Review
BibTex RIS Cite

The overview of mechanical properties of short natural fiber reinforced geopolymer composites

Year 2020, Volume: 3 Issue: 1, 28 - 39, 31.03.2020
https://doi.org/10.35208/ert.671713

Abstract

In the EU there is a pressing need for the change of the current economy into a so-called circular economy in recent years. The rational management of natural resources and the use of waste materials are becoming more and more important. It is also supported by the growing ecological awareness of society, including the consciousness of sustainable development. Nowadays, it is the construction industry that has the most significant impact on pollution. Therefore, numerous attempts are made to reduce energy consumption and the amount of waste generated by it. These are the main issues stimulating the research on new innovative materials such as geopolymer composites. They have a significantly lower carbon footprint than traditional construction materials. Moreover, the synthesis of geopolymers requires 2-3 times less energy than traditional Portland cement, not to mention the fact that 4-8 times less CO2 is generated. In addition, the above process has another environmental benefit i.e. the possibility of using anthropogenic raw materials (minerals) such as slags and fly ashes for the production. One of the limitations for the wide use of such materials is their relatively low brittle fracture behaviour. Nowadays, one of the most important research areas is the improvement of their mechanical properties. To improve the mechanical properties it is possible to reinforce the matrix by fibres addition, especially natural fibres that are renewable resources. The main objective of the article is to analyse the mechanical properties of new composites and assessment the possibility to replace traditional building materials within eco-friendly alternatives.

Thanks

This work was supported by the ERANet-LAC 2nd Joint Call (http://www.eranet-lac.eu) and funded by National Centre for Research and Development, Poland, the Romanian National Authority for Scientific Research and Innovation, CCCDI – UEFISCDI, project number ERANET- LACFIBER 17/2017, within PNCDI II and the Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK), under the grant: “Development of eco-friendly composite materials based on geopolymer matrix and reinforced with waste fibers”.

References

  • [1]. J. Mikuła, and M. Łach. Geopolymers – a new environment friendly alternative to concrete based on portland cement. Part 1 – Introduction (in Polish), in. Pro-ecological solutions in the field of production. Modern environmentally friendly composite materials (in Polish) [J. Mikuła (ed.)]. Cracow University of Technology, Cracow, Poland. Vol. 1, 2014.
  • [2]. K. Korniejenko, M. Łach, N. Doğan-Sağlamtimur, G. Furtos and, J. Mikuła, “Fibre Reinforced Geopolymer Composites - A Review,” in Proc. 1st International Conference on Environment, Technology and Management (ICETEM), 27-29 June 2019, Niğde, Turkey, pp. 3-13, 2019.
  • [3]. K. Korniejenko, “The Influence of Short Fibres on the Properties of Composites with Geopolymer Matrix,” (in Polish) PhD. Thesis, Cracow University of Technology, Cracow, Poland, Dec. 2018. [4]. G. Silva, S. Kim, R. Aguilar and J. Nakamatsu, “Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry,” Sustainable Materials and Technologies, Vol. 23, e00132, 2020.
  • [5]. K. Korniejenko, E. Frączek, E. Pytlak and M. Adamski, “Mechanical properties of geopolymer composites reinforced with natural fibers,” Procedia Engineering, Vol. 151, pp. 388–393, 2016.
  • [6]. A. Palomo , P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva and A. Fernández-Jiménez, “A review on alkaline activation: new analytical perspectives,” Materials de Construccion, Vol. 64, 315, 2014.
  • [7]. M. Król, T.Z. Błaszczyński, „Geopolymers in civil engineering,” (in Polish), Izolacje, Vol. 5/2013, pp. 38-47, 2013.
  • [8]. J. Davidovits. Geopolymer Chemistry and Applications, 4th ed., Geopolymer Institute, Saint-Quentin, France, 2015.
  • [9]. S.L. Lyu, T.T. Wang, T.W. Cheng and T.H. Ueng, “Main factors affecting mechanical characteristics of geopolymer revealed by experimental design and associated statistical analysis,” Construction and Building Materials, Vol. 43, pp. 589-597, 2013.
  • [10]. A. Palomo, M.T. Blanco-Varela, M.L. Granizo, F. Puertas, T. Vazquez and M.V. Grutzeck M.W., “Chemical stability of cementitious materials based on metakaolin,” Cement and Concrete Research, Vol. 29 (7), pp. 997-1004, 1999.
  • [11]. J. Davidovits, “Geopolimers: Man-Made Rock geosynthesis and the resulting development of very early strength cement,“ Journal of Materials Education, Vol. 16, pp. 91-139, 1994.
  • [12]. P. Duxson, G.C. Lukey and J.S.J. van Deventer, ”Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity,” Industrial and Engineering Chemistry Research, Vol. 45(23), pp. 7781- 7788, 2006.
  • [13]. J. Davidovits, C.C. Douglas, H.P. John and J.R. Douglas, “Geopolymer concretes for environmental protection,” Concrete International, Vol. 12(7), pp. 30–40, 1990.
  • [14]. J. Davidovits, “Geopolymers and geopolymer new materials,“ Journal of Thermal Analysis, Vol. 35(2), pp. 429-444, 1989.
  • [15]. W. Li and J. Xu, “Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading,“ Materials Science and Engineering, Vol. A(505), pp. 178-186, 2009.
  • [16]. T. Bakharev, “Resistance of geopolymer materials to acid attack,“ Cement and Concrete Research, Vol. 35(4), pp. 658-670, 2005.
  • [17]. M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete in seawater environment,“ in 13th East Asia-Pacific Conference on Structural Engineering and Construction, Sapporo, Japan, 2013.
  • [18]. D.V. Reddy, J.-B. Edouard and K. Sobhan, “Durability of fly ash–based geopolymer structural concrete in the marine environment,” Journal of Materials in Civil Engineering, Vol. 25(6), pp. 781-787, 2013.
  • [19]. H. Wang, H. Li and F. Yan, ”Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE, ” Wear, Vol. 258(10), pp. 1562-1566, 2005.
  • [20]. P. Mei Xun, W. Zheng Hong and S. Shao-Hua S., ”A Preliminary Study on Class F Fly Ash-Based Geopolymers Formed by Pressure as Acid-Resisting Bricks,” Advanced Materials Research, Vol. 557-559, pp. 865-86, 2012.
  • [21]. M.B. Ogundiran, H.W. Nugteren and G.J. Witkamp, ”Immobilisation of lead smelting slag within spent aluminate-fly ash based geopolymers,” Journal of Hazardous Materials, Vol. 248-249(1), pp. 29-36, 2013.
  • [22]. Z. Yunsheng, S. Wei, C. Qianli and C. Lin, ”Synthesis and heavy metal immobilization behaviors of slag based geopolymer,” Journal of Hazardous Materials, Vol. 143, pp. 206-213, 2007.
  • [23]. T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng and S.F. Yang, ”The heavy metal adsorption characteristics on metakaolin-based geopolymer,” In Applied Clay Science, Vol. 56, pp. 90-96, 2011.
  • [24]. R.A. Sá Ribeiro, M.G. Sa Ribeiro and W.M. Kriven, ”A Review of Particle- and Fiber-Reinforced Metakaolin-Based Geopolymer Composites,” Journal of Ceramics Science and Technology, Vol. 8(3), pp. 307-322, 2017.
  • [25]. G. Furtos, L. Silaghi-Dumitrescu, P., Pascuta, C. Sarosi and K. Korniejenko K., ”Mechanical properties of wood fiber reinforced geopolymer composites with sand addition,” Journal of Natural Fibers, Vol., pp. 1-12, 2019.
  • [26]. A.R. Sakulich, ”Reinforced Geopolymer Composites for Enhanced Material Greenness and Durability,” Sustainable Cities and Society, Vol. 1, pp. 195-210, 2011.
  • [27]. H. Assaedi, F.U.A. and Shaikh I.M. Low, ”Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 5, pp. 62-70, 2017.
  • [28]. T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites,” Journal of Material Science, Vol. 48, pp. 6746-6752, 2013.
  • [29]. F. Pacheco-Torgal and S. Jalali, ”Cementitious building materials reinforced with vegetable fibers: a review,” Construction and Building Materials, Vol. 25(2), pp. 575-582, 2011.
  • [30]. M. Lewin and E.M. Pearce (red.). Handbook of fiber chemistry, wyd. 2, Marcel Dekker, New York, Basel, 1998.
  • [31]. T. Alomayri, F.U.A., Shaikh and I.M. Low, ”Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites,” Materials and Design, Vol. 57, pp. 360-365, 2014.
  • [32]. T. Alomayri and I.M. Low, ”Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 1, pp. 30-34, 2013.
  • [33]. T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites,” Composites: Part B, Vol. 60, pp. 36-42, 2014.
  • [34]. T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Mechanical and thermal properties of ambient cured cotton fabric-reinforced fly ash-based geopolymer composites,” Ceramics International, Vol. 40, pp. 14019-14028, 2014.
  • [35]. T. Alomayri, H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Effect of water absorption on the mechanical properties of cottonfabric-reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 2, pp. 223-230, 2014.
  • [36]. T. Alomayri, H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Characterisation of cotton fibre-reinforced geopolymer composites,” Composites: Part B, Vol. 50, pp. 1-6, 2013.
  • [37]. R.A.J. Malenab, J.P.S. Ngo and M.A.B. Promentilla, ”Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite,” Materials, Vol. 10, pp. 579-598, 2017.
  • [38]. E.A. Correia, S.M. Torres, M.E.O. Alexandre, K.C. Gomes, N.P. Barbosa and S.D.E. Barros, ”Mechanical Performance of Natural Fibers Reinforced Geopolymer Composites,” Materials Science Forum, Vol. 758, pp. 139-45, 2013.
  • [39]. K. Korniejenko, M. Łach and J. Mikuła, ”Mechanical properties of composites based on geopolymers reinforced with sizal,” IOP Conf. Series: Materials Science and Engineering, Vol. 706, 012007, 2019.
  • [40]. R. Patel and R. Joshi, ”Analysis of Development of Porous fly ash-based Geopolymer with Low Thermal Conductivity,” International Advanced Research Journal in Science, Engineering and Technology, Vol. 3(12), pp. 171-178, 2016.
  • [41]. N. Amalia, S. Hidayatullah, A.I.I. Nurfadilla and J. Subaer, ”The Mechanical Properties and Microstructure Characters of Hybrid Composite Geopolymers-Pineapple Fiber Leaves (PFL),” IOP Conf. Series: Materials Science and Engineering, Vol. 180, 012012, 2017.
  • [42]. M. Alzeer and K. MacKenzie K., ”Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax),” Applied Clay Science, Vol. 75-76, pp. 148-152, 2013.
  • [43]. H. Assaedi, T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Synthesis and mechanical properties of flax fabric reinforced geopolymer composites,” Advances in Materials Research, Vol. 3(3), pp. 151-161, 2014.
  • [44]. H. Assaedi, T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites,” Journal of Advanced Ceramics, Vol. 4(4), pp. 272-281, 2015.
  • [45]. H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Characterizations of flax fabric reinforced nanoclay-geopolymer composites,” Composites: Part B, Vol. 95, pp. 412-422, 2016.
  • [46]. H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 5, pp. 62-70, 2017.
  • [47]. G. Silva, S. Kim, A. Castañeda, R. Donayre, J., Nakamatsu, R. Aguilar, K. Korniejenko, M. Łach, and J. Mikuła, ”A Comparative Study of Linen (Flax) Fibers as Reinforcement of Fly Ash and Clay Brick Powder Based Geopolymers,” IOP Conf. Series: Materials Science and Engineering, Vol. 416, 012107, 2018.
  • [48]. K. Korniejenko, M. Łach, M. Hebdowska-Krupa and J. Mikuła, ”The mechanical properties of flax and hemp fibres reinforced geopolymer composites,” IOP Conf. Series: Materials Science and Engineering, Vol. 379, 012023, 2018.
  • [49]. B. Galzerano, A. Formisano, M. Durante, F. Iucolano, D. Caputo and B. Liguori, ”Hemp reinforcement in lightweight geopolymers,” Journal of Composite Materials, Vol. 52(17), pp. 2313–2320, 2018.
  • [50]. M. Mastali, Z. Abdollahnejad and F. Pacheco-Torgal, ”Carbon dioxide sequestration of fly ash alkaline-based mortars containing recycled aggregates and reinforced by hemp fibres,” Construction and Building Materials, Vol. 160, pp. 48-56, 2018.
  • [51]. K. Siddharth, D. Dinakar, V. Suresh, C. Balaji and M.D. Kumar, ”Strength Studies on Silica Fume Based Geopolymer Mortar with Coir Fibre,” International Research Journal of Engineering and Technology, Vol. 3(12), pp. 359-363, 2016.
  • [52]. N. Amalia, N. Akifah, A.I.I. Nurfadilla and J. Subaer, ”Development of Coconut Trunk Fiber Geopolymer Hybrid Composite for Structural Engineering Materials,” IOP Conf. Series: Materials Science and Engineering, Vol. 180, 012014, 2017.
  • [53]. A.C.C. Trindade, H.A. Alcamand, P.H.R. Borges and F.A. Silva, ”Influence of Elevated Temperatures on the Mechanical Behavior of Jute-Textile-Reinforced Geopolymers,” Journal of Ceramics Science and Technology, Vol. 8(3), pp. 389-398, 2017.
  • [54]. K. Korniejenko, M. Łach and J. Mikuła, Mechanical Properties of Raffia Fibres Reinforced Geopolymer Composite, in: Advances in Natural Fibre Composites [R. Fangueiro and S. Rana (eds.)]. Springer, Cham, pp. 135-144, 2018.
  • [55]. R. Chen, S. Ahmari and L. Zhang, ”Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer,” Journal of Material Science, Vol. 49, pp. 2548-2558, 2014.
  • [56]. M. Alshaaer, S.A. Mallouh, J. Al-Kafawein, Y. Al-Faiyz, T. Fahmy, A. Kallel and F. Rocha, ”Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre - Reinforced geopolymer composite,” Applied Clay Science, Vol. 143, pp. 125-133, 2017.
  • [57]. R.A. Sá Ribeiro, M.G. Sá Ribeiro, K. Sankar and W.M. Kriven, ”Geopolymer-bamboo composite – A novel sustainable construction material,” Construction and Building Materials, Vol. 123, pp. 501-507, 2016.
  • [58]. S.N. Sarmin, ”The Influence of Different Wood Aggregates on the Properties of Geopolymer Composites,” Key Engineering Materials, Vol. 723, pp. 74-79, 2016.
  • [59]. P. Duan, C. Yan, W. Zhou and W. Luo, ”Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust,” Construction and Building Materials, Vol. 111, pp. 600-610, 2016.
  • [60]. S.S. Musil., P.F. Keane and W.M. Kriven, Green composite: sodium-based geopolymer reinforced with chemically extracted corn husk fibers. In. Developments in Strategic Materials and Computational Design IV [W.M. Kriven, J. Wang, Y. Zhou and A.L. Gyekenyesi (eds.)], Ceramic Engineering and Science Proceedings, Vol. 34(10), pp. 123-133, 2014.
  • [61]. U.H. Heo, K. Sankar, W.M. Kriven and S.S. Musil, Rice husk ash as a silica source in geopolymer formulation, in. Developments in Strategic Materials and Computational Design V [W.M. Kriven, D. Zhou, K. Moon, T. Hwang, J. Wang, C. Lewinssohn and Y. Zhou (eds.)], Ceramic Engineering and Science Proceedings, Vol. 38(10), pp. 870-102, 2015.
  • [62]. T.-A. Kua, A. Arulrajah, S. Horpibulsuk, Y.-J. Du and C. Suksiripattanapong, ”Engineering and environmental evaluation of spent coffee grounds stabilized with industrial by-products as a road subgrade material,” Clean Technologies and Environmental Policy, Vol. 19(1), pp. 63-67, 2017.
  • [63]. D. Mierzwiński, K. Korniejenko, M. Łach, J. Mikuła and J. Krzywda, ”Effect of Coffee Grounds Addition on Efflorescence in Fly Ash-based Geopolymer,” IOP Conf. Series: Materials Science and Engineering, Vol. 416, 012035, 2018.
  • [64]. M. Alzeer and K.J.D. MacKenzie, ”Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres,” Journal of Material Sciences, Vol. 47, pp. 6958-6965, 2012.
  • [65]. A.N. Murri, V. Medri and E. Landi, ”Production and thermomechanical characterization of wool–geopolymer composites,” Journal of American Ceramic Society, Vol. 100, pp. 2822-2831, 2017.
  • [66]. X.N. Thang, P. Louda and D. Kroisova, ”Thermophysical properties of woven fabrics reinforced geopolymer composites,” World Journal of Engineering, Vol. 10(2), pp. 139-144, 2013.
  • [67]. S. Samal, N.P. Thanh, I. Petrikova and B. Marvalova B., ”Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature,” The Journal of the Minerals, Metals and Materials Society, Vol. 67(7), pp. 1478-1485, 2015.
  • [68]. M. Welter, M. Schmücker and K.J.D., MacKenzie, ”Evolution of the Fibre-Matrix Interactions in Basalt-Fibre-Reinforced Geopolymer-Matrix Composites after Heating,” Journal of Ceramic Science and Technology, Vol. 06(01), pp. 17-24, 2015.
  • [69]. A. Ronad, V.B. Karikatti and S.S. Dyavanal S.S., ”A Study on Mechanical Properties of Geopolymer Concrete Reinforced with Basalt Fiber,” IJRET: International Journal of Research in Engineering and Technology, Vol. 05(07), pp. 474-478, 2016.
  • [70]. X. Guo and X. Pant X., ”Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar," Construction and Building Materials, Vol. 179, pp. 633-641, 2018.
  • [71]. A. Celik, K. Yilmaz, O. Canpolat., M.M. Al-Mashhadani, Y. Aygörmez and M. Uysal, ”High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers,” Construction and Building Materials, Vol. 187, pp. 1190-1203, 2018.
  • [72]. P. Behera, V. Baheti, J. Militky and P. Louda, ”Elevated temperature properties of basalt microfibril filled geopolymer composites,” Construction and Building Materials, Vol. 163, pp. 850-860, 2018.
  • [73]. F. Shaikh and S. Haque, ”Behaviour of Carbon and Basalt Fibres Reinforced Fly Ash Geopolymer at Elevated Temperatures,” International Journal of Concrete Structures and Materials, Vol. 12(35), pp. 12, 2018.
  • [74]. P. Timakul, W. Rattanaprasit and P. Aungkavattana ”Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition,” Ceramics International, Vol. 42, pp. 6288 – 6295, 2016.
  • [75]. C. Bagci, G.P. Kutyla and W.M. Kriven, ”Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative,” Ceramics International, Vol. 43, pp. 14784-14790, 2017.
  • [76]. L. Vickers, A. van Riessen and W.D.A. Fire-Resistant Geopolymers. Role of Fibres and Fillers to Enhance Thermal Properties, Springer, Singapore - Heidelberg - New York - Dordrecht - London, 2015.
  • [77]. F.J. Silva and C. Thaumaturgo, ”Fibre reinforcement and fracture response in geopolymeric mortars,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 26(2), pp. 167-172, 2003.
  • [78]. S. Yan and K. Sagoe-Crentsil, ”Properties of wastepaper sludge in geopolymer mortars for masonry applications,” Journal of Environmental Management, Vol. 112, pp. 27-32, 2012.
  • [79]. C-K. Ma, A.Z. Awang and W. Omar, ”Structural and material performance of geopolymer concrete: A review,” Construction and Building Materials, Vol. 186, pp. 90-102, 2018.
  • [80]. T. Lin, C. Jia, P. He and M. Wang, ”In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites,” Materials Science and Engineering A, Vol. 527, pp. 2404-2407, 2010.
  • [81]. L. Yan, B. Kasal and L., Huang, ”A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering,” Composites: Part B, Vol. 92, pp. 94-132, 2016.
  • [82]. A.M. Rashad, ”A synopsis about the effect of basalt and natural fibers on geopolymer properties,” Natural Resources Conservation and Research, Vol. 1, pp. 9, 2018.
Year 2020, Volume: 3 Issue: 1, 28 - 39, 31.03.2020
https://doi.org/10.35208/ert.671713

Abstract

References

  • [1]. J. Mikuła, and M. Łach. Geopolymers – a new environment friendly alternative to concrete based on portland cement. Part 1 – Introduction (in Polish), in. Pro-ecological solutions in the field of production. Modern environmentally friendly composite materials (in Polish) [J. Mikuła (ed.)]. Cracow University of Technology, Cracow, Poland. Vol. 1, 2014.
  • [2]. K. Korniejenko, M. Łach, N. Doğan-Sağlamtimur, G. Furtos and, J. Mikuła, “Fibre Reinforced Geopolymer Composites - A Review,” in Proc. 1st International Conference on Environment, Technology and Management (ICETEM), 27-29 June 2019, Niğde, Turkey, pp. 3-13, 2019.
  • [3]. K. Korniejenko, “The Influence of Short Fibres on the Properties of Composites with Geopolymer Matrix,” (in Polish) PhD. Thesis, Cracow University of Technology, Cracow, Poland, Dec. 2018. [4]. G. Silva, S. Kim, R. Aguilar and J. Nakamatsu, “Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry,” Sustainable Materials and Technologies, Vol. 23, e00132, 2020.
  • [5]. K. Korniejenko, E. Frączek, E. Pytlak and M. Adamski, “Mechanical properties of geopolymer composites reinforced with natural fibers,” Procedia Engineering, Vol. 151, pp. 388–393, 2016.
  • [6]. A. Palomo , P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva and A. Fernández-Jiménez, “A review on alkaline activation: new analytical perspectives,” Materials de Construccion, Vol. 64, 315, 2014.
  • [7]. M. Król, T.Z. Błaszczyński, „Geopolymers in civil engineering,” (in Polish), Izolacje, Vol. 5/2013, pp. 38-47, 2013.
  • [8]. J. Davidovits. Geopolymer Chemistry and Applications, 4th ed., Geopolymer Institute, Saint-Quentin, France, 2015.
  • [9]. S.L. Lyu, T.T. Wang, T.W. Cheng and T.H. Ueng, “Main factors affecting mechanical characteristics of geopolymer revealed by experimental design and associated statistical analysis,” Construction and Building Materials, Vol. 43, pp. 589-597, 2013.
  • [10]. A. Palomo, M.T. Blanco-Varela, M.L. Granizo, F. Puertas, T. Vazquez and M.V. Grutzeck M.W., “Chemical stability of cementitious materials based on metakaolin,” Cement and Concrete Research, Vol. 29 (7), pp. 997-1004, 1999.
  • [11]. J. Davidovits, “Geopolimers: Man-Made Rock geosynthesis and the resulting development of very early strength cement,“ Journal of Materials Education, Vol. 16, pp. 91-139, 1994.
  • [12]. P. Duxson, G.C. Lukey and J.S.J. van Deventer, ”Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity,” Industrial and Engineering Chemistry Research, Vol. 45(23), pp. 7781- 7788, 2006.
  • [13]. J. Davidovits, C.C. Douglas, H.P. John and J.R. Douglas, “Geopolymer concretes for environmental protection,” Concrete International, Vol. 12(7), pp. 30–40, 1990.
  • [14]. J. Davidovits, “Geopolymers and geopolymer new materials,“ Journal of Thermal Analysis, Vol. 35(2), pp. 429-444, 1989.
  • [15]. W. Li and J. Xu, “Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading,“ Materials Science and Engineering, Vol. A(505), pp. 178-186, 2009.
  • [16]. T. Bakharev, “Resistance of geopolymer materials to acid attack,“ Cement and Concrete Research, Vol. 35(4), pp. 658-670, 2005.
  • [17]. M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete in seawater environment,“ in 13th East Asia-Pacific Conference on Structural Engineering and Construction, Sapporo, Japan, 2013.
  • [18]. D.V. Reddy, J.-B. Edouard and K. Sobhan, “Durability of fly ash–based geopolymer structural concrete in the marine environment,” Journal of Materials in Civil Engineering, Vol. 25(6), pp. 781-787, 2013.
  • [19]. H. Wang, H. Li and F. Yan, ”Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE, ” Wear, Vol. 258(10), pp. 1562-1566, 2005.
  • [20]. P. Mei Xun, W. Zheng Hong and S. Shao-Hua S., ”A Preliminary Study on Class F Fly Ash-Based Geopolymers Formed by Pressure as Acid-Resisting Bricks,” Advanced Materials Research, Vol. 557-559, pp. 865-86, 2012.
  • [21]. M.B. Ogundiran, H.W. Nugteren and G.J. Witkamp, ”Immobilisation of lead smelting slag within spent aluminate-fly ash based geopolymers,” Journal of Hazardous Materials, Vol. 248-249(1), pp. 29-36, 2013.
  • [22]. Z. Yunsheng, S. Wei, C. Qianli and C. Lin, ”Synthesis and heavy metal immobilization behaviors of slag based geopolymer,” Journal of Hazardous Materials, Vol. 143, pp. 206-213, 2007.
  • [23]. T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng and S.F. Yang, ”The heavy metal adsorption characteristics on metakaolin-based geopolymer,” In Applied Clay Science, Vol. 56, pp. 90-96, 2011.
  • [24]. R.A. Sá Ribeiro, M.G. Sa Ribeiro and W.M. Kriven, ”A Review of Particle- and Fiber-Reinforced Metakaolin-Based Geopolymer Composites,” Journal of Ceramics Science and Technology, Vol. 8(3), pp. 307-322, 2017.
  • [25]. G. Furtos, L. Silaghi-Dumitrescu, P., Pascuta, C. Sarosi and K. Korniejenko K., ”Mechanical properties of wood fiber reinforced geopolymer composites with sand addition,” Journal of Natural Fibers, Vol., pp. 1-12, 2019.
  • [26]. A.R. Sakulich, ”Reinforced Geopolymer Composites for Enhanced Material Greenness and Durability,” Sustainable Cities and Society, Vol. 1, pp. 195-210, 2011.
  • [27]. H. Assaedi, F.U.A. and Shaikh I.M. Low, ”Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 5, pp. 62-70, 2017.
  • [28]. T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites,” Journal of Material Science, Vol. 48, pp. 6746-6752, 2013.
  • [29]. F. Pacheco-Torgal and S. Jalali, ”Cementitious building materials reinforced with vegetable fibers: a review,” Construction and Building Materials, Vol. 25(2), pp. 575-582, 2011.
  • [30]. M. Lewin and E.M. Pearce (red.). Handbook of fiber chemistry, wyd. 2, Marcel Dekker, New York, Basel, 1998.
  • [31]. T. Alomayri, F.U.A., Shaikh and I.M. Low, ”Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites,” Materials and Design, Vol. 57, pp. 360-365, 2014.
  • [32]. T. Alomayri and I.M. Low, ”Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 1, pp. 30-34, 2013.
  • [33]. T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites,” Composites: Part B, Vol. 60, pp. 36-42, 2014.
  • [34]. T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Mechanical and thermal properties of ambient cured cotton fabric-reinforced fly ash-based geopolymer composites,” Ceramics International, Vol. 40, pp. 14019-14028, 2014.
  • [35]. T. Alomayri, H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Effect of water absorption on the mechanical properties of cottonfabric-reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 2, pp. 223-230, 2014.
  • [36]. T. Alomayri, H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Characterisation of cotton fibre-reinforced geopolymer composites,” Composites: Part B, Vol. 50, pp. 1-6, 2013.
  • [37]. R.A.J. Malenab, J.P.S. Ngo and M.A.B. Promentilla, ”Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite,” Materials, Vol. 10, pp. 579-598, 2017.
  • [38]. E.A. Correia, S.M. Torres, M.E.O. Alexandre, K.C. Gomes, N.P. Barbosa and S.D.E. Barros, ”Mechanical Performance of Natural Fibers Reinforced Geopolymer Composites,” Materials Science Forum, Vol. 758, pp. 139-45, 2013.
  • [39]. K. Korniejenko, M. Łach and J. Mikuła, ”Mechanical properties of composites based on geopolymers reinforced with sizal,” IOP Conf. Series: Materials Science and Engineering, Vol. 706, 012007, 2019.
  • [40]. R. Patel and R. Joshi, ”Analysis of Development of Porous fly ash-based Geopolymer with Low Thermal Conductivity,” International Advanced Research Journal in Science, Engineering and Technology, Vol. 3(12), pp. 171-178, 2016.
  • [41]. N. Amalia, S. Hidayatullah, A.I.I. Nurfadilla and J. Subaer, ”The Mechanical Properties and Microstructure Characters of Hybrid Composite Geopolymers-Pineapple Fiber Leaves (PFL),” IOP Conf. Series: Materials Science and Engineering, Vol. 180, 012012, 2017.
  • [42]. M. Alzeer and K. MacKenzie K., ”Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax),” Applied Clay Science, Vol. 75-76, pp. 148-152, 2013.
  • [43]. H. Assaedi, T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Synthesis and mechanical properties of flax fabric reinforced geopolymer composites,” Advances in Materials Research, Vol. 3(3), pp. 151-161, 2014.
  • [44]. H. Assaedi, T. Alomayri, F.U.A. Shaikh and I.M. Low, ”Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites,” Journal of Advanced Ceramics, Vol. 4(4), pp. 272-281, 2015.
  • [45]. H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Characterizations of flax fabric reinforced nanoclay-geopolymer composites,” Composites: Part B, Vol. 95, pp. 412-422, 2016.
  • [46]. H. Assaedi, F.U.A. Shaikh and I.M. Low, ”Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites,” Journal of Asian Ceramic Societies, Vol. 5, pp. 62-70, 2017.
  • [47]. G. Silva, S. Kim, A. Castañeda, R. Donayre, J., Nakamatsu, R. Aguilar, K. Korniejenko, M. Łach, and J. Mikuła, ”A Comparative Study of Linen (Flax) Fibers as Reinforcement of Fly Ash and Clay Brick Powder Based Geopolymers,” IOP Conf. Series: Materials Science and Engineering, Vol. 416, 012107, 2018.
  • [48]. K. Korniejenko, M. Łach, M. Hebdowska-Krupa and J. Mikuła, ”The mechanical properties of flax and hemp fibres reinforced geopolymer composites,” IOP Conf. Series: Materials Science and Engineering, Vol. 379, 012023, 2018.
  • [49]. B. Galzerano, A. Formisano, M. Durante, F. Iucolano, D. Caputo and B. Liguori, ”Hemp reinforcement in lightweight geopolymers,” Journal of Composite Materials, Vol. 52(17), pp. 2313–2320, 2018.
  • [50]. M. Mastali, Z. Abdollahnejad and F. Pacheco-Torgal, ”Carbon dioxide sequestration of fly ash alkaline-based mortars containing recycled aggregates and reinforced by hemp fibres,” Construction and Building Materials, Vol. 160, pp. 48-56, 2018.
  • [51]. K. Siddharth, D. Dinakar, V. Suresh, C. Balaji and M.D. Kumar, ”Strength Studies on Silica Fume Based Geopolymer Mortar with Coir Fibre,” International Research Journal of Engineering and Technology, Vol. 3(12), pp. 359-363, 2016.
  • [52]. N. Amalia, N. Akifah, A.I.I. Nurfadilla and J. Subaer, ”Development of Coconut Trunk Fiber Geopolymer Hybrid Composite for Structural Engineering Materials,” IOP Conf. Series: Materials Science and Engineering, Vol. 180, 012014, 2017.
  • [53]. A.C.C. Trindade, H.A. Alcamand, P.H.R. Borges and F.A. Silva, ”Influence of Elevated Temperatures on the Mechanical Behavior of Jute-Textile-Reinforced Geopolymers,” Journal of Ceramics Science and Technology, Vol. 8(3), pp. 389-398, 2017.
  • [54]. K. Korniejenko, M. Łach and J. Mikuła, Mechanical Properties of Raffia Fibres Reinforced Geopolymer Composite, in: Advances in Natural Fibre Composites [R. Fangueiro and S. Rana (eds.)]. Springer, Cham, pp. 135-144, 2018.
  • [55]. R. Chen, S. Ahmari and L. Zhang, ”Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer,” Journal of Material Science, Vol. 49, pp. 2548-2558, 2014.
  • [56]. M. Alshaaer, S.A. Mallouh, J. Al-Kafawein, Y. Al-Faiyz, T. Fahmy, A. Kallel and F. Rocha, ”Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre - Reinforced geopolymer composite,” Applied Clay Science, Vol. 143, pp. 125-133, 2017.
  • [57]. R.A. Sá Ribeiro, M.G. Sá Ribeiro, K. Sankar and W.M. Kriven, ”Geopolymer-bamboo composite – A novel sustainable construction material,” Construction and Building Materials, Vol. 123, pp. 501-507, 2016.
  • [58]. S.N. Sarmin, ”The Influence of Different Wood Aggregates on the Properties of Geopolymer Composites,” Key Engineering Materials, Vol. 723, pp. 74-79, 2016.
  • [59]. P. Duan, C. Yan, W. Zhou and W. Luo, ”Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust,” Construction and Building Materials, Vol. 111, pp. 600-610, 2016.
  • [60]. S.S. Musil., P.F. Keane and W.M. Kriven, Green composite: sodium-based geopolymer reinforced with chemically extracted corn husk fibers. In. Developments in Strategic Materials and Computational Design IV [W.M. Kriven, J. Wang, Y. Zhou and A.L. Gyekenyesi (eds.)], Ceramic Engineering and Science Proceedings, Vol. 34(10), pp. 123-133, 2014.
  • [61]. U.H. Heo, K. Sankar, W.M. Kriven and S.S. Musil, Rice husk ash as a silica source in geopolymer formulation, in. Developments in Strategic Materials and Computational Design V [W.M. Kriven, D. Zhou, K. Moon, T. Hwang, J. Wang, C. Lewinssohn and Y. Zhou (eds.)], Ceramic Engineering and Science Proceedings, Vol. 38(10), pp. 870-102, 2015.
  • [62]. T.-A. Kua, A. Arulrajah, S. Horpibulsuk, Y.-J. Du and C. Suksiripattanapong, ”Engineering and environmental evaluation of spent coffee grounds stabilized with industrial by-products as a road subgrade material,” Clean Technologies and Environmental Policy, Vol. 19(1), pp. 63-67, 2017.
  • [63]. D. Mierzwiński, K. Korniejenko, M. Łach, J. Mikuła and J. Krzywda, ”Effect of Coffee Grounds Addition on Efflorescence in Fly Ash-based Geopolymer,” IOP Conf. Series: Materials Science and Engineering, Vol. 416, 012035, 2018.
  • [64]. M. Alzeer and K.J.D. MacKenzie, ”Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres,” Journal of Material Sciences, Vol. 47, pp. 6958-6965, 2012.
  • [65]. A.N. Murri, V. Medri and E. Landi, ”Production and thermomechanical characterization of wool–geopolymer composites,” Journal of American Ceramic Society, Vol. 100, pp. 2822-2831, 2017.
  • [66]. X.N. Thang, P. Louda and D. Kroisova, ”Thermophysical properties of woven fabrics reinforced geopolymer composites,” World Journal of Engineering, Vol. 10(2), pp. 139-144, 2013.
  • [67]. S. Samal, N.P. Thanh, I. Petrikova and B. Marvalova B., ”Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature,” The Journal of the Minerals, Metals and Materials Society, Vol. 67(7), pp. 1478-1485, 2015.
  • [68]. M. Welter, M. Schmücker and K.J.D., MacKenzie, ”Evolution of the Fibre-Matrix Interactions in Basalt-Fibre-Reinforced Geopolymer-Matrix Composites after Heating,” Journal of Ceramic Science and Technology, Vol. 06(01), pp. 17-24, 2015.
  • [69]. A. Ronad, V.B. Karikatti and S.S. Dyavanal S.S., ”A Study on Mechanical Properties of Geopolymer Concrete Reinforced with Basalt Fiber,” IJRET: International Journal of Research in Engineering and Technology, Vol. 05(07), pp. 474-478, 2016.
  • [70]. X. Guo and X. Pant X., ”Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar," Construction and Building Materials, Vol. 179, pp. 633-641, 2018.
  • [71]. A. Celik, K. Yilmaz, O. Canpolat., M.M. Al-Mashhadani, Y. Aygörmez and M. Uysal, ”High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers,” Construction and Building Materials, Vol. 187, pp. 1190-1203, 2018.
  • [72]. P. Behera, V. Baheti, J. Militky and P. Louda, ”Elevated temperature properties of basalt microfibril filled geopolymer composites,” Construction and Building Materials, Vol. 163, pp. 850-860, 2018.
  • [73]. F. Shaikh and S. Haque, ”Behaviour of Carbon and Basalt Fibres Reinforced Fly Ash Geopolymer at Elevated Temperatures,” International Journal of Concrete Structures and Materials, Vol. 12(35), pp. 12, 2018.
  • [74]. P. Timakul, W. Rattanaprasit and P. Aungkavattana ”Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition,” Ceramics International, Vol. 42, pp. 6288 – 6295, 2016.
  • [75]. C. Bagci, G.P. Kutyla and W.M. Kriven, ”Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative,” Ceramics International, Vol. 43, pp. 14784-14790, 2017.
  • [76]. L. Vickers, A. van Riessen and W.D.A. Fire-Resistant Geopolymers. Role of Fibres and Fillers to Enhance Thermal Properties, Springer, Singapore - Heidelberg - New York - Dordrecht - London, 2015.
  • [77]. F.J. Silva and C. Thaumaturgo, ”Fibre reinforcement and fracture response in geopolymeric mortars,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 26(2), pp. 167-172, 2003.
  • [78]. S. Yan and K. Sagoe-Crentsil, ”Properties of wastepaper sludge in geopolymer mortars for masonry applications,” Journal of Environmental Management, Vol. 112, pp. 27-32, 2012.
  • [79]. C-K. Ma, A.Z. Awang and W. Omar, ”Structural and material performance of geopolymer concrete: A review,” Construction and Building Materials, Vol. 186, pp. 90-102, 2018.
  • [80]. T. Lin, C. Jia, P. He and M. Wang, ”In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites,” Materials Science and Engineering A, Vol. 527, pp. 2404-2407, 2010.
  • [81]. L. Yan, B. Kasal and L., Huang, ”A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering,” Composites: Part B, Vol. 92, pp. 94-132, 2016.
  • [82]. A.M. Rashad, ”A synopsis about the effect of basalt and natural fibers on geopolymer properties,” Natural Resources Conservation and Research, Vol. 1, pp. 9, 2018.
There are 81 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Review
Authors

Kinga Korniejenko 0000-0002-8265-3982

Michał łach 0000-0001-5713-9415

Neslihan Doğan Sağlamtimur 0000-0001-6287-6268

Gabriel Furtos 0000-0002-6418-6129

Janusz Mikuła 0000-0001-9514-7870

Publication Date March 31, 2020
Submission Date January 7, 2020
Acceptance Date March 17, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Korniejenko, K., łach, M., Doğan Sağlamtimur, N., Furtos, G., et al. (2020). The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environmental Research and Technology, 3(1), 28-39. https://doi.org/10.35208/ert.671713
AMA Korniejenko K, łach M, Doğan Sağlamtimur N, Furtos G, Mikuła J. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. ERT. March 2020;3(1):28-39. doi:10.35208/ert.671713
Chicago Korniejenko, Kinga, Michał łach, Neslihan Doğan Sağlamtimur, Gabriel Furtos, and Janusz Mikuła. “The Overview of Mechanical Properties of Short Natural Fiber Reinforced Geopolymer Composites”. Environmental Research and Technology 3, no. 1 (March 2020): 28-39. https://doi.org/10.35208/ert.671713.
EndNote Korniejenko K, łach M, Doğan Sağlamtimur N, Furtos G, Mikuła J (March 1, 2020) The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environmental Research and Technology 3 1 28–39.
IEEE K. Korniejenko, M. łach, N. Doğan Sağlamtimur, G. Furtos, and J. Mikuła, “The overview of mechanical properties of short natural fiber reinforced geopolymer composites”, ERT, vol. 3, no. 1, pp. 28–39, 2020, doi: 10.35208/ert.671713.
ISNAD Korniejenko, Kinga et al. “The Overview of Mechanical Properties of Short Natural Fiber Reinforced Geopolymer Composites”. Environmental Research and Technology 3/1 (March 2020), 28-39. https://doi.org/10.35208/ert.671713.
JAMA Korniejenko K, łach M, Doğan Sağlamtimur N, Furtos G, Mikuła J. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. ERT. 2020;3:28–39.
MLA Korniejenko, Kinga et al. “The Overview of Mechanical Properties of Short Natural Fiber Reinforced Geopolymer Composites”. Environmental Research and Technology, vol. 3, no. 1, 2020, pp. 28-39, doi:10.35208/ert.671713.
Vancouver Korniejenko K, łach M, Doğan Sağlamtimur N, Furtos G, Mikuła J. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. ERT. 2020;3(1):28-39.

Cited By