Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 3, 257 - 271, 30.09.2022
https://doi.org/10.35208/ert.1110373

Abstract

References

  • [1] D. Paul, Research on heavy metal pollution of river Ganga: A review, Ann. Agrar. Sci. 15 (2017) 278–286. https://doi.org/10.1016/j.aasci.2017.04.001.
  • [2] L. Hu, Z. Yang, L. Cui, Y. Li, H.H. Ngo, Y. Wang, Q. Wei, H. Ma, L. Yan, B. Du, Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue, Chem. Eng. J. 287 (2016) 545–556. https://doi.org/10.1016/j.cej.2015.11.059.
  • [3] L. Järup, Hazards of heavy metal contamination, Br. Med. Bull. 68 (2003) 167–182. https://doi.org/10.1093/bmb/ldg032.
  • [4] F. Perreault, A. Fonseca De Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44 (2015) 5861–5896. https://doi.org/10.1039/c5cs00021a.
  • [5] Z.H. Huang, X. Zheng, W. Lv, M. Wang, Q.H. Yang, F. Kang, Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets, Langmuir. 27 (2011) 7558–7562. https://doi.org/10.1021/la200606r.
  • [6] S. Yu, X. Wang, X. Tan, X. Wang, Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: A review, Inorg. Chem. Front. 2 (2015) 593–612. https://doi.org/10.1039/c4qi00221k.
  • [7] A.K. Mishra, S. Ramaprabhu, Functionalized graphene sheets for arsenic removal and desalination of sea water, Desalination. 282 (2011) 39–45. https://doi.org/10.1016/j.desal.2011.01.038.
  • [8] B.C. Brodie, On the Atomic Weight of Graphite, Philos. Trans. R. Soc. London. 149 (1859) 249–259.
  • [9] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017.
  • [10] D.C. Marcano, D. V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano. 4 (2010) 4806–4814. https://doi.org/10.1021/nn1006368.
  • [11] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon N. Y. 45 (2007) 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034.
  • [12] R. Hu, S. Dai, D. Shao, A. Alsaedi, B. Ahmad, X. Wang, Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites, J. Mol. Liq. 203 (2015) 80–89. https://doi.org/10.1016/j.molliq.2014.12.046.
  • [13] M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C. 114 (2010) 6426–6432. https://doi.org/10.1021/jp100603h.
  • [14] K.K.H. De Silva, H.H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants, Carbon N. Y. 119 (2017) 190–199. https://doi.org/10.1016/j.carbon.2017.04.025.
  • [15] M. Fathy, A. Gomaa, F.A. Taher, M.M. El-Fass, A.E.H.B. Kashyout, Optimizing the preparation parameters of GO and rGO for large-scale production, J. Mater. Sci. 51 (2016) 5664–5675. https://doi.org/10.1007/s10853-016-9869-8.
  • [16] M. Zhao, Y. Xu, C. Zhang, H. Rong, G. Zeng, New trends in removing heavy metals from wastewater, Appl. Microbiol. Biotechnol. 100 (2016) 6509–6518. https://doi.org/10.1007/s00253-016-7646-x.
  • [17] SZN Ahmad, WNW. Salleh, N. Yusof, M.Z. Mohd Yusop, R. Hamdan, N.A. Awang, N.H. Ismail, N. Rosman, N. Sazali, A.F. Ismail, Pb(II) removal and its adsorption from aqueous solution using zinc oxide/graphene oxide composite, Chem. Eng. Commun. 208 (2021) 646–660. https://doi.org/10.1080/00986445.2020.1715957.
  • [18] X. Wang, S. Yu, J. Jin, H. Wang, N.S. Alharbi, A. Alsaedi, T. Hayat, X. Wang, Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions, Sci. Bull. 61 (2016) 1583–1593. https://doi.org/10.1007/s11434-016-1168-x.
  • [19] S. Ahmed, S. Chughtai, M.A. Keane, The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite, Sep. Purif. Technol. 13 (1998) 57–64. https://doi.org/10.1016/S1383-5866(97)00063-4.
  • [20] B.E. Reed, S. Arunachalam, Use of Granular Activated Carbon Columns for Lead Removal, J. Environ. Eng. 120 (1994) 416–436. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:2(416).
  • [21] G. Jyotsna, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of Lead(II) from Aqueous Solution by Adsorption on Carbon Aerogel Using a Response Surface Methodological Approach, Ind. Eng. Chem. Res. (2005) 1987–1994.
  • [22] S.G. Wang, W.X. Gong, X.W. Liu, Y.W. Yao, B.Y. Gao, Q.Y. Yue, Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol. 58 (2007) 17–23. https://doi.org/10.1016/j.seppur.2007.07.006.
  • [23] H.V. Tran, L.D. Tran, T.N. Nguyen, Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Mater. Sci. Eng. C. 30 (2010) 304–310. https://doi.org/10.1016/j.msec.2009.11.008.
  • [24] S. Doyurum, A. Çelik, Pb(II) and Cd(II) removal from aqueous solutions by olive cake, J. Hazard. Mater. 138 (2006) 22–28. https://doi.org/10.1016/j.jhazmat.2006.03.071.
  • [25] C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou, Y. Cui, Fabrication and characteristics of reduced graphene oxide produced with different green reductants, PLoS One. 10 (2015). https://doi.org/10.1371/journal.pone.0144842.
  • [26] J.J. Zhang, H. Yang, G. Shen, P. Cheng, J.J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun. 46 (2010) 1112–1114. https://doi.org/10.1039/b917705a.
  • [27] B. Li, T. Liu, Y. Wang, Z. Wang, ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance, J. Colloid Interface Sci. 377 (2012) 114–121. http://dx.doi.org/10.1016/j.jcis.2012.03.060.
  • [28] R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application, Mater. Lett. 160 (2015) 355–358. https://doi.org/10.1016/j.matlet.2015.07.144.
  • [29] X. Geng, Y. Guo, D. Li, W. Li, C. Zhu, X. Wei, M. Chen, S. Gao, S. Qiu, Y. Gong, L. Wu, M. Long, M. Sun, G. Pan, L. Liu, Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene, Sci. Rep. 3 (2013) 1–6. https://doi.org/10.1038/srep01134.
  • [30] H. Raghubanshi, S.M. Ngobeni, A.O. Osikoya, N.D. Shooto, C.W. Dikio, E.B. Naidoo, E.D. Dikio, R.K. Pandey, R. Prakash, Synthesis of graphene oxide and its application for the adsorption of Pb+2 from aqueous solution, J. Ind. Eng. Chem. 47 (2017) 169–178. https://doi.org/10.1016/j.jiec.2016.11.028.
  • [31] K.K.H. De Silva, H.H. Huang, M. Yoshimura, Progress of reduction of graphene oxide by ascorbic acid, Appl. Surf. Sci. 447 (2018) 338–346. https://doi.org/10.1016/j.apsusc.2018.03.243.
  • [32] V. Sharma, Y. Jain, M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application, Macromol. Symp. 376 (2017) 1–5. https://doi.org/10.1002/masy.201700006.
  • [33] N.F.T. Arifin, M. Aziz, Effect of reduction time on optical properties of reduced graphene oxide, J. Teknol. 79 (2017) 25–28. https://doi.org/10.11113/jt.v79.10432.
  • [34] S. Pei, H.M. Cheng, The reduction of graphene oxide, Carbon N. Y. 50 (2012) 3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010.
  • [35] R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy, Materials (Basel). 11 (2018) 1050. https://doi.org/10.3390/ma11071050.
  • [36] F. Gordon-Nuñez, K. Vaca-Escobar, M. Villacís-García, L. Fernández, A. Debut, M.B. Aldás-Sandoval, P.J. Espinoza-Montero, Applicability of goethite/reduced graphene oxide nanocomposites to remove lead from wastewater, Nanomaterials. 9 (2019). https://doi.org/10.3390/nano9111580.
  • [37] Y.A. Akbas, S. Yusan, S. Sert, S. Aytas, Sorption of Ce(III) on magnetic/olive pomace nanocomposite: isotherm, kinetic and thermodynamic studies, Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-14662-3.
  • [38] M.A. Farghali, M.M. Abo-Aly, T.A. Salaheldin, Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater, Inorg. Chem. Commun. 126 (2021) 108487. https://doi.org/10.1016/j.inoche.2021.108487.
  • [39] X. Wang, W. Cai, S. Liu, G. Wang, Z. Wu, H. Zhao, ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions, Colloids Surfaces A Physicochem. Eng. Asp. 422 (2013) 199–205. http://dx.doi.org/10.1016/j.colsurfa.2013.01.031.
  • [40] K.Y. Kumar, H.B. Muralidhara, Y.A. Nayaka, J. Balasubramanyam, H. Hanumanthappa, Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution, Powder Technol. 246 (2013) 125–136. https://doi.org/10.1016/j.powtec.2013.05.017.
  • [41] W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska, Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies, J. Colloid Interface Sci. 496 (2017) 188–200. https://doi.org/10.1016/j.jcis.2017.02.031.
  • [42] A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk, IOSR J. Appl. Chem. 3 (2012) 38–45. https://doi.org/10.9790/5736-0313845.
  • [43] S. Aytas, S. Yusan, S. Sert, C. Gok, Preparation and characterization of magnetic graphene oxide nanocomposite (GO-Fe3O4) for removal of strontium and cesium from aqueous solutions, Charact. Appl. Nanomater. 4 (2021) 63–76.
  • [44] M.J. Jaycock, G.D. Parfitt, Chemistry of interfaces, Ellis Horwood Ltd., Onichester, 1981. https://agris.fao.org/agris-search/search.do?recordID=US201300325033 (accessed October 18, 2021).
  • [45] S. Yusan, C. Gok, S. Erenturk, S. Aytas, Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: Evaluation of equilibrium, kinetic and thermodynamic data, Appl. Clay Sci. 67–68 (2012) 106–116. https://doi.org/10.1016/j.clay.2012.05.012.

Adsorption performance of Pb(II) ions on green synthesized GO and rGO: Isotherm and thermodynamic studies

Year 2022, Volume: 5 Issue: 3, 257 - 271, 30.09.2022
https://doi.org/10.35208/ert.1110373

Abstract

Graphene oxide (GO) and reduced graphene oxide (rGO) are efficient and low-cost adsorbent carbon-based materials for removing Pb(II) ions from wastewater. In this article, the adsorption performance of environmentally friendly graphene oxide and reduced graphene oxide, which shows high adsorption capacity for Pb(II) ions, has been compared for the first time to our knowledge. Besides, the various characterization techniques are used such as X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy and described in detail as well. In addition, adsorption isotherms and thermodynamic studies are discussed to comprehend the adsorption process as well. From the adsorption isotherms, the maximum adsorption capacities of Pb(II) ions on GO and rGO calculated from the Langmuir (117.6 mg/g) and Dubinin–Radushkevich isotherms (138.5 mg/g), respectively, higher than reported studies in the literature. By thermodynamic investigation, it was found that the adsorption of Pb(II) ions on GO and rGO was spontaneous and exothermic. This study will be established as a basis for future studies and will be especially valuable in understanding the potential of graphene-based materials, which are rising stars that can be considered as promising and effective adsorbents in the removal of heavy metal ions from large volumes of aqueous solutions.

References

  • [1] D. Paul, Research on heavy metal pollution of river Ganga: A review, Ann. Agrar. Sci. 15 (2017) 278–286. https://doi.org/10.1016/j.aasci.2017.04.001.
  • [2] L. Hu, Z. Yang, L. Cui, Y. Li, H.H. Ngo, Y. Wang, Q. Wei, H. Ma, L. Yan, B. Du, Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue, Chem. Eng. J. 287 (2016) 545–556. https://doi.org/10.1016/j.cej.2015.11.059.
  • [3] L. Järup, Hazards of heavy metal contamination, Br. Med. Bull. 68 (2003) 167–182. https://doi.org/10.1093/bmb/ldg032.
  • [4] F. Perreault, A. Fonseca De Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44 (2015) 5861–5896. https://doi.org/10.1039/c5cs00021a.
  • [5] Z.H. Huang, X. Zheng, W. Lv, M. Wang, Q.H. Yang, F. Kang, Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets, Langmuir. 27 (2011) 7558–7562. https://doi.org/10.1021/la200606r.
  • [6] S. Yu, X. Wang, X. Tan, X. Wang, Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: A review, Inorg. Chem. Front. 2 (2015) 593–612. https://doi.org/10.1039/c4qi00221k.
  • [7] A.K. Mishra, S. Ramaprabhu, Functionalized graphene sheets for arsenic removal and desalination of sea water, Desalination. 282 (2011) 39–45. https://doi.org/10.1016/j.desal.2011.01.038.
  • [8] B.C. Brodie, On the Atomic Weight of Graphite, Philos. Trans. R. Soc. London. 149 (1859) 249–259.
  • [9] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017.
  • [10] D.C. Marcano, D. V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano. 4 (2010) 4806–4814. https://doi.org/10.1021/nn1006368.
  • [11] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon N. Y. 45 (2007) 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034.
  • [12] R. Hu, S. Dai, D. Shao, A. Alsaedi, B. Ahmad, X. Wang, Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites, J. Mol. Liq. 203 (2015) 80–89. https://doi.org/10.1016/j.molliq.2014.12.046.
  • [13] M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C. 114 (2010) 6426–6432. https://doi.org/10.1021/jp100603h.
  • [14] K.K.H. De Silva, H.H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants, Carbon N. Y. 119 (2017) 190–199. https://doi.org/10.1016/j.carbon.2017.04.025.
  • [15] M. Fathy, A. Gomaa, F.A. Taher, M.M. El-Fass, A.E.H.B. Kashyout, Optimizing the preparation parameters of GO and rGO for large-scale production, J. Mater. Sci. 51 (2016) 5664–5675. https://doi.org/10.1007/s10853-016-9869-8.
  • [16] M. Zhao, Y. Xu, C. Zhang, H. Rong, G. Zeng, New trends in removing heavy metals from wastewater, Appl. Microbiol. Biotechnol. 100 (2016) 6509–6518. https://doi.org/10.1007/s00253-016-7646-x.
  • [17] SZN Ahmad, WNW. Salleh, N. Yusof, M.Z. Mohd Yusop, R. Hamdan, N.A. Awang, N.H. Ismail, N. Rosman, N. Sazali, A.F. Ismail, Pb(II) removal and its adsorption from aqueous solution using zinc oxide/graphene oxide composite, Chem. Eng. Commun. 208 (2021) 646–660. https://doi.org/10.1080/00986445.2020.1715957.
  • [18] X. Wang, S. Yu, J. Jin, H. Wang, N.S. Alharbi, A. Alsaedi, T. Hayat, X. Wang, Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions, Sci. Bull. 61 (2016) 1583–1593. https://doi.org/10.1007/s11434-016-1168-x.
  • [19] S. Ahmed, S. Chughtai, M.A. Keane, The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite, Sep. Purif. Technol. 13 (1998) 57–64. https://doi.org/10.1016/S1383-5866(97)00063-4.
  • [20] B.E. Reed, S. Arunachalam, Use of Granular Activated Carbon Columns for Lead Removal, J. Environ. Eng. 120 (1994) 416–436. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:2(416).
  • [21] G. Jyotsna, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of Lead(II) from Aqueous Solution by Adsorption on Carbon Aerogel Using a Response Surface Methodological Approach, Ind. Eng. Chem. Res. (2005) 1987–1994.
  • [22] S.G. Wang, W.X. Gong, X.W. Liu, Y.W. Yao, B.Y. Gao, Q.Y. Yue, Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol. 58 (2007) 17–23. https://doi.org/10.1016/j.seppur.2007.07.006.
  • [23] H.V. Tran, L.D. Tran, T.N. Nguyen, Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Mater. Sci. Eng. C. 30 (2010) 304–310. https://doi.org/10.1016/j.msec.2009.11.008.
  • [24] S. Doyurum, A. Çelik, Pb(II) and Cd(II) removal from aqueous solutions by olive cake, J. Hazard. Mater. 138 (2006) 22–28. https://doi.org/10.1016/j.jhazmat.2006.03.071.
  • [25] C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou, Y. Cui, Fabrication and characteristics of reduced graphene oxide produced with different green reductants, PLoS One. 10 (2015). https://doi.org/10.1371/journal.pone.0144842.
  • [26] J.J. Zhang, H. Yang, G. Shen, P. Cheng, J.J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun. 46 (2010) 1112–1114. https://doi.org/10.1039/b917705a.
  • [27] B. Li, T. Liu, Y. Wang, Z. Wang, ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance, J. Colloid Interface Sci. 377 (2012) 114–121. http://dx.doi.org/10.1016/j.jcis.2012.03.060.
  • [28] R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application, Mater. Lett. 160 (2015) 355–358. https://doi.org/10.1016/j.matlet.2015.07.144.
  • [29] X. Geng, Y. Guo, D. Li, W. Li, C. Zhu, X. Wei, M. Chen, S. Gao, S. Qiu, Y. Gong, L. Wu, M. Long, M. Sun, G. Pan, L. Liu, Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene, Sci. Rep. 3 (2013) 1–6. https://doi.org/10.1038/srep01134.
  • [30] H. Raghubanshi, S.M. Ngobeni, A.O. Osikoya, N.D. Shooto, C.W. Dikio, E.B. Naidoo, E.D. Dikio, R.K. Pandey, R. Prakash, Synthesis of graphene oxide and its application for the adsorption of Pb+2 from aqueous solution, J. Ind. Eng. Chem. 47 (2017) 169–178. https://doi.org/10.1016/j.jiec.2016.11.028.
  • [31] K.K.H. De Silva, H.H. Huang, M. Yoshimura, Progress of reduction of graphene oxide by ascorbic acid, Appl. Surf. Sci. 447 (2018) 338–346. https://doi.org/10.1016/j.apsusc.2018.03.243.
  • [32] V. Sharma, Y. Jain, M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application, Macromol. Symp. 376 (2017) 1–5. https://doi.org/10.1002/masy.201700006.
  • [33] N.F.T. Arifin, M. Aziz, Effect of reduction time on optical properties of reduced graphene oxide, J. Teknol. 79 (2017) 25–28. https://doi.org/10.11113/jt.v79.10432.
  • [34] S. Pei, H.M. Cheng, The reduction of graphene oxide, Carbon N. Y. 50 (2012) 3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010.
  • [35] R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy, Materials (Basel). 11 (2018) 1050. https://doi.org/10.3390/ma11071050.
  • [36] F. Gordon-Nuñez, K. Vaca-Escobar, M. Villacís-García, L. Fernández, A. Debut, M.B. Aldás-Sandoval, P.J. Espinoza-Montero, Applicability of goethite/reduced graphene oxide nanocomposites to remove lead from wastewater, Nanomaterials. 9 (2019). https://doi.org/10.3390/nano9111580.
  • [37] Y.A. Akbas, S. Yusan, S. Sert, S. Aytas, Sorption of Ce(III) on magnetic/olive pomace nanocomposite: isotherm, kinetic and thermodynamic studies, Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-14662-3.
  • [38] M.A. Farghali, M.M. Abo-Aly, T.A. Salaheldin, Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater, Inorg. Chem. Commun. 126 (2021) 108487. https://doi.org/10.1016/j.inoche.2021.108487.
  • [39] X. Wang, W. Cai, S. Liu, G. Wang, Z. Wu, H. Zhao, ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions, Colloids Surfaces A Physicochem. Eng. Asp. 422 (2013) 199–205. http://dx.doi.org/10.1016/j.colsurfa.2013.01.031.
  • [40] K.Y. Kumar, H.B. Muralidhara, Y.A. Nayaka, J. Balasubramanyam, H. Hanumanthappa, Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution, Powder Technol. 246 (2013) 125–136. https://doi.org/10.1016/j.powtec.2013.05.017.
  • [41] W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska, Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies, J. Colloid Interface Sci. 496 (2017) 188–200. https://doi.org/10.1016/j.jcis.2017.02.031.
  • [42] A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk, IOSR J. Appl. Chem. 3 (2012) 38–45. https://doi.org/10.9790/5736-0313845.
  • [43] S. Aytas, S. Yusan, S. Sert, C. Gok, Preparation and characterization of magnetic graphene oxide nanocomposite (GO-Fe3O4) for removal of strontium and cesium from aqueous solutions, Charact. Appl. Nanomater. 4 (2021) 63–76.
  • [44] M.J. Jaycock, G.D. Parfitt, Chemistry of interfaces, Ellis Horwood Ltd., Onichester, 1981. https://agris.fao.org/agris-search/search.do?recordID=US201300325033 (accessed October 18, 2021).
  • [45] S. Yusan, C. Gok, S. Erenturk, S. Aytas, Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: Evaluation of equilibrium, kinetic and thermodynamic data, Appl. Clay Sci. 67–68 (2012) 106–116. https://doi.org/10.1016/j.clay.2012.05.012.
There are 45 citations in total.

Details

Primary Language English
Subjects Environmental Sciences, Water Resources and Water Structures
Journal Section Research Articles
Authors

İkbal Gözde Kaptanoğlu 0000-0002-3852-9853

Sabriye Yuşan 0000-0002-1843-8591

Publication Date September 30, 2022
Submission Date May 10, 2022
Acceptance Date August 21, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Kaptanoğlu, İ. G., & Yuşan, S. (2022). Adsorption performance of Pb(II) ions on green synthesized GO and rGO: Isotherm and thermodynamic studies. Environmental Research and Technology, 5(3), 257-271. https://doi.org/10.35208/ert.1110373
AMA Kaptanoğlu İG, Yuşan S. Adsorption performance of Pb(II) ions on green synthesized GO and rGO: Isotherm and thermodynamic studies. ERT. September 2022;5(3):257-271. doi:10.35208/ert.1110373
Chicago Kaptanoğlu, İkbal Gözde, and Sabriye Yuşan. “Adsorption Performance of Pb(II) Ions on Green Synthesized GO and RGO: Isotherm and Thermodynamic Studies”. Environmental Research and Technology 5, no. 3 (September 2022): 257-71. https://doi.org/10.35208/ert.1110373.
EndNote Kaptanoğlu İG, Yuşan S (September 1, 2022) Adsorption performance of Pb(II) ions on green synthesized GO and rGO: Isotherm and thermodynamic studies. Environmental Research and Technology 5 3 257–271.
IEEE İ. G. Kaptanoğlu and S. Yuşan, “Adsorption performance of Pb(II) ions on green synthesized GO and rGO: Isotherm and thermodynamic studies”, ERT, vol. 5, no. 3, pp. 257–271, 2022, doi: 10.35208/ert.1110373.
ISNAD Kaptanoğlu, İkbal Gözde - Yuşan, Sabriye. “Adsorption Performance of Pb(II) Ions on Green Synthesized GO and RGO: Isotherm and Thermodynamic Studies”. Environmental Research and Technology 5/3 (September 2022), 257-271. https://doi.org/10.35208/ert.1110373.
JAMA Kaptanoğlu İG, Yuşan S. Adsorption performance of Pb(II) ions on green synthesized GO and rGO: Isotherm and thermodynamic studies. ERT. 2022;5:257–271.
MLA Kaptanoğlu, İkbal Gözde and Sabriye Yuşan. “Adsorption Performance of Pb(II) Ions on Green Synthesized GO and RGO: Isotherm and Thermodynamic Studies”. Environmental Research and Technology, vol. 5, no. 3, 2022, pp. 257-71, doi:10.35208/ert.1110373.
Vancouver Kaptanoğlu İG, Yuşan S. Adsorption performance of Pb(II) ions on green synthesized GO and rGO: Isotherm and thermodynamic studies. ERT. 2022;5(3):257-71.