Research Article
BibTex RIS Cite

Narrowing band gap of ZnO codoping (Al+Mn) as a photocatalyst candidate for degraded textile dye wastewater

Year 2025, Volume: 8 Issue: 1, 81 - 87, 31.03.2025
https://doi.org/10.35208/ert.1424621

Abstract

Photocatalyst degradation is one method to reduce industrial textile dye pollution in water. In this study, ZnO material was synthesized by codoping Al and Mn using the chemical coprecipitation method to determine the structural and optical properties of the material. This research found that the structure of ZnO after codoping Al and Mn did not change the hexagonal wurtzite phase but changed in other lattice parameters. The addition of Mn and Al codoping is reported to affect the intensity of XRD peaks, especially on the 101 lattice. The higher the scattering peak, the more angular the shift, indicating the magnitude of oxygen vacancies. The addition of Mn with 0% concentration shows the smallest lattice parameter among the other four samples. This indicates that the oxygen vacancy of the sample without Mn is more significant than that with codoping Mn. The reflectance measurement results show that the energy gap value of ZnO (Al+Mn), with a 0% Mn percentage, reaches an immense value, which is 3.290 eV. The smallest energy gap is ZnO (Al+Mn) with 4% codopping Mn which is 3.258 eV. With this consideration, ZnO (Al+Mn) with 0% Mn percentage is suitable to be applied as a Congo Red photodegradation agent, and ZnO (Al+Mn) with 4% codoping Mn is appropriate to be used as a Methylene Green photodegradation agent.

References

  • B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnology Research and Innovation, Vol. 3(2), pp. 275–290, 2019. [CrossRef]
  • A. Rasool, S. Kiran, T. Gulzar, S. Abrar, A. Ghaffar, M. Sahid, S. Nosheen, and A. Naz, “Biogenic synthesis and characterization of ZnO nanoparticles for degradation of synthetic dyes: A sustainable environmental cleaner approach,” Journal of Cleaner Production, Vol. 398, Article 136616, 2023. [CrossRef]
  • L. D. Ardila-Leal, R. A. Poutou-Piñales, A. M. Pedroza-Rodríguez, and B. E. Quevedo-Hidalgo, “A brief history of color, the environmental impact of synthetic dyes and removal by using laccases,” Molecules, Vol. 26(13) Article 3813. [CrossRef]
  • M. F. Lanjwani, M. Tuzen, M. Y. Khuhawar, and T. A. Saleh, “Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review,” Inorganic Chemistry Communications, Vol. 159, Article 111613, 2024. [CrossRef]
  • M. Lal, P. Sharma, L. Singh, and C. Ram, “Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles,” Results in Engineering, Vol. 17, Article 100890, 2023. [CrossRef]
  • F. Maldonado, and A. Stashans, “Al-doped ZnO: Electronic, electrical and structural properties,” Journal of Physics and Chemistry of Solids, Vol. 71(5), pp. 784–787, 2010. [CrossRef]
  • R. Anugrahwidya, N. Yudasari, and D. Tahir, “Optical and structural investigation of synthesis ZnO/Ag Nanoparticles prepared by laser ablation in liquid,” Materials Science in Semiconductor Processing, Vol. 105, Article 104712, 2020. [CrossRef]
  • N. Yudasari, A. Hardiansyah, Y. Herbani, M. M. S uliyanti, and D. Djuhana, “Single-step laser ablation synthesis of ZnO-Ag nanocomposites for broad-spectrum dye photodegradation and antibacterial photoinactivation,” https://ssrn.com/abstract=4352158 Accessed on Sep 29, 2024. [CrossRef]
  • C. Oeurn Chey, “Synthesis of ZnO and Transition Metals Doped ZnO Nanostructures, their Characterization and Sensing Applications,” Linköping University Electronic Press, 2015. [CrossRef]
  • W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, and L. C. Sim, “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane,” Environmental Science and Pollution Research, Vol. 27(3), pp. 2522–2565, 2020. [CrossRef]
  • H. Fatima, “Western Australian School of Mines: Minerals, Energy and Chemical Engineering Synthesis and characterization of ZnO-based/derived nanoparticles as promising photocatalysts,” Kappa Journal, Vol. 8(2), pp. 255-261, 2022.
  • D. Blažeka, J. Car, N. Klobucar, A. Jurov, J. Zavasnik, A. Jagodar, E. Kovacevic, and N. Krstulovic, “Photodegradation of methylene blue and rhodamine b using laser-synthesized ZnO nanoparticles,” Materials, Vol. 13(19), pp. 1–15, 2020. [CrossRef]
  • R. Ghorbali, G. Esalah, A. Ghoudi, H. Guermazi, S. Guermazi, A. El Hdiy, H. Banhayoune, B. Duponchel, A. Oueslati, and G. Leroy, “The effect of (In, Cu) doping and co-doping on physical properties and organic pollutant photodegradation efficiency of ZnO nanoparticles for wastewater remediation,” Ceramics International, Vol. 49(21), pp. 33828–33841, 2023. [CrossRef]
  • R. E. Adam, G. Pozina, M. Willander, and O. Nur, “Synthesis of ZnO nanoparticles by co-precipitation method for solar-driven photodegradation of Congo red dye at different pH,” Photonics Nanostruct, Vol. 32, pp. 11–18, 2018. [CrossRef]
  • A. Mahesha, M. Nagaraja, A. Madhu, N. Suriyamurthy, S. Satyanarayana Reddy, M. Al-Dossari, N.S. Abd EL-Gawaad, S.O. Manjunatha, K. Gurushantha, and N. Srinatha, “Chromium-doped ZnO nanoparticles synthesized via auto-combustion: Evaluation of concentration-dependent structural, band gap-narrowing effect, luminescence properties and photocatalytic activity,” Ceramics International, Vol. 4914, pp. 22890–22901, 2023. [CrossRef]
  • D. Savitha, H. K. E. Latha, H. S. Lalithamba, S. Mala, and Y. Vasudev Jeppu, “Structural, optical and electrical properties of undoped and doped (Al, Al + Mn) ZnO nanoparticles synthesized by green combustion method using Terminalia catappa seed extract,” Materials Today: Proceedings, Vol. 60, pp. 988–997, 2022. [CrossRef]
  • A. M. Alsaad, Q. M. Al-Bataineh, A. A. Ahmad, Z. Albataineh, and A. Telfah, “Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra,” Optik (Stuttg), Vol. 211, Article 164641, 2020. [CrossRef]
  • M. A. Nawaz and P. Dissertation, “Effect of Transition Metals Doping on the Properties of ZnO Thin Films,” [Master thesis], The Islamia University of Bahawalpur, 2016.
  • P. Norouzzadeh, K. Mabhouti, M. M. Golzan, and R. Naderali, “Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: A Urbach energy and Kramers-Kronig study,” Optik (Stuttgart), Vol. 204, Article 164227, 2020. [CrossRef]
  • A. Ashwini, L. Saravanan, V. Sabari, M. Astalakshmi, and N. Kanagathara, “Effect of Cu doping with varying pH on photocatalytic activity of ZnO nanoparticles for the removal of organic pollutants,” Inorg Chemical Communications, Vol. 155, Article 111137, 2023. [CrossRef]
  • A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” Journal of Electroanalytical Chemistry, Vol. 763, pp. 149–154, 2016. [CrossRef]
  • R. C. Tiwari, “Structural, Optical and Electronic Properties of Zno Nanoparticles,” [Master thesis], The University of Tulsa, 2017.
  • A. Ciechan, and P. Bogusławski, “Theory of the sp–d coupling of transition metal impurities with free carriers in ZnO,” Scientific Report, Vol. 11(1), Article 3848, 2021, [CrossRef]
  • J. Gupta, P. A. Hassan, and K. C. Barick, “Structural, photoluminescence and photocatalytic properties of Mn and Eu co-doped ZnO nanoparticles,” in Materials Today: Proceedings, Vol. 42, pp. 926–931, 2020. [CrossRef]
  • R. Asih, R.M. Dhari, M. Baqiya, and F. Astuti, “Effects of Mn substitution on magnetic properties of ZnO nanoparticles,” Key Engineering Materials, Vol. 855, pp. 166–171, 2020. [CrossRef]
  • E. A. Batista, A. C. A. Silva, T. K. de Lima, E. V. Guimarães, R. S. da Silva, and N. O. Dantas, “Effect of the location of Mn2+ ions in the optical and magnetic properties of ZnO nanocrystals,” Journal of Alloys and Compounds, Vol. 850, Article 156611, 2021. [CrossRef]
  • N. H. Nam, and N. H. Luong, “Nanoparticles: Synthesis and applications,” In: V. Grumezescu, and A. M. Grumezescu, (Eds.), Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures, (pp. 211–240), Elseiver, 2019. [CrossRef]
  • S. Roguai and A. Djelloul, “Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method,” Solid State Communications, Vol. 334–335, Article 114362, 2021. [CrossRef]
  • M. Hou, and J. Ge, “Armoring enzymes by metal-organic frameworks by the coprecipitation method,” Methods in Enzymology, Vol. 590, pp. 59–75, 2017. [CrossRef]
  • R. Kant, R. Singh, A. Bansal, and A. Kumar, “Effect of Mn-adding on microstructure, optical and dielectric properties Zn0.95Al0.05O nanoparticles,” Physica E: Low-dimensional systems and Nanostructures, Vol. 131, Article 114726, 2021. [CrossRef]
  • G. Saxena, I. A. Salmani, M. S. Khan, and M. S. Khan, “Structural co-related optical properties of Al and Cu co-doped ZnO nanoparticles,” Nano-Structures and Nano-Objects, Vol. 35, Article 100986, 2023. [CrossRef]
  • K. S. Al-Namshah, M. Shkir, F. A. Ibrahim, and M. S. Hamdy, “Auto combustion synthesis and characterization of Co-doped ZnO nanoparticles with boosted photocatalytic performance,” Physica B: Condensed Matter, Vol. 625, Article 413459, 2022. [CrossRef]
  • K. V. Karthik, A.V. Raghu, K.R. Reddy, R. Ravishankar, M. Sangeeta, N.P. Shetti, and C, V. Reddy, “Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants,” Chemosphere, Vol. 287, Article 132081, 2022. [CrossRef]
  • B. C. Nwaiwu, E. E. Oguzie, and C. C. Ejiogu, “Photocatalytic degradation of Congo red using doped zinc oxide nanoparticles,” EQA-International Journal of Environmental Quality, Vol. 60, pp. 18-26, 2024
Year 2025, Volume: 8 Issue: 1, 81 - 87, 31.03.2025
https://doi.org/10.35208/ert.1424621

Abstract

References

  • B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnology Research and Innovation, Vol. 3(2), pp. 275–290, 2019. [CrossRef]
  • A. Rasool, S. Kiran, T. Gulzar, S. Abrar, A. Ghaffar, M. Sahid, S. Nosheen, and A. Naz, “Biogenic synthesis and characterization of ZnO nanoparticles for degradation of synthetic dyes: A sustainable environmental cleaner approach,” Journal of Cleaner Production, Vol. 398, Article 136616, 2023. [CrossRef]
  • L. D. Ardila-Leal, R. A. Poutou-Piñales, A. M. Pedroza-Rodríguez, and B. E. Quevedo-Hidalgo, “A brief history of color, the environmental impact of synthetic dyes and removal by using laccases,” Molecules, Vol. 26(13) Article 3813. [CrossRef]
  • M. F. Lanjwani, M. Tuzen, M. Y. Khuhawar, and T. A. Saleh, “Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review,” Inorganic Chemistry Communications, Vol. 159, Article 111613, 2024. [CrossRef]
  • M. Lal, P. Sharma, L. Singh, and C. Ram, “Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles,” Results in Engineering, Vol. 17, Article 100890, 2023. [CrossRef]
  • F. Maldonado, and A. Stashans, “Al-doped ZnO: Electronic, electrical and structural properties,” Journal of Physics and Chemistry of Solids, Vol. 71(5), pp. 784–787, 2010. [CrossRef]
  • R. Anugrahwidya, N. Yudasari, and D. Tahir, “Optical and structural investigation of synthesis ZnO/Ag Nanoparticles prepared by laser ablation in liquid,” Materials Science in Semiconductor Processing, Vol. 105, Article 104712, 2020. [CrossRef]
  • N. Yudasari, A. Hardiansyah, Y. Herbani, M. M. S uliyanti, and D. Djuhana, “Single-step laser ablation synthesis of ZnO-Ag nanocomposites for broad-spectrum dye photodegradation and antibacterial photoinactivation,” https://ssrn.com/abstract=4352158 Accessed on Sep 29, 2024. [CrossRef]
  • C. Oeurn Chey, “Synthesis of ZnO and Transition Metals Doped ZnO Nanostructures, their Characterization and Sensing Applications,” Linköping University Electronic Press, 2015. [CrossRef]
  • W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, and L. C. Sim, “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane,” Environmental Science and Pollution Research, Vol. 27(3), pp. 2522–2565, 2020. [CrossRef]
  • H. Fatima, “Western Australian School of Mines: Minerals, Energy and Chemical Engineering Synthesis and characterization of ZnO-based/derived nanoparticles as promising photocatalysts,” Kappa Journal, Vol. 8(2), pp. 255-261, 2022.
  • D. Blažeka, J. Car, N. Klobucar, A. Jurov, J. Zavasnik, A. Jagodar, E. Kovacevic, and N. Krstulovic, “Photodegradation of methylene blue and rhodamine b using laser-synthesized ZnO nanoparticles,” Materials, Vol. 13(19), pp. 1–15, 2020. [CrossRef]
  • R. Ghorbali, G. Esalah, A. Ghoudi, H. Guermazi, S. Guermazi, A. El Hdiy, H. Banhayoune, B. Duponchel, A. Oueslati, and G. Leroy, “The effect of (In, Cu) doping and co-doping on physical properties and organic pollutant photodegradation efficiency of ZnO nanoparticles for wastewater remediation,” Ceramics International, Vol. 49(21), pp. 33828–33841, 2023. [CrossRef]
  • R. E. Adam, G. Pozina, M. Willander, and O. Nur, “Synthesis of ZnO nanoparticles by co-precipitation method for solar-driven photodegradation of Congo red dye at different pH,” Photonics Nanostruct, Vol. 32, pp. 11–18, 2018. [CrossRef]
  • A. Mahesha, M. Nagaraja, A. Madhu, N. Suriyamurthy, S. Satyanarayana Reddy, M. Al-Dossari, N.S. Abd EL-Gawaad, S.O. Manjunatha, K. Gurushantha, and N. Srinatha, “Chromium-doped ZnO nanoparticles synthesized via auto-combustion: Evaluation of concentration-dependent structural, band gap-narrowing effect, luminescence properties and photocatalytic activity,” Ceramics International, Vol. 4914, pp. 22890–22901, 2023. [CrossRef]
  • D. Savitha, H. K. E. Latha, H. S. Lalithamba, S. Mala, and Y. Vasudev Jeppu, “Structural, optical and electrical properties of undoped and doped (Al, Al + Mn) ZnO nanoparticles synthesized by green combustion method using Terminalia catappa seed extract,” Materials Today: Proceedings, Vol. 60, pp. 988–997, 2022. [CrossRef]
  • A. M. Alsaad, Q. M. Al-Bataineh, A. A. Ahmad, Z. Albataineh, and A. Telfah, “Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra,” Optik (Stuttg), Vol. 211, Article 164641, 2020. [CrossRef]
  • M. A. Nawaz and P. Dissertation, “Effect of Transition Metals Doping on the Properties of ZnO Thin Films,” [Master thesis], The Islamia University of Bahawalpur, 2016.
  • P. Norouzzadeh, K. Mabhouti, M. M. Golzan, and R. Naderali, “Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: A Urbach energy and Kramers-Kronig study,” Optik (Stuttgart), Vol. 204, Article 164227, 2020. [CrossRef]
  • A. Ashwini, L. Saravanan, V. Sabari, M. Astalakshmi, and N. Kanagathara, “Effect of Cu doping with varying pH on photocatalytic activity of ZnO nanoparticles for the removal of organic pollutants,” Inorg Chemical Communications, Vol. 155, Article 111137, 2023. [CrossRef]
  • A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” Journal of Electroanalytical Chemistry, Vol. 763, pp. 149–154, 2016. [CrossRef]
  • R. C. Tiwari, “Structural, Optical and Electronic Properties of Zno Nanoparticles,” [Master thesis], The University of Tulsa, 2017.
  • A. Ciechan, and P. Bogusławski, “Theory of the sp–d coupling of transition metal impurities with free carriers in ZnO,” Scientific Report, Vol. 11(1), Article 3848, 2021, [CrossRef]
  • J. Gupta, P. A. Hassan, and K. C. Barick, “Structural, photoluminescence and photocatalytic properties of Mn and Eu co-doped ZnO nanoparticles,” in Materials Today: Proceedings, Vol. 42, pp. 926–931, 2020. [CrossRef]
  • R. Asih, R.M. Dhari, M. Baqiya, and F. Astuti, “Effects of Mn substitution on magnetic properties of ZnO nanoparticles,” Key Engineering Materials, Vol. 855, pp. 166–171, 2020. [CrossRef]
  • E. A. Batista, A. C. A. Silva, T. K. de Lima, E. V. Guimarães, R. S. da Silva, and N. O. Dantas, “Effect of the location of Mn2+ ions in the optical and magnetic properties of ZnO nanocrystals,” Journal of Alloys and Compounds, Vol. 850, Article 156611, 2021. [CrossRef]
  • N. H. Nam, and N. H. Luong, “Nanoparticles: Synthesis and applications,” In: V. Grumezescu, and A. M. Grumezescu, (Eds.), Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures, (pp. 211–240), Elseiver, 2019. [CrossRef]
  • S. Roguai and A. Djelloul, “Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method,” Solid State Communications, Vol. 334–335, Article 114362, 2021. [CrossRef]
  • M. Hou, and J. Ge, “Armoring enzymes by metal-organic frameworks by the coprecipitation method,” Methods in Enzymology, Vol. 590, pp. 59–75, 2017. [CrossRef]
  • R. Kant, R. Singh, A. Bansal, and A. Kumar, “Effect of Mn-adding on microstructure, optical and dielectric properties Zn0.95Al0.05O nanoparticles,” Physica E: Low-dimensional systems and Nanostructures, Vol. 131, Article 114726, 2021. [CrossRef]
  • G. Saxena, I. A. Salmani, M. S. Khan, and M. S. Khan, “Structural co-related optical properties of Al and Cu co-doped ZnO nanoparticles,” Nano-Structures and Nano-Objects, Vol. 35, Article 100986, 2023. [CrossRef]
  • K. S. Al-Namshah, M. Shkir, F. A. Ibrahim, and M. S. Hamdy, “Auto combustion synthesis and characterization of Co-doped ZnO nanoparticles with boosted photocatalytic performance,” Physica B: Condensed Matter, Vol. 625, Article 413459, 2022. [CrossRef]
  • K. V. Karthik, A.V. Raghu, K.R. Reddy, R. Ravishankar, M. Sangeeta, N.P. Shetti, and C, V. Reddy, “Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants,” Chemosphere, Vol. 287, Article 132081, 2022. [CrossRef]
  • B. C. Nwaiwu, E. E. Oguzie, and C. C. Ejiogu, “Photocatalytic degradation of Congo red using doped zinc oxide nanoparticles,” EQA-International Journal of Environmental Quality, Vol. 60, pp. 18-26, 2024
There are 34 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Research Articles
Authors

Aprilion Krisandi 0009-0004-2935-4619

Heru Harsono This is me 0000-0002-3650-4265

Nurfina Yudasarı This is me 0000-0002-2920-9380

Publication Date March 31, 2025
Submission Date January 23, 2024
Acceptance Date July 30, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Krisandi, A., Harsono, H., & Yudasarı, N. (2025). Narrowing band gap of ZnO codoping (Al+Mn) as a photocatalyst candidate for degraded textile dye wastewater. Environmental Research and Technology, 8(1), 81-87. https://doi.org/10.35208/ert.1424621
AMA Krisandi A, Harsono H, Yudasarı N. Narrowing band gap of ZnO codoping (Al+Mn) as a photocatalyst candidate for degraded textile dye wastewater. ERT. March 2025;8(1):81-87. doi:10.35208/ert.1424621
Chicago Krisandi, Aprilion, Heru Harsono, and Nurfina Yudasarı. “Narrowing Band Gap of ZnO Codoping (Al+Mn) As a Photocatalyst Candidate for Degraded Textile Dye Wastewater”. Environmental Research and Technology 8, no. 1 (March 2025): 81-87. https://doi.org/10.35208/ert.1424621.
EndNote Krisandi A, Harsono H, Yudasarı N (March 1, 2025) Narrowing band gap of ZnO codoping (Al+Mn) as a photocatalyst candidate for degraded textile dye wastewater. Environmental Research and Technology 8 1 81–87.
IEEE A. Krisandi, H. Harsono, and N. Yudasarı, “Narrowing band gap of ZnO codoping (Al+Mn) as a photocatalyst candidate for degraded textile dye wastewater”, ERT, vol. 8, no. 1, pp. 81–87, 2025, doi: 10.35208/ert.1424621.
ISNAD Krisandi, Aprilion et al. “Narrowing Band Gap of ZnO Codoping (Al+Mn) As a Photocatalyst Candidate for Degraded Textile Dye Wastewater”. Environmental Research and Technology 8/1 (March 2025), 81-87. https://doi.org/10.35208/ert.1424621.
JAMA Krisandi A, Harsono H, Yudasarı N. Narrowing band gap of ZnO codoping (Al+Mn) as a photocatalyst candidate for degraded textile dye wastewater. ERT. 2025;8:81–87.
MLA Krisandi, Aprilion et al. “Narrowing Band Gap of ZnO Codoping (Al+Mn) As a Photocatalyst Candidate for Degraded Textile Dye Wastewater”. Environmental Research and Technology, vol. 8, no. 1, 2025, pp. 81-87, doi:10.35208/ert.1424621.
Vancouver Krisandi A, Harsono H, Yudasarı N. Narrowing band gap of ZnO codoping (Al+Mn) as a photocatalyst candidate for degraded textile dye wastewater. ERT. 2025;8(1):81-7.