Exploring hexagonal boron nitride as an efficient visible light induced catalyst for the remediation of recalcitrant antibiotic from aqueous media
Year 2022,
Volume: 5 Issue: 4, 296 - 304, 31.12.2022
Zeynep Balta
,
Esra Bilgin Şimşek
Abstract
Hexagonal boron nitride (h-BN) is a novel non-metallic material which is newly discovered in the field of photocatalysis due to its high surface area, excellent optical features and high electrical conductivity. Herein, hexagonal boron nitride whiskers were fabricated by using the polymeric precursor method and, the photocatalytic degradation performance was measured towards tetracycline antibiotic under visible-light-illumination. The morphological, physical, and optical features of the catalyst were identified by several characterization analyses. The characteristic peaks associated with the hexagonal phase of boron nitride were determined and high crystallinity of h-BN was confirmed by X-ray diffraction analysis. The characteristic B−N absorption peaks were detected in the Fourier transfer infrared spectrum. Brunauer− Emmet−Teller specific surface area of the boron nitride catalyst was calculated as 1019 m2/g which was relatively high, supplying abundant active regions to interact with the target pol- lutant. In photocatalytic degradation experiments, 91.9% of tetracycline decomposition was achieved within 180 min with a catalyst dosage of 0.2 g/L and initial concentration of 10 mg/L. The outstanding catalytic activity of the h-BN catalyst was attributed to the high surface area and negatively charged groups on the surface which captured the photo-induced holes and inhibited the recombination rate of charge carriers. These findings highlight the potential ap- plication of h-BN in the field of photocatalytic processes.
Supporting Institution
The Scientific and Technological Research Council of Turkey (TÜBİTAK)
References
- [1] J. Gu, J. Yan, Z. Chen, H. Ji, Y. Song, Y. Fan, H. Xu, H. Li, Construction and preparation of novel 2D metal-free few-layer BN modified graphene-like g-C3N4 with enhanced photocatalytic performance, Dalt. Trans. 46 (2017) 11250–11258. https://doi.org/10.1039/c7dt02092a.
- [2] G. Jácome-Acatitla, M. Álvarez-Lemus, R. López-González, C. García-Mendoza, A. Sánchez-López, D. Hernández-Acosta, Photodegradation of 4-chloropehol in aqueous media using LaBO3 (B = Fe, Mn, Co) perovskites: Study of the influence of the transition metal ion in the photocatalytic activity, J. Photochem. Photobiol. A Chem. 390 (2020). https://doi.org/10.1016/j.jphotochem.2019.112330.
- [3] Ö. Şen, M. Emanet, M. Çulha, One-step synthesis of hexagonal boron nitrides, their crystallinity and biodegradation, Front. Bioeng. Biotechnol. 9 (2018) 1–9. https://doi.org/10.3389/fbioe.2018.00083.
- [4] Q. Li, T. Yang, Q. Yang, F. Wang, K.C. Chou, X. Hou, Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water, Ceram. Int. 42 (2016) 8754–8762. https://doi.org/10.1016/j.ceramint.2016.02.114.
- [5] Z. Liu, K. Zhao, J. Luo, Y. Tang, Highly efficient synthesis of hexagonal boron nitride short fibers with adsorption selectivity, Ceram. Int. 45 (2019) 22394–22401. https://doi.org/10.1016/j.ceramint.2019.07.185.
- [6] S. Yu, X. Wang, H. Pang, R. Zhang, W. Song, D. Fu, T. Hayat, X. Wang, Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review, Chem. Eng. J. 333 (2018) 343–360. https://doi.org/10.1016/j.cej.2017.09.163.
- [7] X. Fu, Y. Hu, Y. Yang, W. Liu, S. Chen, Ball milled h-BN: An efficient holes transfer promoter to enhance the photocatalytic performance of TiO2, J. Hazard. Mater. 244–245 (2013) 102–110. https://doi.org/10.1016/j.jhazmat.2012.11.033.
- [8] M.R. Shenoy, S. Ayyasamy, V. Bhojan, R. Swaminathan, N. Raju, P. Senthil Kumar, M. Sasikumar, G. Kadarkarai, S. Tamilarasan, S. Thangavelu, S. J, M. V. Reddy, Visible light sensitive hexagonal boron nitride (hBN) decorated Fe2O3 photocatalyst for the degradation of methylene blue, J. Mater. Sci. Mater. Electron. 32 (2021) 4766–4783. https://doi.org/10.1007/s10854-020-05215-4.
- [9] W. Luo, T. Yang, L. Su, K.C. Chou, X. Hou, Preparation of hexagonal BN whiskers synthesized at low temperature and their application in fabricating an electrochemical nitrite sensor, RSC Adv. 6 (2016) 27767–27774. https://doi.org/10.1039/c5ra27234c.
- [10] C. Zhu, J. Zheng, L. Fang, P. Hu, Y. Liu, X. Cao, M. Wu, Advanced visible-light driven photocatalyst with enhanced charge separation fabricated by facile deposition of Ag3PO4 nanoparticles on graphene-like h-BN nanosheets, J. Mol. Catal. A Chem. 424 (2016) 135–144. https://doi.org/10.1016/j.molcata.2016.08.028.
- [11] T. Chen, Q. Zhang, Z. Xie, C. Tan, P. Chen, Y. Zeng, F. Wang, H. Liu, Y. Liu, G. Liu, W. Lv, Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst, Appl. Catal. B Environ. 238 (2018) 410–421. https://doi.org/10.1016/j.apcatb.2018.07.053.
- [12] M. Ikram, J. Hassan, M. Imran, J. Haider, A. Ul-Hamid, I. Shahzadi, M. Ikram, A. Raza, U. Qumar, S. Ali, 2D chemically exfoliated hexagonal boron nitride (hBN) nanosheets doped with Ni: synthesis, properties and catalytic application for the treatment of industrial wastewater, Appl. Nanosci. 10 (2020) 3525–3528. https://doi.org/10.1007/s13204-020-01439-2.
- [13] V. Kumar, K. Nikhil, P. Roy, D. Lahiri, I. Lahiri, Emergence of fluorescence in boron nitride nanoflakes and its application in bioimaging, RSC Adv. (2016). https://doi.org/10.1039/C6RA05288F.
- [14] M. Wang, M. Li, L. Xu, L. Wang, Z. Ju, G. Li, Y. Qian, High yield synthesis of novel boron nitride submicro-boxes and their photocatalytic application under visible light irradiation, Catal. Sci. Technol. 1 (2011) 1159–1165. https://doi.org/10.1039/c1cy00111f.
- [15] J. Zupan, D. Kolar, Optical properties of graphite and boron nitride, J. Phys. C Solid State Phys. 5 (1972) 3097–3100. https://doi.org/10.1088/0022-3719/5/21/014.
- [16] Z. He, C. Kim, L. Lin, T.H. Jeon, S. Lin, X. Wang, W. Choi, Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis, Nano Energy. 42 (2017) 58–68. https://doi.org/10.1016/j.nanoen.2017.10.043.
- [17] R. Zhang, Y. Li, W. Zhang, Y. Sheng, M. Wang, J. Liu, Y. Liu, C. Zhao, K. Zeng, Fabrication of Cu 2 O / Bi 2 S 3 heterojunction photocatalysts with enhanced visible light photocatalytic mechanism and degradation pathways of tetracycline, J. Mol. Struct. 1229 (2021). https://doi.org/10.1016/j.molstruc.2020.129581.
- [18] Y. Guo, C. Yan, P. Wang, L. Rao, C. Wang, Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution, Chem. Eng. J. 387 (2020) 124136. https://doi.org/10.1016/j.cej.2020.124136.
- [19] X. Fu, Y. Hu, T. Zhang, S. Chen, The role of ball milled h-BN in the enhanced photocatalytic activity: A study based on the model of ZnO, Appl. Surf. Sci. 280 (2013) 828–835. https://doi.org/10.1016/j.apsusc.2013.05.069.
- [20] X. Lv, J. Wang, Z. Yan, D. Jiang, J. Liu, Design of 3D h-BN architecture as Ag3VO4 enhanced photocatalysis stabilizer and promoter, J. Mol. Catal. A Chem. 418–419 (2016) 146–153. https://doi.org/10.1016/j.molcata.2016.03.036.
- [21] S. Ding, D. Mao, S. Yang, F. Wang, L. Meng, M. Han, H. He, C. Sun, B. Xu, Graphene-analogue h-BN coupled Bi-rich Bi4O5Br2 layered microspheres for enhanced visible-light photocatalytic activity and mechanism insight, Appl. Catal. B Environ. 210 (2017) 386–399. https://doi.org/10.1016/j.apcatb.2017.04.002.
- [22] V.H. Tran Thi, B.K. Lee, Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method, J. Hazard. Mater. 324 (2017) 329–339. https://doi.org/10.1016/j.jhazmat.2016.10.066.
- [23] R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, J. V. Flores-Cano, M. Sánchez-Polo, Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase, Chem. Eng. Res. Des. 104 (2015) 579–588. https://doi.org/10.1016/j.cherd.2015.09.011.
- [24] K. Liu, Z. Tong, Y. Muhammad, G. Huang, H. Zhang, Z. Wang, Y. Zhu, R. Tang, Synthesis of sodium dodecyl sulfate modified BiOBr/magnetic bentonite photocatalyst with Three-dimensional parterre like structure for the enhanced photodegradation of tetracycline and ciprofloxacin, Chem. Eng. J. 388 (2020) 124374. https://doi.org/10.1016/j.cej.2020.124374.
- [25] C. Xiong, W. Tu, Synthesis of water-dispersible boron nitride nanoparticles, Eur. J. Inorg. Chem. (2014) 3010–3015. https://doi.org/10.1002/ejic.201402150.
- [26] J. Kong, T. Yang, Z. Rui, H. Ji, Perovskite-based photocatalysts for organic contaminants removal : Current status and future perspectives, Catal. Today. 327 (2019) 47–63. https://doi.org/10.1016/j.cattod.2018.06.045.
Year 2022,
Volume: 5 Issue: 4, 296 - 304, 31.12.2022
Zeynep Balta
,
Esra Bilgin Şimşek
References
- [1] J. Gu, J. Yan, Z. Chen, H. Ji, Y. Song, Y. Fan, H. Xu, H. Li, Construction and preparation of novel 2D metal-free few-layer BN modified graphene-like g-C3N4 with enhanced photocatalytic performance, Dalt. Trans. 46 (2017) 11250–11258. https://doi.org/10.1039/c7dt02092a.
- [2] G. Jácome-Acatitla, M. Álvarez-Lemus, R. López-González, C. García-Mendoza, A. Sánchez-López, D. Hernández-Acosta, Photodegradation of 4-chloropehol in aqueous media using LaBO3 (B = Fe, Mn, Co) perovskites: Study of the influence of the transition metal ion in the photocatalytic activity, J. Photochem. Photobiol. A Chem. 390 (2020). https://doi.org/10.1016/j.jphotochem.2019.112330.
- [3] Ö. Şen, M. Emanet, M. Çulha, One-step synthesis of hexagonal boron nitrides, their crystallinity and biodegradation, Front. Bioeng. Biotechnol. 9 (2018) 1–9. https://doi.org/10.3389/fbioe.2018.00083.
- [4] Q. Li, T. Yang, Q. Yang, F. Wang, K.C. Chou, X. Hou, Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water, Ceram. Int. 42 (2016) 8754–8762. https://doi.org/10.1016/j.ceramint.2016.02.114.
- [5] Z. Liu, K. Zhao, J. Luo, Y. Tang, Highly efficient synthesis of hexagonal boron nitride short fibers with adsorption selectivity, Ceram. Int. 45 (2019) 22394–22401. https://doi.org/10.1016/j.ceramint.2019.07.185.
- [6] S. Yu, X. Wang, H. Pang, R. Zhang, W. Song, D. Fu, T. Hayat, X. Wang, Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review, Chem. Eng. J. 333 (2018) 343–360. https://doi.org/10.1016/j.cej.2017.09.163.
- [7] X. Fu, Y. Hu, Y. Yang, W. Liu, S. Chen, Ball milled h-BN: An efficient holes transfer promoter to enhance the photocatalytic performance of TiO2, J. Hazard. Mater. 244–245 (2013) 102–110. https://doi.org/10.1016/j.jhazmat.2012.11.033.
- [8] M.R. Shenoy, S. Ayyasamy, V. Bhojan, R. Swaminathan, N. Raju, P. Senthil Kumar, M. Sasikumar, G. Kadarkarai, S. Tamilarasan, S. Thangavelu, S. J, M. V. Reddy, Visible light sensitive hexagonal boron nitride (hBN) decorated Fe2O3 photocatalyst for the degradation of methylene blue, J. Mater. Sci. Mater. Electron. 32 (2021) 4766–4783. https://doi.org/10.1007/s10854-020-05215-4.
- [9] W. Luo, T. Yang, L. Su, K.C. Chou, X. Hou, Preparation of hexagonal BN whiskers synthesized at low temperature and their application in fabricating an electrochemical nitrite sensor, RSC Adv. 6 (2016) 27767–27774. https://doi.org/10.1039/c5ra27234c.
- [10] C. Zhu, J. Zheng, L. Fang, P. Hu, Y. Liu, X. Cao, M. Wu, Advanced visible-light driven photocatalyst with enhanced charge separation fabricated by facile deposition of Ag3PO4 nanoparticles on graphene-like h-BN nanosheets, J. Mol. Catal. A Chem. 424 (2016) 135–144. https://doi.org/10.1016/j.molcata.2016.08.028.
- [11] T. Chen, Q. Zhang, Z. Xie, C. Tan, P. Chen, Y. Zeng, F. Wang, H. Liu, Y. Liu, G. Liu, W. Lv, Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst, Appl. Catal. B Environ. 238 (2018) 410–421. https://doi.org/10.1016/j.apcatb.2018.07.053.
- [12] M. Ikram, J. Hassan, M. Imran, J. Haider, A. Ul-Hamid, I. Shahzadi, M. Ikram, A. Raza, U. Qumar, S. Ali, 2D chemically exfoliated hexagonal boron nitride (hBN) nanosheets doped with Ni: synthesis, properties and catalytic application for the treatment of industrial wastewater, Appl. Nanosci. 10 (2020) 3525–3528. https://doi.org/10.1007/s13204-020-01439-2.
- [13] V. Kumar, K. Nikhil, P. Roy, D. Lahiri, I. Lahiri, Emergence of fluorescence in boron nitride nanoflakes and its application in bioimaging, RSC Adv. (2016). https://doi.org/10.1039/C6RA05288F.
- [14] M. Wang, M. Li, L. Xu, L. Wang, Z. Ju, G. Li, Y. Qian, High yield synthesis of novel boron nitride submicro-boxes and their photocatalytic application under visible light irradiation, Catal. Sci. Technol. 1 (2011) 1159–1165. https://doi.org/10.1039/c1cy00111f.
- [15] J. Zupan, D. Kolar, Optical properties of graphite and boron nitride, J. Phys. C Solid State Phys. 5 (1972) 3097–3100. https://doi.org/10.1088/0022-3719/5/21/014.
- [16] Z. He, C. Kim, L. Lin, T.H. Jeon, S. Lin, X. Wang, W. Choi, Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis, Nano Energy. 42 (2017) 58–68. https://doi.org/10.1016/j.nanoen.2017.10.043.
- [17] R. Zhang, Y. Li, W. Zhang, Y. Sheng, M. Wang, J. Liu, Y. Liu, C. Zhao, K. Zeng, Fabrication of Cu 2 O / Bi 2 S 3 heterojunction photocatalysts with enhanced visible light photocatalytic mechanism and degradation pathways of tetracycline, J. Mol. Struct. 1229 (2021). https://doi.org/10.1016/j.molstruc.2020.129581.
- [18] Y. Guo, C. Yan, P. Wang, L. Rao, C. Wang, Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution, Chem. Eng. J. 387 (2020) 124136. https://doi.org/10.1016/j.cej.2020.124136.
- [19] X. Fu, Y. Hu, T. Zhang, S. Chen, The role of ball milled h-BN in the enhanced photocatalytic activity: A study based on the model of ZnO, Appl. Surf. Sci. 280 (2013) 828–835. https://doi.org/10.1016/j.apsusc.2013.05.069.
- [20] X. Lv, J. Wang, Z. Yan, D. Jiang, J. Liu, Design of 3D h-BN architecture as Ag3VO4 enhanced photocatalysis stabilizer and promoter, J. Mol. Catal. A Chem. 418–419 (2016) 146–153. https://doi.org/10.1016/j.molcata.2016.03.036.
- [21] S. Ding, D. Mao, S. Yang, F. Wang, L. Meng, M. Han, H. He, C. Sun, B. Xu, Graphene-analogue h-BN coupled Bi-rich Bi4O5Br2 layered microspheres for enhanced visible-light photocatalytic activity and mechanism insight, Appl. Catal. B Environ. 210 (2017) 386–399. https://doi.org/10.1016/j.apcatb.2017.04.002.
- [22] V.H. Tran Thi, B.K. Lee, Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method, J. Hazard. Mater. 324 (2017) 329–339. https://doi.org/10.1016/j.jhazmat.2016.10.066.
- [23] R. Ocampo-Pérez, R. Leyva-Ramos, J. Rivera-Utrilla, J. V. Flores-Cano, M. Sánchez-Polo, Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase, Chem. Eng. Res. Des. 104 (2015) 579–588. https://doi.org/10.1016/j.cherd.2015.09.011.
- [24] K. Liu, Z. Tong, Y. Muhammad, G. Huang, H. Zhang, Z. Wang, Y. Zhu, R. Tang, Synthesis of sodium dodecyl sulfate modified BiOBr/magnetic bentonite photocatalyst with Three-dimensional parterre like structure for the enhanced photodegradation of tetracycline and ciprofloxacin, Chem. Eng. J. 388 (2020) 124374. https://doi.org/10.1016/j.cej.2020.124374.
- [25] C. Xiong, W. Tu, Synthesis of water-dispersible boron nitride nanoparticles, Eur. J. Inorg. Chem. (2014) 3010–3015. https://doi.org/10.1002/ejic.201402150.
- [26] J. Kong, T. Yang, Z. Rui, H. Ji, Perovskite-based photocatalysts for organic contaminants removal : Current status and future perspectives, Catal. Today. 327 (2019) 47–63. https://doi.org/10.1016/j.cattod.2018.06.045.