Review
BibTex RIS Cite

Review on the use of artificial neural networks to determine the relationship between climate change and the occupancy rates of dams

Year 2024, Volume: 7 Issue: 1, 140 - 147, 31.03.2024
https://doi.org/10.35208/ert.1340030

Abstract

Climate change has the potential to raise temperatures, alter precipitation patterns, and alter how water resources are distributed globally. The occupancy rates of drinking water supplies may change as a result of these changes. For instance, dwindling water supplies may result from rising temperatures and diminishing precipitation. As a result, the occupancy rates of the reservoirs may drop, making it harder to deliver drinking water. Climate change, however, might highlight regional variations and result in wetter conditions in some places. The occupancy rates in the reservoirs could rise in this scenario. Heavy rains, however, can also result in additional issues like infrastructure damage and floods. Climate change-friendly actions must be taken to manage water supplies in a sustainable manner. In the management of water resources, dams are crucial. It has been observed that when a reliable estimate of a dam's flow is provided, data-based models can produce valuable findings for a variety of hydrological applications. It is obvious that one of the most important problems is the difficulty in getting utility and drinking water as a result of climate change and other things. The purpose of this study is to compile the works that can be offered as a result of the literature review on the impact of climate change on surface water resources and dams, given the importance of this topic. As a result of this study, we can deduce a link between the occupancy levels of the reservoirs used to supply drinking water and climate change. Climate change has the capacity to increase temperatures, modify precipitation patterns, and shift the distribution of water supplies. The relationship between climate change and water supplies is better understood thanks to this study.

References

  • UN/FCCC, “Ministerial Declaration, United Nations Framework Convention on Climate Change,” Conference of the Parties, Second Session. Geneva, 1996.
  • M. Parry, N. Arnell, G. Fisher, A. Iglesias, S. Kovats, M. Livermore, C. Rosenzweig, A. Iglesias, and G. Fischer, “Millions at risk: defining critical climate change threats and targets,” Global Environmental Change, Vol. 11, pp. 181183, 2001. [CrossRef]
  • J. G. Canadell, C. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland, “Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks,” Proceedings of the National Academy of Sciences, Vol. 104(47), pp. 1886618870, 2007. [CrossRef]
  • J.B. Smith, S.H. Schneider, M. Oppenheimer, G.W. Yohe, W. Haref, M. D. Mastrandrea, A. Patwardhan, I. Burton, J. Corfee-Morlot, C. H. D. Magadza, H.-M. Füssel, A. B. Pittock, A. Rahman, A. Suarez, and J.-P. van Ypersele, “Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) ‘reasons for concern’,” Proceedings of the National Academy of Sciences, Vol. 106, pp. 4133–4137, 2009. [CrossRef]
  • M. Ghiasi, N. Ghadimi, and E. Ahmadinia, “An analytical methodology for reliability assessment and failure analysis in distributed power system,” SN Applied Science, Vol. 1(1), Article 44, 2019. [CrossRef]
  • Q. Huangpeng, W. Huang, and F. Gholinia, “Forecast of the hydropower generation under influence of climate change based on RCPs and developed crow search optimization algorithm,” Energy Reports, Vol. 7, pp. 385–397, 2021. [CrossRef]
  • M. Mir, M. Shafieezadeh, M. A. Heidari, and N. Ghadimi, “Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction,” Evolution System, Vol. 11(4), pp. 559–573, 2020. [CrossRef]
  • X. Ren, Y. Zhao, D. Hao, Y. Sun, S. Chen, and F. Gholinia, “Predicting optimal hydropower generation with help optimal management of water resources by developed wildebeest herd optimization (DWHO),” Energy Reports, Vol.7, pp. 968–980, 2021. [CrossRef]
  • L.-N. Guo, C. She, D.-B. Kong, S.-L. Yan, Y.-P. Xu, M. Khayatnezhad and F. Gholinia, “Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ANN model,” Energy Reports, Vol. 7, pp. 5431–5445, 2021. [CrossRef]
  • B. Ustaoğlu, “Yuca’de iklim değişikliği ve etkileri: Su kaynakları, tarım ve gıda güvenliği,” ARGE Dergisi, Vol. 31, 2021.
  • I. Dabanlı, A. K. Mishra, and Z. Sen, “Long-term spatio-temporal drought variability in Turkey,” Journal of Hydrology, Vol. 552, pp. 779–792, 2017. [CrossRef]
  • G. Cüceloğlu, “iklim değişikliğinin İstanbul’un yüzeysel su kaynaklarına etkisi ve kuraklık dirençli bütünleşik su yönetimi,” İstanbul Teknik Üniversitesi, Doktora Tezi, 501122710, 2019.
  • J. T. Houghton, Y. Ding, and D. J. Griggs, “Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change,” Cambridge University Press, 2001.
  • J. H. Christensen, B. Hewitson, and A. Busuioc, “Regional climate projections. In Solomon S, Qin D, Manning M, D. Qin, M. Marquis, K. Averyt, M. M. B. Tignor, H. LeRoy Miller Jr, and Z. Chen, (Eds.), Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel On Climate Change,” Cambridge University Press, 2007.
  • B. Lehner, T. Henrichs, P. Döll, and J. Alcamo, “EuroWasser – Model-based assessment of European water resources and hydrology in the face of global change,” Kassel World Water Series, Vol. 5, pp. 124. Center for Environmental Systems Research, University of Kassel, Germany, 2001.
  • Devlet Su İşleri, “DSİ Genel Müdürlüğü - Teknik Sözlükler,” 2014. http://dsi.gov.tr/dsi-sozlukler.
  • M. Davis, and D. Cornwell, “Introduction to Environmental Engineering (3rd ed.),” McGraw-Hill, pp. 2236, 1998.
  • C. Brown, “Managing climate risk in water supply systems, Vol. 12,” IWA Publishing, 2013. [CrossRef]
  • G. Cüceloğlu, “İklim değişikliğinin istanbul’un yüzeysel su kaynaklarına etkisi ve kuraklık dirençli bütünleşik su yönetimi,” Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Çevre Bilimleri ve Mühendisliği Programı, 2019.
  • T. Partal, “Türkiye yağış miktarlarının yapay sinir ağları ve dalgacık dönüşümü yöntemleri ile tahmini,” İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2007.
  • C. Gerek, M. Alp, A. Züran, V. Şahin, and İ. Kılınç, “Present conditions, future potentials, drought analysis and management of reservoirs around İstanbul,” International Congress River Basin Management, Antalya, Turkey, March, 22-24, 2007.
  • Altunkaynak, “Forecasting surface water level fluctuations of Lake Van By artificial neural network,” Water Resour Manage, Vol. 21, pp. 399408, 2007. [CrossRef]
  • C. Bates, Z. W. Kundzewicz, S. Wu, and J. P. Palutikof, “Climate change and water,” Technical Paper of the Intergovernmental Panel on Climate Change, pp. 210, 2008.
  • M. M. Çalım, “Yapay sinir ağları yöntemi ile baraj hazne kotu tahmini,” Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Hatay, 2008.
  • M. A. Benzaghta, and T. A. Mohamad, “Evaporation from reservoir and reduction methods: An overview and assessment study,” International Engineering Convention, Damascus, Syria, and Medina, Kingdom of Saudi Arabia, 2009.
  • A. Yarar, and M. Onüçyıldız, “Yapay sinir ağlari ile beyşehir gölü su seviyesi değişimlerinin belirlenmesi,” Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 24, pp. 2130, 2009.
  • B. Ustaoğlu, “Türkiye’de A2 emisyon senaryosuna göre ortalama yağış tutarlarının olası değişimi, (2010-2099),” Fiziki Coğrafya Araştırmaları Sistematik ve Bölgesel. Prof. Dr. M.Y. Hoşgören’e Armağan Kitabı, Türk Coğrafya Kurumu Yayınları, Vol. 6, pp. 473484, 2011.
  • B. Önol, and Y. S. Ünal, “Assessment of Climate Change Simulations over Climate Zones of Turkey,” Regional Environ Change. Springer-Verlag, 2012.
  • Ö. L. Şen, “Türkiye'de iklim değişikliğinin bütünsel resmi”, Öztopal, A., Yerli, B., Şen, Z. (Eds.), in: Türkiye'de İklim Değişikliği Kongresi Proceeding Book, Su Vakfı Yayınları, 2013.
  • U. Okkan, “İklim değişikliğinin Akarsu Akışları Üzerindeki Etkilerinin Değerlendirilmesi”, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi İnşaat Mühendisliği Bölümü, Hidrolik – Hidroloji ve Su Kaynakları Anabilim Dalı, 2013.
  • J. Adeloye, B. S. Soundharajan, C. S. P. Ojha, and R. Remesan, “Effect of hedging-integrated rule curves on the performance of the Pong Reservoir (India) during scenario-neutral climate change perturbations,” Water Resources Management, Vol. 30, pp. 445–470, 2016. [CrossRef]
  • Doğan, U. Kocamaz, M. Utkucu, and E. Yıldırım, “Modelling daily water level fluctuations of Lake Van (Eastern Turkey) using artificial neural networks,” Fundamental and Applied Limnology, Vol. 187, pp. 177–189, 2016. [CrossRef]
  • S. Soundharajan, A. J. Adeloye, and R. Remesan, “Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment,” Journal of Hydrology, Vol. 538, pp. 625–639, 2016. [CrossRef]
  • G. Yang, S. Guo, L. Li, X. Hong, and L. Wang, “Multi-objective operating rules for Danjiangkou Reservoir under climate change,” Water Resources Management, Vol. 30, pp. 1183–1202, 2016. [CrossRef]
  • G. Zhao, H. Gao, B. S. Naz, S. C. Kao, and N. Voisin, “Integrating a reservoir regulation scheme into a spatially distributed hydrological model,” Advances in Water Resources, Vol. 98, pp. 16–31, 2016. [CrossRef]
  • O. Sönmez, F. Demir, and D. Doğan, “Impact of climate change on Yalova Gokce Dam Water level,” Published in 5th International Symposium on Innovative Technologies in Engineering and Science, ISITES2017 Baku – Azerbaijan, 29-30 September, 2017.
  • Z. K. A. Abu Salam, “Yapay sinir ağları ile dibis barajının seviye tahmini,” Master Thesis, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, 2018.
  • Y. Damla, T. Temiz, and E. Keskin, “Estimation of water level by using artifıcial neural network: Example of Yalova Gökçe Dam,” Kırklareli University Journal of Engineering and Science, Vol. 6, pp. 132149, 2020. [CrossRef]
  • J. A. M. Rodrigues, M. R. Viola, L. A. Alvarenga, C. R. de Mello, S. C. Chou, V. A. de Oliveira, V. Uddameri, and M. A. V. Morais, “Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome,” International Journal of Climatology, Vol. 40, pp. 2511–2526, 2020. [CrossRef]
  • IPCC, 2021. https://www.ipcc.ch/report/ar6/wg3/ Accessed on 01 Aug 01, 2022.
  • MGM, “Meteoroloji Genel Müdürlüğü, Türkiye İçin iklim projeksiyonları,” https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=projeksiyonlar Accessed on Aug 02, 2022).
  • C. Ayva, A. Atalay Dutucu, and B. Ustaoğlu, “Climate Change Impact on Water Resources and Adaptation Strategies: The Case of Kirazdere Basin,” F.Ü. Sosyal Bilimler Dergisi, Vol. 33(1), pp. 4764, 2023. [CrossRef]
  • Y. B. Salmona, E. A. T. Matricardi, D. L. Skole, J. F. A. S. O. de A. C. Filho, M. A. Pedlowski, J. M. Sampaio, L. C. R. Castrillón, R. Albuquerque Brandão, A. Leme da Silva, and S. Aires de Souza, “A Worrying future for river flows in the Brazilian cerrado provoked by land use and climate changes,” Sustainability, Vol. 15(5), Article 4251, 2023. [CrossRef]
Year 2024, Volume: 7 Issue: 1, 140 - 147, 31.03.2024
https://doi.org/10.35208/ert.1340030

Abstract

References

  • UN/FCCC, “Ministerial Declaration, United Nations Framework Convention on Climate Change,” Conference of the Parties, Second Session. Geneva, 1996.
  • M. Parry, N. Arnell, G. Fisher, A. Iglesias, S. Kovats, M. Livermore, C. Rosenzweig, A. Iglesias, and G. Fischer, “Millions at risk: defining critical climate change threats and targets,” Global Environmental Change, Vol. 11, pp. 181183, 2001. [CrossRef]
  • J. G. Canadell, C. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland, “Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks,” Proceedings of the National Academy of Sciences, Vol. 104(47), pp. 1886618870, 2007. [CrossRef]
  • J.B. Smith, S.H. Schneider, M. Oppenheimer, G.W. Yohe, W. Haref, M. D. Mastrandrea, A. Patwardhan, I. Burton, J. Corfee-Morlot, C. H. D. Magadza, H.-M. Füssel, A. B. Pittock, A. Rahman, A. Suarez, and J.-P. van Ypersele, “Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) ‘reasons for concern’,” Proceedings of the National Academy of Sciences, Vol. 106, pp. 4133–4137, 2009. [CrossRef]
  • M. Ghiasi, N. Ghadimi, and E. Ahmadinia, “An analytical methodology for reliability assessment and failure analysis in distributed power system,” SN Applied Science, Vol. 1(1), Article 44, 2019. [CrossRef]
  • Q. Huangpeng, W. Huang, and F. Gholinia, “Forecast of the hydropower generation under influence of climate change based on RCPs and developed crow search optimization algorithm,” Energy Reports, Vol. 7, pp. 385–397, 2021. [CrossRef]
  • M. Mir, M. Shafieezadeh, M. A. Heidari, and N. Ghadimi, “Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction,” Evolution System, Vol. 11(4), pp. 559–573, 2020. [CrossRef]
  • X. Ren, Y. Zhao, D. Hao, Y. Sun, S. Chen, and F. Gholinia, “Predicting optimal hydropower generation with help optimal management of water resources by developed wildebeest herd optimization (DWHO),” Energy Reports, Vol.7, pp. 968–980, 2021. [CrossRef]
  • L.-N. Guo, C. She, D.-B. Kong, S.-L. Yan, Y.-P. Xu, M. Khayatnezhad and F. Gholinia, “Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ANN model,” Energy Reports, Vol. 7, pp. 5431–5445, 2021. [CrossRef]
  • B. Ustaoğlu, “Yuca’de iklim değişikliği ve etkileri: Su kaynakları, tarım ve gıda güvenliği,” ARGE Dergisi, Vol. 31, 2021.
  • I. Dabanlı, A. K. Mishra, and Z. Sen, “Long-term spatio-temporal drought variability in Turkey,” Journal of Hydrology, Vol. 552, pp. 779–792, 2017. [CrossRef]
  • G. Cüceloğlu, “iklim değişikliğinin İstanbul’un yüzeysel su kaynaklarına etkisi ve kuraklık dirençli bütünleşik su yönetimi,” İstanbul Teknik Üniversitesi, Doktora Tezi, 501122710, 2019.
  • J. T. Houghton, Y. Ding, and D. J. Griggs, “Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change,” Cambridge University Press, 2001.
  • J. H. Christensen, B. Hewitson, and A. Busuioc, “Regional climate projections. In Solomon S, Qin D, Manning M, D. Qin, M. Marquis, K. Averyt, M. M. B. Tignor, H. LeRoy Miller Jr, and Z. Chen, (Eds.), Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel On Climate Change,” Cambridge University Press, 2007.
  • B. Lehner, T. Henrichs, P. Döll, and J. Alcamo, “EuroWasser – Model-based assessment of European water resources and hydrology in the face of global change,” Kassel World Water Series, Vol. 5, pp. 124. Center for Environmental Systems Research, University of Kassel, Germany, 2001.
  • Devlet Su İşleri, “DSİ Genel Müdürlüğü - Teknik Sözlükler,” 2014. http://dsi.gov.tr/dsi-sozlukler.
  • M. Davis, and D. Cornwell, “Introduction to Environmental Engineering (3rd ed.),” McGraw-Hill, pp. 2236, 1998.
  • C. Brown, “Managing climate risk in water supply systems, Vol. 12,” IWA Publishing, 2013. [CrossRef]
  • G. Cüceloğlu, “İklim değişikliğinin istanbul’un yüzeysel su kaynaklarına etkisi ve kuraklık dirençli bütünleşik su yönetimi,” Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Çevre Bilimleri ve Mühendisliği Programı, 2019.
  • T. Partal, “Türkiye yağış miktarlarının yapay sinir ağları ve dalgacık dönüşümü yöntemleri ile tahmini,” İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2007.
  • C. Gerek, M. Alp, A. Züran, V. Şahin, and İ. Kılınç, “Present conditions, future potentials, drought analysis and management of reservoirs around İstanbul,” International Congress River Basin Management, Antalya, Turkey, March, 22-24, 2007.
  • Altunkaynak, “Forecasting surface water level fluctuations of Lake Van By artificial neural network,” Water Resour Manage, Vol. 21, pp. 399408, 2007. [CrossRef]
  • C. Bates, Z. W. Kundzewicz, S. Wu, and J. P. Palutikof, “Climate change and water,” Technical Paper of the Intergovernmental Panel on Climate Change, pp. 210, 2008.
  • M. M. Çalım, “Yapay sinir ağları yöntemi ile baraj hazne kotu tahmini,” Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Hatay, 2008.
  • M. A. Benzaghta, and T. A. Mohamad, “Evaporation from reservoir and reduction methods: An overview and assessment study,” International Engineering Convention, Damascus, Syria, and Medina, Kingdom of Saudi Arabia, 2009.
  • A. Yarar, and M. Onüçyıldız, “Yapay sinir ağlari ile beyşehir gölü su seviyesi değişimlerinin belirlenmesi,” Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Vol. 24, pp. 2130, 2009.
  • B. Ustaoğlu, “Türkiye’de A2 emisyon senaryosuna göre ortalama yağış tutarlarının olası değişimi, (2010-2099),” Fiziki Coğrafya Araştırmaları Sistematik ve Bölgesel. Prof. Dr. M.Y. Hoşgören’e Armağan Kitabı, Türk Coğrafya Kurumu Yayınları, Vol. 6, pp. 473484, 2011.
  • B. Önol, and Y. S. Ünal, “Assessment of Climate Change Simulations over Climate Zones of Turkey,” Regional Environ Change. Springer-Verlag, 2012.
  • Ö. L. Şen, “Türkiye'de iklim değişikliğinin bütünsel resmi”, Öztopal, A., Yerli, B., Şen, Z. (Eds.), in: Türkiye'de İklim Değişikliği Kongresi Proceeding Book, Su Vakfı Yayınları, 2013.
  • U. Okkan, “İklim değişikliğinin Akarsu Akışları Üzerindeki Etkilerinin Değerlendirilmesi”, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi İnşaat Mühendisliği Bölümü, Hidrolik – Hidroloji ve Su Kaynakları Anabilim Dalı, 2013.
  • J. Adeloye, B. S. Soundharajan, C. S. P. Ojha, and R. Remesan, “Effect of hedging-integrated rule curves on the performance of the Pong Reservoir (India) during scenario-neutral climate change perturbations,” Water Resources Management, Vol. 30, pp. 445–470, 2016. [CrossRef]
  • Doğan, U. Kocamaz, M. Utkucu, and E. Yıldırım, “Modelling daily water level fluctuations of Lake Van (Eastern Turkey) using artificial neural networks,” Fundamental and Applied Limnology, Vol. 187, pp. 177–189, 2016. [CrossRef]
  • S. Soundharajan, A. J. Adeloye, and R. Remesan, “Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment,” Journal of Hydrology, Vol. 538, pp. 625–639, 2016. [CrossRef]
  • G. Yang, S. Guo, L. Li, X. Hong, and L. Wang, “Multi-objective operating rules for Danjiangkou Reservoir under climate change,” Water Resources Management, Vol. 30, pp. 1183–1202, 2016. [CrossRef]
  • G. Zhao, H. Gao, B. S. Naz, S. C. Kao, and N. Voisin, “Integrating a reservoir regulation scheme into a spatially distributed hydrological model,” Advances in Water Resources, Vol. 98, pp. 16–31, 2016. [CrossRef]
  • O. Sönmez, F. Demir, and D. Doğan, “Impact of climate change on Yalova Gokce Dam Water level,” Published in 5th International Symposium on Innovative Technologies in Engineering and Science, ISITES2017 Baku – Azerbaijan, 29-30 September, 2017.
  • Z. K. A. Abu Salam, “Yapay sinir ağları ile dibis barajının seviye tahmini,” Master Thesis, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, 2018.
  • Y. Damla, T. Temiz, and E. Keskin, “Estimation of water level by using artifıcial neural network: Example of Yalova Gökçe Dam,” Kırklareli University Journal of Engineering and Science, Vol. 6, pp. 132149, 2020. [CrossRef]
  • J. A. M. Rodrigues, M. R. Viola, L. A. Alvarenga, C. R. de Mello, S. C. Chou, V. A. de Oliveira, V. Uddameri, and M. A. V. Morais, “Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome,” International Journal of Climatology, Vol. 40, pp. 2511–2526, 2020. [CrossRef]
  • IPCC, 2021. https://www.ipcc.ch/report/ar6/wg3/ Accessed on 01 Aug 01, 2022.
  • MGM, “Meteoroloji Genel Müdürlüğü, Türkiye İçin iklim projeksiyonları,” https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=projeksiyonlar Accessed on Aug 02, 2022).
  • C. Ayva, A. Atalay Dutucu, and B. Ustaoğlu, “Climate Change Impact on Water Resources and Adaptation Strategies: The Case of Kirazdere Basin,” F.Ü. Sosyal Bilimler Dergisi, Vol. 33(1), pp. 4764, 2023. [CrossRef]
  • Y. B. Salmona, E. A. T. Matricardi, D. L. Skole, J. F. A. S. O. de A. C. Filho, M. A. Pedlowski, J. M. Sampaio, L. C. R. Castrillón, R. Albuquerque Brandão, A. Leme da Silva, and S. Aires de Souza, “A Worrying future for river flows in the Brazilian cerrado provoked by land use and climate changes,” Sustainability, Vol. 15(5), Article 4251, 2023. [CrossRef]
There are 43 citations in total.

Details

Primary Language English
Subjects Climate Change Science (Other)
Journal Section Review
Authors

Furkan Demirbaş 0000-0003-0560-7429

Emine Elmaslar Özbaş 0000-0001-9065-6684

Publication Date March 31, 2024
Submission Date August 9, 2023
Acceptance Date November 25, 2023
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Demirbaş, F., & Elmaslar Özbaş, E. (2024). Review on the use of artificial neural networks to determine the relationship between climate change and the occupancy rates of dams. Environmental Research and Technology, 7(1), 140-147. https://doi.org/10.35208/ert.1340030
AMA Demirbaş F, Elmaslar Özbaş E. Review on the use of artificial neural networks to determine the relationship between climate change and the occupancy rates of dams. ERT. March 2024;7(1):140-147. doi:10.35208/ert.1340030
Chicago Demirbaş, Furkan, and Emine Elmaslar Özbaş. “Review on the Use of Artificial Neural Networks to Determine the Relationship Between Climate Change and the Occupancy Rates of Dams”. Environmental Research and Technology 7, no. 1 (March 2024): 140-47. https://doi.org/10.35208/ert.1340030.
EndNote Demirbaş F, Elmaslar Özbaş E (March 1, 2024) Review on the use of artificial neural networks to determine the relationship between climate change and the occupancy rates of dams. Environmental Research and Technology 7 1 140–147.
IEEE F. Demirbaş and E. Elmaslar Özbaş, “Review on the use of artificial neural networks to determine the relationship between climate change and the occupancy rates of dams”, ERT, vol. 7, no. 1, pp. 140–147, 2024, doi: 10.35208/ert.1340030.
ISNAD Demirbaş, Furkan - Elmaslar Özbaş, Emine. “Review on the Use of Artificial Neural Networks to Determine the Relationship Between Climate Change and the Occupancy Rates of Dams”. Environmental Research and Technology 7/1 (March 2024), 140-147. https://doi.org/10.35208/ert.1340030.
JAMA Demirbaş F, Elmaslar Özbaş E. Review on the use of artificial neural networks to determine the relationship between climate change and the occupancy rates of dams. ERT. 2024;7:140–147.
MLA Demirbaş, Furkan and Emine Elmaslar Özbaş. “Review on the Use of Artificial Neural Networks to Determine the Relationship Between Climate Change and the Occupancy Rates of Dams”. Environmental Research and Technology, vol. 7, no. 1, 2024, pp. 140-7, doi:10.35208/ert.1340030.
Vancouver Demirbaş F, Elmaslar Özbaş E. Review on the use of artificial neural networks to determine the relationship between climate change and the occupancy rates of dams. ERT. 2024;7(1):140-7.