, Vol. 3(3), pp. 33-38, 2017.
  • [101]. Y.H. Wu, Y. Yu, X. Li, H.Y. Hu, Z.F. Su, “Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition,” Bioresour. Technol. 112 (2012) 193–198.
  • [102]. L. Wang, Y. Li, M. Sommerfeld, and Q. Hu, “A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid,” Bioresource Technology, Vol. 129, pp. 289–295, 2013.
There are 93 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Review
Authors

Gamze Dogdu Okcu 0000-0002-0278-8503

Publication Date September 30, 2019
Submission Date April 14, 2019
Acceptance Date July 29, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Dogdu Okcu, G. (2019). The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp. Environmental Research and Technology, 2(3), 158-170. https://doi.org/10.35208/ert.553536
AMA Dogdu Okcu G. The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp. ERT. September 2019;2(3):158-170. doi:10.35208/ert.553536
Chicago Dogdu Okcu, Gamze. “The Impact of Nitrogen Starvation on the Dynamics of Lipid and Biomass Production in Scenedesmus Sp”. Environmental Research and Technology 2, no. 3 (September 2019): 158-70. https://doi.org/10.35208/ert.553536.
EndNote Dogdu Okcu G (September 1, 2019) The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp. Environmental Research and Technology 2 3 158–170.
IEEE G. Dogdu Okcu, “The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp”., ERT, vol. 2, no. 3, pp. 158–170, 2019, doi: 10.35208/ert.553536.
ISNAD Dogdu Okcu, Gamze. “The Impact of Nitrogen Starvation on the Dynamics of Lipid and Biomass Production in Scenedesmus Sp”. Environmental Research and Technology 2/3 (September 2019), 158-170. https://doi.org/10.35208/ert.553536.
JAMA Dogdu Okcu G. The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp. ERT. 2019;2:158–170.
MLA Dogdu Okcu, Gamze. “The Impact of Nitrogen Starvation on the Dynamics of Lipid and Biomass Production in Scenedesmus Sp”. Environmental Research and Technology, vol. 2, no. 3, 2019, pp. 158-70, doi:10.35208/ert.553536.
Vancouver Dogdu Okcu G. The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp. ERT. 2019;2(3):158-70.