Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 3, 535 - 554, 30.09.2025
https://doi.org/10.35208/ert.1496026

Abstract

References

  • Q. Pang, (2017). “Advanced Electrodes and Electrolytes For Long-Lived and High-Energy-Density Lithium-Sulfur Batteries,” University of Waterloo (Doctoral dissertation).
  • A. H. Zimmerman, "Nickel-Hydrogen Batteries Principles and Practice", California: The Aeorspace Press, 2009.
  • K. Roshanaei, E. Taşkesen, and M. Özkaymak, “Recent advances in lithium-ion battery utilization: A mini review,” Sigma Journal of Engineering and Natural Sciences - Sigma Mühendislik ve Fen Bilimleri Dergisi, vol. 41 (6), pp. 1272-1286, 2023. [CrossRef]
  • P. Collini, (2017). “Deposizione Elettroforetica Di Film Di Mxene Per Applicazioni Funzionali,” Universita Degli Studi Di Padova (Doctoral dissertation).
  • T. B. Reddy, "Linden’S Handbook of Batteries", Fourth Edition, McGraw-Hill Education: New York, 2011.
  • C. (John) Zhang, L. Cui, S. Abdolhosseinzadeh, and J. Heier, “Two‐dimensional MXenes for lithium‐sulfur batteries,” InfoMat, vol. 2 (4), pp. 613-638, 2020. [CrossRef].
  • M. Wild and GregoryJ.Offe, "Lithium-Sulfur Batteries", Abingdon, UK GregoryJ.Offer: John Wiley & Sons Ltd, 2019.
  • L. Shi, (2017). “From MAX phases to MXenes : synthesis, characterization and electronic properties,” Universite Catholique de Louvain (Doctoral dissertation).
  • G. Jo, (2017). “Proton Hopping in a Single Layer Water Between MXene Layers Using ReaxFF MD Simulation,” Pennsylvania State University (Doctoral dissertation).
  • J. Halim, (2014). “Synthesis and Characterization of 2D Nanocrystals and Thin Films of Transition Metal Carbides (MXenes),” Linköping University (Doctoral dissertation).
  • D. Magné, (2016). “Synthèse et structure électronique de phases MAX et MXènes,” Universite de Poitiers (Doctoral dissertation).
  • X. Su, J. Zhang, H.Mu, J.Zhao, Z.Wang, Z.Zhao, C.Han, Z.Ye, “Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene,” Journal of Alloys and Compounds, vol. 752, pp. 32-39, 2018. [CrossRef]
  • H. Zhu, (2018). “Functional metal carbide nano structures with unique thermal and electrical chemical properties,” Iova State University (Doctoral dissertation).
  • I. R. Shein and A. L. Ivanovskii, “Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability,” Computational Materials Science, vol. 65, pp. 104-114, 2012. [CrossRef]
  • L. Agartan, K. Hantanasirisakul, S. Buczek, B. Akuzum, K.A. Mahmoud, B. Anasori, Y. Gogotsi, E.C. Kumbur, “Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system,” Desalination, vol. 477, 2020. [CrossRef]
  • G. Lv, J. Wang, Z. Shi, and L. Fan, “Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries,” Materials Letters, vol. 219, pp. 45-50, 2018. [CrossRef]
  • O. Salim, K. A. Mahmoud, K. K. Pant, and R. K. Joshi, “Introduction to MXenes: synthesis and characteristics,” Materials Today Chemistry, vol. 14, p. 100191, 2019. [CrossRef]
  • P. Eklund, J. Rosen, and P. O. Å. Persson, “Layered ternary Mn+1AXn phases and their 2D derivative MXene: An overview from a thin-film perspective,” Journal of Physics D: Applied Physics, vol. 50 (11), 2017. [CrossRef]
  • S. Venkateshalu and A. N. Grace, “MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond,” Applied Materials Today, vol. 18, p. 100509, 2020. [CrossRef]
  • M. Alhabeb, K. Maleski, T. S. Mathis, A. Sarycheva, C. B. Hatter, S. Uzun, A. Levitt, Y. Gogotsi, “Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene),” Angewandte Chemie - International Edition, vol. 57 (19), pp. 5444-5448, 2018. [CrossRef]
  • G. Cui, X. Zheng, X. Lv, Q. Jia, W. Xie, and G. Gu, “Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature,” Ceramics International, vol. 45 (17), pp. 23600-23610, 2019. [CrossRef]
  • Y. Gogotsi and B. Anasori, “The Rise of MXenes,” ACS Nano, vol. 13 (8), pp. 8491-8494, Aug. 2019. [CrossRef]
  • S. Zhao, R. Nivetha, Y. Qiu, and X. Guo, “Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2Tx) as advanced energy storage and conversion applications,” Chinese Chemical Letters, vol. 31 (4), pp. 947-952, 2020. [CrossRef]
  • K. Rasool, R. P. Pandey, P. A. Rasheed, S. Buczek, Y. Gogotsi, and K. A. Mahmoud, “Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes),” Materials Today, vol. 30, no. November, pp. 80-102, 2019. [CrossRef]
  • J. Halim, K.M. Cook, M.Naguib, P.Eklund, Y.Gogotsi, J.Rosen, M.W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Applied Surface Science, vol. 362, pp. 406-417, Jan. 2016. [CrossRef]
  • S. Venkateshalu, M. Shariq, N. K. Chaudhari, K. Lee, and A. N. Grace, “2D non-carbide MXenes: an emerging material class for energy storage and conversion,” Journal of Materials Chemistry A, vol. 10 (38), pp. 20174-20189, 2022. [CrossRef]
  • N. K. Chaudhari, H. Jin, B. Kim, D. San Baek, S. H. Joo, and K. Lee, “MXene: an emerging two-dimensional material for future energy conversion and storage applications,” Journal of Materials Chemistry A, vol. 5 (47), pp. 24564-24579, 2017. [CrossRef]
  • S. Venkateshalu, M.Shariq, B.Kim, M.Patel, K.S.Mahabari, S.Choi, N.K. Chaudhari, A.N. Grace, L.Kwangyeoli, “Recent advances in MXenes: beyond Ti-only systems,” Journal of Materials Chemistry A, vol. 11 (25), pp. 13107-13132, 2023. [CrossRef]
  • M. Higashi, S. Momono, K. Kishida, N. L. Okamoto, and H. Inui, “Anisotropic plastic deformation of single crystals of the MAX phase compound Ti3SiC2 investigated by micropillar compression,” Acta Materialia, vol. 161, pp. 161-170, 2018. [CrossRef]
  • M. Zhu, R. Wang, C. Chen, H. B. Zhang, and G. J. Zhang, “Comparison of corrosion behavior of Ti3SiC2 and Ti3AlC2 in NaCl solutions with Ti,” Ceramics International, vol. 43 (7), pp. 5708-5714, 2017. [CrossRef]
  • Z. M. Sun, Y. Zou, S. Tada, and H. Hashimoto, “Effect of Al addition on pressureless reactive sintering of Ti3SiC2,” Scripta Materialia, vol. 55 (11), pp. 1011-1014, 2006. [CrossRef]
  • J. Zhang, L. Wang, W. Jiang, and L. Chen, “Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering,” Materials Science and Engineering A, vol. 487 (1-2), pp. 137-143, 2008. [CrossRef]
  • P. Zhang, X. Wang, Y. Zhang, Y. Wei, N. Shen, S. Chen, B. Xu, “Burgeoning Silicon/MXene Nanocomposites for Lithium Ion Batteries: A Review,” Advanced Functional Materials, vol. 34 (37), pp. 1-23, Sep. 2024. [CrossRef]
  • F. P. Moissinac, (2023) “The Influence of MXene Chemistry and Structure on Electrochemical Energy Storage Applications,” The University of Manchester (Doctoral dissertation).
  • M. R. Lukatskaya, (2015). “Capacitive Performance of Two-Dimensional Metal Carbides,” Drexel University (Doctoral dissertation).
  • O. Mashtalir, (2015). “Chemistry of Two-Dimensional Transition Metal Carbides (MXenes),” Drexel University (Doctoral dissertation).
  • T. Bashir, X.Li, S.Yang, Y.Song, S.Zhou, J.Wang, W.Zhu, J.Yang, J.Zhao, L.Gao, “Enhancing role of structurally integrated V2C MXene nanosheets on silicon anode for lithium storage,” Journal of Alloys and Compounds, vol. 922, p. 166213, Nov. 2022. [CrossRef]
  • I. Kero, R. Tegman, and M. L. Antti, “Effect of the amounts of silicon on the in situ synthesis of Ti3SiC2 based composites made from TiC/Si powder mixtures,” Ceramics International, vol. 36 (1), pp. 375-379, 2010. [CrossRef]
  • M. A. Piechowiak et al., “Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method,” Journal of the European Ceramic Society, vol. 34 (5), pp. 1063-1072, 2014. [CrossRef]
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.Niu, M.Heon, L.Hultman, Y.Gogotsi, M.W.Barsoum, “Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2,” Advanced Materials, vol. 23 (37), pp. 4248-4253, Oct. 2011. [CrossRef]
  • W. Jiang, C.H. Henager, T. Varga, H.J.Jung, N.R. Overman, C.Zhang, J. Gou, “Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2,” Journal of Nuclear Materials, vol. 462, pp. 310-320, 2015. [CrossRef]
  • S. Yang, Z. M. Sun, Q. Yang, and H. Hashimoto, “Effect of Al addition on the synthesis of Ti3SiC2 bulk material by pulse discharge sintering process,” Journal of the European Ceramic Society, vol. 27 (16), pp. 4807-4812, 2007. [CrossRef]
  • Y. W. Bao and Y. C. Zhou, “Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics,” Materials Letters, vol. 57 (24-25), pp. 4018-4022, 2003. [CrossRef]
  • M. Rostami, A. Badiei, G. M. Ziarani, and J. Azadmanjiri, “Unlocking the power of nano-heterostructured engineering: Advancements in Ti3C2Tx MXene-based heterojunctions for rechargeable ion batteries,” Journal of Energy Storage, vol. 82, no. July 2023, p. 110583, Mar. 2024. [CrossRef]
  • B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, “2D metal carbides and nitrides (MXenes) for energy storage,” Nature Reviews Materials, vol. 2 82), 2017. [CrossRef]
  • J. Li, N. Kurra, M. Seredych, X. Meng, H. Wang, and Y. Gogotsi, “Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors,” Nano Energy, vol. 56, no. November 2018, pp. 151-159, 2019. [CrossRef]
  • T. Hu, J. Yang, and X. Wang, “Carbon vacancies in Ti2CT2 MXenes: Defects or a new opportunity?,” Physical Chemistry Chemical Physics, vol. 19 (47), pp. 31773-31780, 2017. [CrossRef]
  • Y. Wang, W. Feng, and Y. Chen, “Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine,” Chinese Chemical Letters, vol. 31 (4), pp. 937-946, 2020. [CrossRef]
  • J. Ward, S. Middleburgh, M. Topping, A. Garner, D. Stewart, M.W. Barsoum, M. Preuss, P.Frankel, “Crystallographic evolution of MAX phases in proton irradiating environments,” Journal of Nuclear Materials, vol. 502, pp. 220-227, Apr. 2018. [CrossRef]
  • Y. Il Jung, D. J. Park, J. H. Park, J. Y. Park, H. G. Kim, and Y. H. Koo, “Effect of TiSi2/Ti3SiC2 matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties,” Journal of the European Ceramic Society, vol. 36 (6), pp. 1343-1348, 2016. [CrossRef]
  • M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” Journal of Materials Chemistry C, vol. 5 (10), pp. 2488-2503, 2017. [CrossRef]
  • T. Bashir, S. A. Ismail, J. Wang, W. Zhu, J. Zhao, and L. Gao, “MXene terminating groups O, -F or -OH, -F or O, -OH, -F, or O, -OH, -Cl?,” Journal of Energy Chemistry, vol. 76, pp. 90-104, Jan. 2023. [CrossRef]
  • M. Acerce, (2016). “Electrochemical Charge Storage and Electrochemomechanical Behavior of Chemically Exfoliated & Restacked MoS2 Nanosheets", The State University Of New Jersey, University College-New Brunswick (Doctoral dissertation)”
  • M. N. Abdelmalak, (2014). “MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries,” Drexel University, (Doctoral dissertation).
  • M. Boota, (2017). “Redox-Active Hybrid Materials for Pseudocapacitive Energy Storage,” Drexel University (Doctoral dissertation).
  • M. J. Ghidiu, (2018). “Ions in MXene: Characterization and Control of Interlayer Cations and their Effects on Structure and Properties of 2D Transition Metal Carbides,” Drexel University (Doctoral dissertation).
  • M. G. Colón, (2014). “Max-Phase Slurry Coatings For High Temperature Oxidation Protectıon of Ti Based Alloys,” Universidad Carlos III De Madrid (Doctoral dissertation).
  • N. J. Lane, (2013). “Lattice Dynamical Studies of Select MAX Phases,” Drexel University (Doctoral dissertation).
  • L. Karlsson, (2016). “Transmission Electron Microscopy of 2D Materials: Structure and Surface Properties,” Linköping University, SE-581 83 Linkpöping, Sweden, (Doctoral dissertation).
  • X. Zhang, Y. Liu, S. Dong, J. Yang, and X. Liu, “Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors,” Journal of Alloys and Compounds, vol. 790, pp. 517-523, 2019. [CrossRef]
  • Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L.Dai, L.Wang, “Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors,” Nano Energy, vol. 38, no. June, pp. 368-376, Aug. 2017. [CrossRef]
  • N. R. Hemanth, T. Kim, B. Kim, A. H. Jadhav, K. Lee, and N. K. Chaudhari, “Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications,” Materials Chemistry Frontiers, vol. 5 (8), pp. 3298-3321, 2021. [CrossRef]
  • B. Ahmed, (2017). “Surface Modification of MXenes : A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices,” King Abdullah University of Science and Technology (Doctoral dissertation).
  • D. R. Rajagopalan Kannan, P. K. Terala, P. L. Moss, and M. H. Weatherspoon, “Analysis of the Separator Thickness and Porosity on the Performance of Lithium-Ion Batteries,” International Journal of Electrochemistry, vol. 2018, pp. 1-7, 2018. [CrossRef]
  • J. Meng, F. Zhang, L. Zhang, L. Liu, J. Chen, B. Yang, X. Yan, “Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries,” Journal of Energy Chemistry, vol. 46, pp. 256-263, Jul. 2020. [CrossRef]
  • C. H. Wang, N. Kurra, M. Alhabeb, J. K. Chang, H. N. Alshareef, and Y. Gogotsi, “Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries,” ACS Omega, vol. 3 (10), pp. 12489-12494, 2018. [CrossRef]
  • H. Tang, W.Li, L.Pan, K.Tu, F.Du, T.Qiu, J.Yang, C.P.Cullen, N.McEvoy, and C.(J.) Zhang, “A Robust, Freestanding MXene-Sulfur Conductive Paper for Long-Lifetime Li-S Batteries,” Advanced Functional Materials, vol. 29 (30), pp. 1-10, 2019. [CrossRef]
  • S. Jacques, H. Fakih, and J. C. Viala, “Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: Effect on the ternary carbide texture,” Thin Solid Films, vol. 518 (18), pp. 5071-5077, 2010. [CrossRef]
  • M. S. Cao, Y. Z. Cai, P. He, J. C. Shu, W. Q. Cao, and J. Yuan, “2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding,” Chemical Engineering Journal, vol. 359, no. November 2018, pp. 1265-1302, 2019. [CrossRef]
  • B. Min, (2018). “Broadly defined synthesis and properties of phase change materials,” Iowa State University (Doctoral dissertation).
  • Z. H. Jaffari, S. M. A. Abuabdou, D.-Q. Ng, and M. J. K. Bashir, “Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects,” FlatChem, vol. 28, no. April, p. 100256, Jul. 2021. [CrossRef]
  • M. Ashton, (2017). “Computational Methods for the Discovery and Characterization of Two-Dmensional Materials,” University of Florida (Doctoral dissertation).
  • Y. Liao, J.Qian, G.Xie, Q. Han, W. Dang, Y. Wang, L. Lv, S. Zhao, L. Luo, W. Zhang, H.-Y.Jiang, J. Tang, “2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts,” Applied Catalysis B: Environmental, vol. 273, no. February, p. 119054, 2020. [CrossRef]
  • Y. Wen, R.Li, J.Liu, Z.Wei, S.Li, L.Du, K.Zu, Z.Li, Y.Pan, H.Hu, “A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance,” Journal of Colloid and Interface Science, vol. 604, pp. 239-247, Dec. 2021. [CrossRef]
  • Y.-H. Chen, M.-Y. Qi, Y.-H.Li, Z.-R. Tang, T. Wang, J.Gong, Y.-J. Xu, “Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction,” Cell Reports Physical Science, vol. 2 83), p. 100371, Mar. 2021. [CrossRef]
  • X. Zhao, J. Chen, C. Zhao, Y. Liu, Q. Liang, M.Zhou, Z. Li, Y. Zhou, “Construction ZnIn2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: A combined experimental and first-principles DFT study,” Applied Surface Science, vol. 570, no. August, p. 151183, Dec. 2021. [CrossRef]
  • K. Mondal and P. Ghosh, “Exfoliation of Ti2C and Ti3C2 Mxenes from bulk trigonal phases of titanium carbide: A theoretical prediction,” Solid State Communications, vol. 299, no. March, p. 113657, Sep. 2019. [CrossRef]
  • A. Chae, H. Jang, D. Y. Koh, C. M. Yang, and Y. K. Kim, “Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes,” Talanta, vol. 209, no. November 2019, p. 120531, 2020. [CrossRef]
  • S. Zhang, (2018). “Study of chemical reactivity of MAX phase single crystals,” Université Grenoble Alpes (Doctoral dissertation).
  • H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang, Q. Xu, “MXene-2D layered electrode materials for energy storage,” Progress in Natural Science: Materials International, vol. 28 (2), pp. 133-147, 2018. [CrossRef]
  • Z. Li, L. Wang, D. Sun, Y.Zhang, B.Liu, Q.Hu, A. Zhou, “Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 191, no. C, pp. 33-40, 2015. [CrossRef]
  • X. Lu , H. Xue, H. Gong, M. Bai, D. Tang, R. Ma & T. Sasaki, “2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction,” Nano-Micro Letters, vol. 12 (1), pp. 1-32, 2020. [CrossRef]
  • C. (John) Zhang and V. Nicolosi, “Graphene and MXene-based transparent conductive electrodes and supercapacitors,” Energy Storage Materials, vol. 16, no. May 2018, pp. 102-125, 2019. [CrossRef]
  • C. B. Hatter, J. Shah, B. Anasori, and Y. Gogotsi, “Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites,” Composites Part B: Engineering, vol. 182, no. June 2019, p. 107603, 2020. [CrossRef]
  • A. Rosenkranz, P.G. Grützmacher, R. Espinoza, V.M. Fuenzalida, E.Blanco, N. Escalona, F. J.Gracia, R. 810 Villarroel, L. Guo, R.Kang, F.Mücklich, S.Suarez, Z. Zhang, “Multi-layer Ti3C2Tx-nanoparticles (MXenes) as solid lubricants - Role of surface terminations and intercalated water,” Applied Surface Science, vol. 494, no. July, pp. 13-21, 2019. [CrossRef]
  • J. B. Shah, (2017). “Synthesis of MXene-Epoxy Nanocomposites,” Drexel University (Doctoral dissertation).
  • C. (Evelyn) Ren, (2017). “Interaction of Ions with Two-Dimensional Transition Metal Carbide (MXene) Films,” Drexel University (Doctoral dissertation).
  • M. R. Ekici, E. Tabar, A. Atasoy, E. Bulut, and G. Hoşgör, “Effect of hydrochloric acid and hydrofluoric acid treatment on the morphology, structure and gamma permeability of 2D MXene Ti3C2Tx electrodes,” Canadian Metallurgical Quarterly, pp. 1-22, Sep. 2022. [CrossRef]
  • J. Guo, Y. Zhao, A. Liu, and T. Ma, “Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor,” Electrochimica Acta, vol. 305, pp. 164-174, 2019. [CrossRef]
  • J. a Steinberg, (2013) “Formation of Thin Films from MXene Flakes,” Drexel University (Doctoral dissertation).
  • Y. P. Rangom, (2014). “Double Layer Formation and Cation Pseudo- Intercalation Supercapacitor Carbon Nanotube Composite Electrodes with Enhanced Electrochemical Performances,” University of Waterloo (Doctoral dissertation).
  • W. Liu, X.Li, D.Xiong, Y.Hao, J.Li, H.Kou, B.Yan, D.Li, S.Lu, A.Koo, K.Adair, X.Sun, “Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2,” Nano Energy, vol. 44, no. October 2017, pp. 111-120, 2018. [CrossRef]
  • Y. Dall’Agnese, P. L. Taberna, Y. Gogotsi, and P. Simon, “Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors,” Journal of Physical Chemistry Letters, vol. 6 (2), pp. 2305-2309, 2015. [CrossRef]
  • B. W. Byles, (2018). “Tunnel Manganese Oxides for Energy and Water Treatment Applications,” Drexel University (Doctoral dissertation).
  • Y. Dall’Agnese, (2016). “Study of Early Transition Metal Carbides for Energy Storage Applications,” Drexel University (Doctoral dissertation).
  • H. Avireddy, B.W. Byles, D.Pinto, J.M.D.Galindo, J.J.Biendicho, X.Wang, C.Flox, O.Crosnier, T.Brousse, 838 E.Pomerantseva, J.R.Morante, Y.Gogotsi, “Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge,” Nano Energy, vol. 64, no. July, p. 103961, 2019. [CrossRef]
  • P. Wang, X.Lu, Y.Boyjoo, X.Wei, Y.Zhang, D.Guo, S.Sun, J.Liu, “Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries,” Journal of Power Sources, vol. 451, no. October 2019, p. 227756, Mar. 2020. [CrossRef]
  • K. L. Van Aken, (2017). “Relationship between Carbon Electrode Materials and Electrolytes in Capacitive Energy Storage,” Drexel University (Doctoral dissertation).
  • D. Gan, Q. Huang, J. Dou, H. Huang, J. Chen, M. Liu, Y. Wen, Z. Yang, X. Zhang, Y. Wei, “Bioinspired functionalization of MXenes (Ti3C2Tx) with amino acids for efficient removal of heavy metal ions,” Applied Surface Science, vol. 504, no. October, p. 144603, Feb. 2020. [CrossRef]
  • W. Huang, Z. Ma, L. Zhong, K. Luo, W. Li, S. Zhong, D. Yan, “Efficient Self‐Assembly Preparation of 3D Carbon‐Supported Ti3C2Tx Hollow Spheres for High‐Performance Potassium Ion Batteries,” Small, vol. 20 (6), pp. 1-13, Feb. 2024. [CrossRef]
  • F. Wang, J. Gao, D. Yang, H. Li, J. Zhang, J. Liu, Y. Liu, F. Ren, “In-situ derived Ti3C2Tx MXene/TiO2 modified Cu foil combining abundant nucleation sites and favorable conductivity for stable lithium metal batteries,” Journal of Alloys and Compounds, vol. 1006, no. September, p. 176281, Nov. 2024. [CrossRef]
  • H. Aghamohammadi, A. Heidarpour, and R. Jamshidi, “The phase and morphological evolution of Ti3SiC2 MAX phase powder after HF treatment,” Ceramics International, vol. 44 (15), pp. 17992-18000, 2018. [CrossRef]
  • L. Zhang, W.Su, H.Shu, T.Lü, L.Fu, K.Song, X.Huang, J.Yu, C.-T. Lin, Y.Tang, “Tuning the photoluminescence of large Ti3C2Tx MXene flakes,” Ceramics International, vol. 45 (9), pp. 11468-11474, 2019. [CrossRef]
  • Y. Zhu, A.Zhou, Y.Ji, J.Jia, L.Wang, B.Wu, Q.Zan, “Tribological properties of Ti3SiC2 coupled with different counterfaces,” Ceramics International, vol. 41 (5), pp. 6950-6955, 2015. [CrossRef]
  • A. M. Jastrzębska, A. Szuplewska, T. Wojciechowski, M. Chudy, W. Ziemkowska, L. Chlubny, A. Rozmysłowska, A. Olszyna, “In vitro studies on cytotoxicity of delaminated Ti3C2 MXene,” Journal of Hazardous Materials, vol. 339, pp. 1-8, 2017. [CrossRef]
  • B. Xu, Q. Chen, X. Li, C. Meng, H. Hang, M. Xu, J. Li, Z. Wang, C. Deng, “Synthesis of single-phase Ti3SiC2 from coarse elemental powders and the effects of excess Al,” Ceramics International, vol. 45 (1), pp. 948-953, 2019. [CrossRef]
  • M. Naguib, J.Halim, J.Lu, K.M.Cook, L.Hultman, Y.Gogotsi, M.W.Barsoum, “New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries,” Journal of the American Chemical Society, vol. 135 (43), pp. 15966-15969, Oct. 2013. [CrossRef]
  • H. Zhang, R. Su, L. Shi, D. J. O’Connor, B. V. King, and E. H. Kisi, “The damage evolution of He irradiation on Ti3SiC2 as a function of annealing temperature,” Journal of the European Ceramic Society, vol. 38 (4), pp. 1253-1264, 2018. [CrossRef]
  • D. Wen, G. Ying, L. Liu, Y. Li, C. Sun, C. Hu, Y. Zhao, Z. Ji, J. Zhang, X. Wang, “Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes,” Journal of Alloys and Compounds, vol. 900, p. 163436, Apr. 2022. [CrossRef]
  • X. Wang, Q. Li, J. Zhang, H. Huang, S. Wu, and Y. Yang, “Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination,” Journal of Membrane Science, vol. 603, no. February, p. 118036, May 2020. [CrossRef]
  • V. Vladimir, J. Lu, P. Eklund, L. Hultman, and C. John, “Ti3SiC2 formation during Ti-C-Si multilayer deposition by magnetron sputtering at 650 °C,” Vacuum, vol. 93, pp. 56-59, 2013.
  • A. A. A. Jafry, G. Krishnan, N. Kasim, N.F. Zulkipli, F.S.M. Samsamnun, R. Apsari, S.W. Harun, “MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser,” Optical Fiber Technology, vol. 58, no. May, p. 102289, Sep. 2020. [CrossRef]
  • Y. Zhao and J. Zhao, “Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: A computational study,” Applied Surface Science, vol. 412, pp. 591-598, Aug. 2017. [CrossRef]
  • Q. Jiang, C. Wu, Z. Wang, A.C. Wang, J.-H. He, Z.L. Wang, H.N. Alshareef, “MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit,” Nano Energy, vol. 45, no. November 2017, pp. 266-272, Mar. 2018. [CrossRef]
  • Z. Liu and X. Zhou, Graphene. CRC Press, 2014.
  • G. R. Dahlin and K. E. Strøm, Lithium Batteries: Research, Technology and Applications. 2010.
  • J. Tang, X. Peng, T. Lin, X. Huang, B. Luo, and L. Wang, “Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage,” eScience, vol. 1 (2), pp. 203-211, Dec. 2021. [CrossRef]
  • Z. Li, Z. Long, H. Dai, Z. Yan, K. Liu, H. Qiao, K. Wang, W. Li, “Ti3C2Tx MXene@metal-organic frameworks-derived bead-like carbon nanofibers heterostructure aerogel for enhanced performance lithium/sodium storage,” Journal of Power Sources, vol. 606, no. April, p. 234586, Jun. 2024. [CrossRef]

Production of Ti3C2Tx with freeze dryer, investigation of characteristics and effect on lithium-ion battery capacity

Year 2025, Volume: 8 Issue: 3, 535 - 554, 30.09.2025
https://doi.org/10.35208/ert.1496026

Abstract

A today, requests, rules, and sanctions for decreasing the use of hydrocarbon energy resources have become the common goal of all countries. Awareness of this issue is increasing daily. Studies on alternative energy sources, especially renewable energy, have come to the fore, and storing energy has been a major focus. For this purpose, new-generation material requirements have arisen. The new generation of nano and 2D materials (quantum, antimatter, graphene) developed in materials science, especially in computers, photovoltaics, and energy/batteries, have made some imaginary products feasible and applicable that once used to considered impossible. In the Ti-Si-C material system, which has drawn the most attention in the MAX phase material family, 312 structures were selected. The raw powder samples were then characterized. The A layer removal in the MAX structure and the formation of MXene and Ti3C2Tx in the new structure were synthesized by chemical exfoliation in different environments and conditions. It affects the surface finishes (-O, -OH, and -F) and the conductivity properties of MXenes. The MXene sample obtained after etching with hydrofluoric acid was intercalated with dimethyl sulfoxide (DMSO). Following this process, it was observed that sonication changed the powder morphology. In particular, drying with a freeze dryer for the first time yielded better results. The best results were obtained from samples produced with DMSO and freeze-dried after 48 h. MXene powder was used as the active ingredient in the electrode fabrication. CR2032 standard battery was fabricated using the obtained electrodes. The MXene obtained by the freeze-drying method positively affected battery performance. The sample (d-HF-591 HF-DMSO-48) prepared using DMSO and obtained by drying the freeze dryer reached 135 mAh/g capacity.

References

  • Q. Pang, (2017). “Advanced Electrodes and Electrolytes For Long-Lived and High-Energy-Density Lithium-Sulfur Batteries,” University of Waterloo (Doctoral dissertation).
  • A. H. Zimmerman, "Nickel-Hydrogen Batteries Principles and Practice", California: The Aeorspace Press, 2009.
  • K. Roshanaei, E. Taşkesen, and M. Özkaymak, “Recent advances in lithium-ion battery utilization: A mini review,” Sigma Journal of Engineering and Natural Sciences - Sigma Mühendislik ve Fen Bilimleri Dergisi, vol. 41 (6), pp. 1272-1286, 2023. [CrossRef]
  • P. Collini, (2017). “Deposizione Elettroforetica Di Film Di Mxene Per Applicazioni Funzionali,” Universita Degli Studi Di Padova (Doctoral dissertation).
  • T. B. Reddy, "Linden’S Handbook of Batteries", Fourth Edition, McGraw-Hill Education: New York, 2011.
  • C. (John) Zhang, L. Cui, S. Abdolhosseinzadeh, and J. Heier, “Two‐dimensional MXenes for lithium‐sulfur batteries,” InfoMat, vol. 2 (4), pp. 613-638, 2020. [CrossRef].
  • M. Wild and GregoryJ.Offe, "Lithium-Sulfur Batteries", Abingdon, UK GregoryJ.Offer: John Wiley & Sons Ltd, 2019.
  • L. Shi, (2017). “From MAX phases to MXenes : synthesis, characterization and electronic properties,” Universite Catholique de Louvain (Doctoral dissertation).
  • G. Jo, (2017). “Proton Hopping in a Single Layer Water Between MXene Layers Using ReaxFF MD Simulation,” Pennsylvania State University (Doctoral dissertation).
  • J. Halim, (2014). “Synthesis and Characterization of 2D Nanocrystals and Thin Films of Transition Metal Carbides (MXenes),” Linköping University (Doctoral dissertation).
  • D. Magné, (2016). “Synthèse et structure électronique de phases MAX et MXènes,” Universite de Poitiers (Doctoral dissertation).
  • X. Su, J. Zhang, H.Mu, J.Zhao, Z.Wang, Z.Zhao, C.Han, Z.Ye, “Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene,” Journal of Alloys and Compounds, vol. 752, pp. 32-39, 2018. [CrossRef]
  • H. Zhu, (2018). “Functional metal carbide nano structures with unique thermal and electrical chemical properties,” Iova State University (Doctoral dissertation).
  • I. R. Shein and A. L. Ivanovskii, “Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability,” Computational Materials Science, vol. 65, pp. 104-114, 2012. [CrossRef]
  • L. Agartan, K. Hantanasirisakul, S. Buczek, B. Akuzum, K.A. Mahmoud, B. Anasori, Y. Gogotsi, E.C. Kumbur, “Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system,” Desalination, vol. 477, 2020. [CrossRef]
  • G. Lv, J. Wang, Z. Shi, and L. Fan, “Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries,” Materials Letters, vol. 219, pp. 45-50, 2018. [CrossRef]
  • O. Salim, K. A. Mahmoud, K. K. Pant, and R. K. Joshi, “Introduction to MXenes: synthesis and characteristics,” Materials Today Chemistry, vol. 14, p. 100191, 2019. [CrossRef]
  • P. Eklund, J. Rosen, and P. O. Å. Persson, “Layered ternary Mn+1AXn phases and their 2D derivative MXene: An overview from a thin-film perspective,” Journal of Physics D: Applied Physics, vol. 50 (11), 2017. [CrossRef]
  • S. Venkateshalu and A. N. Grace, “MXenes-A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond,” Applied Materials Today, vol. 18, p. 100509, 2020. [CrossRef]
  • M. Alhabeb, K. Maleski, T. S. Mathis, A. Sarycheva, C. B. Hatter, S. Uzun, A. Levitt, Y. Gogotsi, “Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene),” Angewandte Chemie - International Edition, vol. 57 (19), pp. 5444-5448, 2018. [CrossRef]
  • G. Cui, X. Zheng, X. Lv, Q. Jia, W. Xie, and G. Gu, “Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature,” Ceramics International, vol. 45 (17), pp. 23600-23610, 2019. [CrossRef]
  • Y. Gogotsi and B. Anasori, “The Rise of MXenes,” ACS Nano, vol. 13 (8), pp. 8491-8494, Aug. 2019. [CrossRef]
  • S. Zhao, R. Nivetha, Y. Qiu, and X. Guo, “Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2Tx) as advanced energy storage and conversion applications,” Chinese Chemical Letters, vol. 31 (4), pp. 947-952, 2020. [CrossRef]
  • K. Rasool, R. P. Pandey, P. A. Rasheed, S. Buczek, Y. Gogotsi, and K. A. Mahmoud, “Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes),” Materials Today, vol. 30, no. November, pp. 80-102, 2019. [CrossRef]
  • J. Halim, K.M. Cook, M.Naguib, P.Eklund, Y.Gogotsi, J.Rosen, M.W. Barsoum, “X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes),” Applied Surface Science, vol. 362, pp. 406-417, Jan. 2016. [CrossRef]
  • S. Venkateshalu, M. Shariq, N. K. Chaudhari, K. Lee, and A. N. Grace, “2D non-carbide MXenes: an emerging material class for energy storage and conversion,” Journal of Materials Chemistry A, vol. 10 (38), pp. 20174-20189, 2022. [CrossRef]
  • N. K. Chaudhari, H. Jin, B. Kim, D. San Baek, S. H. Joo, and K. Lee, “MXene: an emerging two-dimensional material for future energy conversion and storage applications,” Journal of Materials Chemistry A, vol. 5 (47), pp. 24564-24579, 2017. [CrossRef]
  • S. Venkateshalu, M.Shariq, B.Kim, M.Patel, K.S.Mahabari, S.Choi, N.K. Chaudhari, A.N. Grace, L.Kwangyeoli, “Recent advances in MXenes: beyond Ti-only systems,” Journal of Materials Chemistry A, vol. 11 (25), pp. 13107-13132, 2023. [CrossRef]
  • M. Higashi, S. Momono, K. Kishida, N. L. Okamoto, and H. Inui, “Anisotropic plastic deformation of single crystals of the MAX phase compound Ti3SiC2 investigated by micropillar compression,” Acta Materialia, vol. 161, pp. 161-170, 2018. [CrossRef]
  • M. Zhu, R. Wang, C. Chen, H. B. Zhang, and G. J. Zhang, “Comparison of corrosion behavior of Ti3SiC2 and Ti3AlC2 in NaCl solutions with Ti,” Ceramics International, vol. 43 (7), pp. 5708-5714, 2017. [CrossRef]
  • Z. M. Sun, Y. Zou, S. Tada, and H. Hashimoto, “Effect of Al addition on pressureless reactive sintering of Ti3SiC2,” Scripta Materialia, vol. 55 (11), pp. 1011-1014, 2006. [CrossRef]
  • J. Zhang, L. Wang, W. Jiang, and L. Chen, “Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering,” Materials Science and Engineering A, vol. 487 (1-2), pp. 137-143, 2008. [CrossRef]
  • P. Zhang, X. Wang, Y. Zhang, Y. Wei, N. Shen, S. Chen, B. Xu, “Burgeoning Silicon/MXene Nanocomposites for Lithium Ion Batteries: A Review,” Advanced Functional Materials, vol. 34 (37), pp. 1-23, Sep. 2024. [CrossRef]
  • F. P. Moissinac, (2023) “The Influence of MXene Chemistry and Structure on Electrochemical Energy Storage Applications,” The University of Manchester (Doctoral dissertation).
  • M. R. Lukatskaya, (2015). “Capacitive Performance of Two-Dimensional Metal Carbides,” Drexel University (Doctoral dissertation).
  • O. Mashtalir, (2015). “Chemistry of Two-Dimensional Transition Metal Carbides (MXenes),” Drexel University (Doctoral dissertation).
  • T. Bashir, X.Li, S.Yang, Y.Song, S.Zhou, J.Wang, W.Zhu, J.Yang, J.Zhao, L.Gao, “Enhancing role of structurally integrated V2C MXene nanosheets on silicon anode for lithium storage,” Journal of Alloys and Compounds, vol. 922, p. 166213, Nov. 2022. [CrossRef]
  • I. Kero, R. Tegman, and M. L. Antti, “Effect of the amounts of silicon on the in situ synthesis of Ti3SiC2 based composites made from TiC/Si powder mixtures,” Ceramics International, vol. 36 (1), pp. 375-379, 2010. [CrossRef]
  • M. A. Piechowiak et al., “Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method,” Journal of the European Ceramic Society, vol. 34 (5), pp. 1063-1072, 2014. [CrossRef]
  • M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.Niu, M.Heon, L.Hultman, Y.Gogotsi, M.W.Barsoum, “Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2,” Advanced Materials, vol. 23 (37), pp. 4248-4253, Oct. 2011. [CrossRef]
  • W. Jiang, C.H. Henager, T. Varga, H.J.Jung, N.R. Overman, C.Zhang, J. Gou, “Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2,” Journal of Nuclear Materials, vol. 462, pp. 310-320, 2015. [CrossRef]
  • S. Yang, Z. M. Sun, Q. Yang, and H. Hashimoto, “Effect of Al addition on the synthesis of Ti3SiC2 bulk material by pulse discharge sintering process,” Journal of the European Ceramic Society, vol. 27 (16), pp. 4807-4812, 2007. [CrossRef]
  • Y. W. Bao and Y. C. Zhou, “Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics,” Materials Letters, vol. 57 (24-25), pp. 4018-4022, 2003. [CrossRef]
  • M. Rostami, A. Badiei, G. M. Ziarani, and J. Azadmanjiri, “Unlocking the power of nano-heterostructured engineering: Advancements in Ti3C2Tx MXene-based heterojunctions for rechargeable ion batteries,” Journal of Energy Storage, vol. 82, no. July 2023, p. 110583, Mar. 2024. [CrossRef]
  • B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, “2D metal carbides and nitrides (MXenes) for energy storage,” Nature Reviews Materials, vol. 2 82), 2017. [CrossRef]
  • J. Li, N. Kurra, M. Seredych, X. Meng, H. Wang, and Y. Gogotsi, “Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors,” Nano Energy, vol. 56, no. November 2018, pp. 151-159, 2019. [CrossRef]
  • T. Hu, J. Yang, and X. Wang, “Carbon vacancies in Ti2CT2 MXenes: Defects or a new opportunity?,” Physical Chemistry Chemical Physics, vol. 19 (47), pp. 31773-31780, 2017. [CrossRef]
  • Y. Wang, W. Feng, and Y. Chen, “Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine,” Chinese Chemical Letters, vol. 31 (4), pp. 937-946, 2020. [CrossRef]
  • J. Ward, S. Middleburgh, M. Topping, A. Garner, D. Stewart, M.W. Barsoum, M. Preuss, P.Frankel, “Crystallographic evolution of MAX phases in proton irradiating environments,” Journal of Nuclear Materials, vol. 502, pp. 220-227, Apr. 2018. [CrossRef]
  • Y. Il Jung, D. J. Park, J. H. Park, J. Y. Park, H. G. Kim, and Y. H. Koo, “Effect of TiSi2/Ti3SiC2 matrix phases in a reaction-bonded SiC on mechanical and high-temperature oxidation properties,” Journal of the European Ceramic Society, vol. 36 (6), pp. 1343-1348, 2016. [CrossRef]
  • M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, “Electronic properties and applications of MXenes: a theoretical review,” Journal of Materials Chemistry C, vol. 5 (10), pp. 2488-2503, 2017. [CrossRef]
  • T. Bashir, S. A. Ismail, J. Wang, W. Zhu, J. Zhao, and L. Gao, “MXene terminating groups O, -F or -OH, -F or O, -OH, -F, or O, -OH, -Cl?,” Journal of Energy Chemistry, vol. 76, pp. 90-104, Jan. 2023. [CrossRef]
  • M. Acerce, (2016). “Electrochemical Charge Storage and Electrochemomechanical Behavior of Chemically Exfoliated & Restacked MoS2 Nanosheets", The State University Of New Jersey, University College-New Brunswick (Doctoral dissertation)”
  • M. N. Abdelmalak, (2014). “MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries,” Drexel University, (Doctoral dissertation).
  • M. Boota, (2017). “Redox-Active Hybrid Materials for Pseudocapacitive Energy Storage,” Drexel University (Doctoral dissertation).
  • M. J. Ghidiu, (2018). “Ions in MXene: Characterization and Control of Interlayer Cations and their Effects on Structure and Properties of 2D Transition Metal Carbides,” Drexel University (Doctoral dissertation).
  • M. G. Colón, (2014). “Max-Phase Slurry Coatings For High Temperature Oxidation Protectıon of Ti Based Alloys,” Universidad Carlos III De Madrid (Doctoral dissertation).
  • N. J. Lane, (2013). “Lattice Dynamical Studies of Select MAX Phases,” Drexel University (Doctoral dissertation).
  • L. Karlsson, (2016). “Transmission Electron Microscopy of 2D Materials: Structure and Surface Properties,” Linköping University, SE-581 83 Linkpöping, Sweden, (Doctoral dissertation).
  • X. Zhang, Y. Liu, S. Dong, J. Yang, and X. Liu, “Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors,” Journal of Alloys and Compounds, vol. 790, pp. 517-523, 2019. [CrossRef]
  • Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L.Dai, L.Wang, “Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors,” Nano Energy, vol. 38, no. June, pp. 368-376, Aug. 2017. [CrossRef]
  • N. R. Hemanth, T. Kim, B. Kim, A. H. Jadhav, K. Lee, and N. K. Chaudhari, “Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications,” Materials Chemistry Frontiers, vol. 5 (8), pp. 3298-3321, 2021. [CrossRef]
  • B. Ahmed, (2017). “Surface Modification of MXenes : A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices,” King Abdullah University of Science and Technology (Doctoral dissertation).
  • D. R. Rajagopalan Kannan, P. K. Terala, P. L. Moss, and M. H. Weatherspoon, “Analysis of the Separator Thickness and Porosity on the Performance of Lithium-Ion Batteries,” International Journal of Electrochemistry, vol. 2018, pp. 1-7, 2018. [CrossRef]
  • J. Meng, F. Zhang, L. Zhang, L. Liu, J. Chen, B. Yang, X. Yan, “Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries,” Journal of Energy Chemistry, vol. 46, pp. 256-263, Jul. 2020. [CrossRef]
  • C. H. Wang, N. Kurra, M. Alhabeb, J. K. Chang, H. N. Alshareef, and Y. Gogotsi, “Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries,” ACS Omega, vol. 3 (10), pp. 12489-12494, 2018. [CrossRef]
  • H. Tang, W.Li, L.Pan, K.Tu, F.Du, T.Qiu, J.Yang, C.P.Cullen, N.McEvoy, and C.(J.) Zhang, “A Robust, Freestanding MXene-Sulfur Conductive Paper for Long-Lifetime Li-S Batteries,” Advanced Functional Materials, vol. 29 (30), pp. 1-10, 2019. [CrossRef]
  • S. Jacques, H. Fakih, and J. C. Viala, “Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: Effect on the ternary carbide texture,” Thin Solid Films, vol. 518 (18), pp. 5071-5077, 2010. [CrossRef]
  • M. S. Cao, Y. Z. Cai, P. He, J. C. Shu, W. Q. Cao, and J. Yuan, “2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding,” Chemical Engineering Journal, vol. 359, no. November 2018, pp. 1265-1302, 2019. [CrossRef]
  • B. Min, (2018). “Broadly defined synthesis and properties of phase change materials,” Iowa State University (Doctoral dissertation).
  • Z. H. Jaffari, S. M. A. Abuabdou, D.-Q. Ng, and M. J. K. Bashir, “Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects,” FlatChem, vol. 28, no. April, p. 100256, Jul. 2021. [CrossRef]
  • M. Ashton, (2017). “Computational Methods for the Discovery and Characterization of Two-Dmensional Materials,” University of Florida (Doctoral dissertation).
  • Y. Liao, J.Qian, G.Xie, Q. Han, W. Dang, Y. Wang, L. Lv, S. Zhao, L. Luo, W. Zhang, H.-Y.Jiang, J. Tang, “2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts,” Applied Catalysis B: Environmental, vol. 273, no. February, p. 119054, 2020. [CrossRef]
  • Y. Wen, R.Li, J.Liu, Z.Wei, S.Li, L.Du, K.Zu, Z.Li, Y.Pan, H.Hu, “A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance,” Journal of Colloid and Interface Science, vol. 604, pp. 239-247, Dec. 2021. [CrossRef]
  • Y.-H. Chen, M.-Y. Qi, Y.-H.Li, Z.-R. Tang, T. Wang, J.Gong, Y.-J. Xu, “Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction,” Cell Reports Physical Science, vol. 2 83), p. 100371, Mar. 2021. [CrossRef]
  • X. Zhao, J. Chen, C. Zhao, Y. Liu, Q. Liang, M.Zhou, Z. Li, Y. Zhou, “Construction ZnIn2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: A combined experimental and first-principles DFT study,” Applied Surface Science, vol. 570, no. August, p. 151183, Dec. 2021. [CrossRef]
  • K. Mondal and P. Ghosh, “Exfoliation of Ti2C and Ti3C2 Mxenes from bulk trigonal phases of titanium carbide: A theoretical prediction,” Solid State Communications, vol. 299, no. March, p. 113657, Sep. 2019. [CrossRef]
  • A. Chae, H. Jang, D. Y. Koh, C. M. Yang, and Y. K. Kim, “Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes,” Talanta, vol. 209, no. November 2019, p. 120531, 2020. [CrossRef]
  • S. Zhang, (2018). “Study of chemical reactivity of MAX phase single crystals,” Université Grenoble Alpes (Doctoral dissertation).
  • H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang, Q. Xu, “MXene-2D layered electrode materials for energy storage,” Progress in Natural Science: Materials International, vol. 28 (2), pp. 133-147, 2018. [CrossRef]
  • Z. Li, L. Wang, D. Sun, Y.Zhang, B.Liu, Q.Hu, A. Zhou, “Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 191, no. C, pp. 33-40, 2015. [CrossRef]
  • X. Lu , H. Xue, H. Gong, M. Bai, D. Tang, R. Ma & T. Sasaki, “2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward Efficient Oxygen Evolution Reaction,” Nano-Micro Letters, vol. 12 (1), pp. 1-32, 2020. [CrossRef]
  • C. (John) Zhang and V. Nicolosi, “Graphene and MXene-based transparent conductive electrodes and supercapacitors,” Energy Storage Materials, vol. 16, no. May 2018, pp. 102-125, 2019. [CrossRef]
  • C. B. Hatter, J. Shah, B. Anasori, and Y. Gogotsi, “Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites,” Composites Part B: Engineering, vol. 182, no. June 2019, p. 107603, 2020. [CrossRef]
  • A. Rosenkranz, P.G. Grützmacher, R. Espinoza, V.M. Fuenzalida, E.Blanco, N. Escalona, F. J.Gracia, R. 810 Villarroel, L. Guo, R.Kang, F.Mücklich, S.Suarez, Z. Zhang, “Multi-layer Ti3C2Tx-nanoparticles (MXenes) as solid lubricants - Role of surface terminations and intercalated water,” Applied Surface Science, vol. 494, no. July, pp. 13-21, 2019. [CrossRef]
  • J. B. Shah, (2017). “Synthesis of MXene-Epoxy Nanocomposites,” Drexel University (Doctoral dissertation).
  • C. (Evelyn) Ren, (2017). “Interaction of Ions with Two-Dimensional Transition Metal Carbide (MXene) Films,” Drexel University (Doctoral dissertation).
  • M. R. Ekici, E. Tabar, A. Atasoy, E. Bulut, and G. Hoşgör, “Effect of hydrochloric acid and hydrofluoric acid treatment on the morphology, structure and gamma permeability of 2D MXene Ti3C2Tx electrodes,” Canadian Metallurgical Quarterly, pp. 1-22, Sep. 2022. [CrossRef]
  • J. Guo, Y. Zhao, A. Liu, and T. Ma, “Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor,” Electrochimica Acta, vol. 305, pp. 164-174, 2019. [CrossRef]
  • J. a Steinberg, (2013) “Formation of Thin Films from MXene Flakes,” Drexel University (Doctoral dissertation).
  • Y. P. Rangom, (2014). “Double Layer Formation and Cation Pseudo- Intercalation Supercapacitor Carbon Nanotube Composite Electrodes with Enhanced Electrochemical Performances,” University of Waterloo (Doctoral dissertation).
  • W. Liu, X.Li, D.Xiong, Y.Hao, J.Li, H.Kou, B.Yan, D.Li, S.Lu, A.Koo, K.Adair, X.Sun, “Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2,” Nano Energy, vol. 44, no. October 2017, pp. 111-120, 2018. [CrossRef]
  • Y. Dall’Agnese, P. L. Taberna, Y. Gogotsi, and P. Simon, “Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors,” Journal of Physical Chemistry Letters, vol. 6 (2), pp. 2305-2309, 2015. [CrossRef]
  • B. W. Byles, (2018). “Tunnel Manganese Oxides for Energy and Water Treatment Applications,” Drexel University (Doctoral dissertation).
  • Y. Dall’Agnese, (2016). “Study of Early Transition Metal Carbides for Energy Storage Applications,” Drexel University (Doctoral dissertation).
  • H. Avireddy, B.W. Byles, D.Pinto, J.M.D.Galindo, J.J.Biendicho, X.Wang, C.Flox, O.Crosnier, T.Brousse, 838 E.Pomerantseva, J.R.Morante, Y.Gogotsi, “Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge,” Nano Energy, vol. 64, no. July, p. 103961, 2019. [CrossRef]
  • P. Wang, X.Lu, Y.Boyjoo, X.Wei, Y.Zhang, D.Guo, S.Sun, J.Liu, “Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries,” Journal of Power Sources, vol. 451, no. October 2019, p. 227756, Mar. 2020. [CrossRef]
  • K. L. Van Aken, (2017). “Relationship between Carbon Electrode Materials and Electrolytes in Capacitive Energy Storage,” Drexel University (Doctoral dissertation).
  • D. Gan, Q. Huang, J. Dou, H. Huang, J. Chen, M. Liu, Y. Wen, Z. Yang, X. Zhang, Y. Wei, “Bioinspired functionalization of MXenes (Ti3C2Tx) with amino acids for efficient removal of heavy metal ions,” Applied Surface Science, vol. 504, no. October, p. 144603, Feb. 2020. [CrossRef]
  • W. Huang, Z. Ma, L. Zhong, K. Luo, W. Li, S. Zhong, D. Yan, “Efficient Self‐Assembly Preparation of 3D Carbon‐Supported Ti3C2Tx Hollow Spheres for High‐Performance Potassium Ion Batteries,” Small, vol. 20 (6), pp. 1-13, Feb. 2024. [CrossRef]
  • F. Wang, J. Gao, D. Yang, H. Li, J. Zhang, J. Liu, Y. Liu, F. Ren, “In-situ derived Ti3C2Tx MXene/TiO2 modified Cu foil combining abundant nucleation sites and favorable conductivity for stable lithium metal batteries,” Journal of Alloys and Compounds, vol. 1006, no. September, p. 176281, Nov. 2024. [CrossRef]
  • H. Aghamohammadi, A. Heidarpour, and R. Jamshidi, “The phase and morphological evolution of Ti3SiC2 MAX phase powder after HF treatment,” Ceramics International, vol. 44 (15), pp. 17992-18000, 2018. [CrossRef]
  • L. Zhang, W.Su, H.Shu, T.Lü, L.Fu, K.Song, X.Huang, J.Yu, C.-T. Lin, Y.Tang, “Tuning the photoluminescence of large Ti3C2Tx MXene flakes,” Ceramics International, vol. 45 (9), pp. 11468-11474, 2019. [CrossRef]
  • Y. Zhu, A.Zhou, Y.Ji, J.Jia, L.Wang, B.Wu, Q.Zan, “Tribological properties of Ti3SiC2 coupled with different counterfaces,” Ceramics International, vol. 41 (5), pp. 6950-6955, 2015. [CrossRef]
  • A. M. Jastrzębska, A. Szuplewska, T. Wojciechowski, M. Chudy, W. Ziemkowska, L. Chlubny, A. Rozmysłowska, A. Olszyna, “In vitro studies on cytotoxicity of delaminated Ti3C2 MXene,” Journal of Hazardous Materials, vol. 339, pp. 1-8, 2017. [CrossRef]
  • B. Xu, Q. Chen, X. Li, C. Meng, H. Hang, M. Xu, J. Li, Z. Wang, C. Deng, “Synthesis of single-phase Ti3SiC2 from coarse elemental powders and the effects of excess Al,” Ceramics International, vol. 45 (1), pp. 948-953, 2019. [CrossRef]
  • M. Naguib, J.Halim, J.Lu, K.M.Cook, L.Hultman, Y.Gogotsi, M.W.Barsoum, “New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries,” Journal of the American Chemical Society, vol. 135 (43), pp. 15966-15969, Oct. 2013. [CrossRef]
  • H. Zhang, R. Su, L. Shi, D. J. O’Connor, B. V. King, and E. H. Kisi, “The damage evolution of He irradiation on Ti3SiC2 as a function of annealing temperature,” Journal of the European Ceramic Society, vol. 38 (4), pp. 1253-1264, 2018. [CrossRef]
  • D. Wen, G. Ying, L. Liu, Y. Li, C. Sun, C. Hu, Y. Zhao, Z. Ji, J. Zhang, X. Wang, “Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes,” Journal of Alloys and Compounds, vol. 900, p. 163436, Apr. 2022. [CrossRef]
  • X. Wang, Q. Li, J. Zhang, H. Huang, S. Wu, and Y. Yang, “Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination,” Journal of Membrane Science, vol. 603, no. February, p. 118036, May 2020. [CrossRef]
  • V. Vladimir, J. Lu, P. Eklund, L. Hultman, and C. John, “Ti3SiC2 formation during Ti-C-Si multilayer deposition by magnetron sputtering at 650 °C,” Vacuum, vol. 93, pp. 56-59, 2013.
  • A. A. A. Jafry, G. Krishnan, N. Kasim, N.F. Zulkipli, F.S.M. Samsamnun, R. Apsari, S.W. Harun, “MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser,” Optical Fiber Technology, vol. 58, no. May, p. 102289, Sep. 2020. [CrossRef]
  • Y. Zhao and J. Zhao, “Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: A computational study,” Applied Surface Science, vol. 412, pp. 591-598, Aug. 2017. [CrossRef]
  • Q. Jiang, C. Wu, Z. Wang, A.C. Wang, J.-H. He, Z.L. Wang, H.N. Alshareef, “MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit,” Nano Energy, vol. 45, no. November 2017, pp. 266-272, Mar. 2018. [CrossRef]
  • Z. Liu and X. Zhou, Graphene. CRC Press, 2014.
  • G. R. Dahlin and K. E. Strøm, Lithium Batteries: Research, Technology and Applications. 2010.
  • J. Tang, X. Peng, T. Lin, X. Huang, B. Luo, and L. Wang, “Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage,” eScience, vol. 1 (2), pp. 203-211, Dec. 2021. [CrossRef]
  • Z. Li, Z. Long, H. Dai, Z. Yan, K. Liu, H. Qiao, K. Wang, W. Li, “Ti3C2Tx MXene@metal-organic frameworks-derived bead-like carbon nanofibers heterostructure aerogel for enhanced performance lithium/sodium storage,” Journal of Power Sources, vol. 606, no. April, p. 234586, Jun. 2024. [CrossRef]
There are 118 citations in total.

Details

Primary Language English
Subjects Electrochemical Energy Storage and Conversion, Materials Science and Technologies
Journal Section Research Articles
Authors

Mesut Ramazan Ekici 0000-0002-3024-2567

Emrah Bulut 0000-0002-7623-8088

Ahmet Atasoy 0000-0003-1564-8793

Publication Date September 30, 2025
Submission Date June 5, 2024
Acceptance Date October 22, 2024
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Ekici, M. R., Bulut, E., & Atasoy, A. (2025). Production of Ti3C2Tx with freeze dryer, investigation of characteristics and effect on lithium-ion battery capacity. Environmental Research and Technology, 8(3), 535-554. https://doi.org/10.35208/ert.1496026
AMA Ekici MR, Bulut E, Atasoy A. Production of Ti3C2Tx with freeze dryer, investigation of characteristics and effect on lithium-ion battery capacity. ERT. September 2025;8(3):535-554. doi:10.35208/ert.1496026
Chicago Ekici, Mesut Ramazan, Emrah Bulut, and Ahmet Atasoy. “Production of Ti3C2Tx With Freeze Dryer, Investigation of Characteristics and Effect on Lithium-Ion Battery Capacity”. Environmental Research and Technology 8, no. 3 (September 2025): 535-54. https://doi.org/10.35208/ert.1496026.
EndNote Ekici MR, Bulut E, Atasoy A (September 1, 2025) Production of Ti3C2Tx with freeze dryer, investigation of characteristics and effect on lithium-ion battery capacity. Environmental Research and Technology 8 3 535–554.
IEEE M. R. Ekici, E. Bulut, and A. Atasoy, “Production of Ti3C2Tx with freeze dryer, investigation of characteristics and effect on lithium-ion battery capacity”, ERT, vol. 8, no. 3, pp. 535–554, 2025, doi: 10.35208/ert.1496026.
ISNAD Ekici, Mesut Ramazan et al. “Production of Ti3C2Tx With Freeze Dryer, Investigation of Characteristics and Effect on Lithium-Ion Battery Capacity”. Environmental Research and Technology 8/3 (September2025), 535-554. https://doi.org/10.35208/ert.1496026.
JAMA Ekici MR, Bulut E, Atasoy A. Production of Ti3C2Tx with freeze dryer, investigation of characteristics and effect on lithium-ion battery capacity. ERT. 2025;8:535–554.
MLA Ekici, Mesut Ramazan et al. “Production of Ti3C2Tx With Freeze Dryer, Investigation of Characteristics and Effect on Lithium-Ion Battery Capacity”. Environmental Research and Technology, vol. 8, no. 3, 2025, pp. 535-54, doi:10.35208/ert.1496026.
Vancouver Ekici MR, Bulut E, Atasoy A. Production of Ti3C2Tx with freeze dryer, investigation of characteristics and effect on lithium-ion battery capacity. ERT. 2025;8(3):535-54.